VIPA System 300S CPU 315SN/EC ECO

CPU | 315-4EC32 | Handbuch

HB140 | CPU | 315-4EC32 | DE | 15-23

VIPA GmbH Ohmstr. 4 91074 Herzogenaurach Telefon: +49 9132 744-0 Telefax: +49 9132 744-1864 E-Mail: info@vipa.com Internet: www.vipa.com

Inhaltsverzeichnis

1	Allgemein	. 6
	1.1 Copyright © VIPA GmbH	. 6
	1.2 Über dieses Handbuch	. 7
	1.3 Sicherheitshinweise	. 8
2	Grundlagen	10
	2.1 Sicherheitshinweis für den Benutzer.	10
	2.2 Arbeitsweise einer CPU	11
	2.2.1 Allgemein	11
	2.2.2 Programme	11
	2.2.3 Operanden	12
	2.3 CPU 315-4EC32	13
	2.4 Allgemeine Daten	14
3	Montage und Aufbaurichtlinien	17
	3.1 Einbaumaße	17
	3.2 Montage Standard-Bus	18
	3.3 Verdrahtung	19
	3.4 Aufbaurichtlinien	22
4	Hardwarebeschreibung	26
	4.1 Leistungsmerkmale	26
	4.2 Aufbau	27
	4.2.1 Allgemein	27
	4.2.2 Schnittstellen	27
	4.2.3 Speichermanagement	29
	4.2.4 Steckplatz für Speichermedien	29
	4.2.5 Batteriepufferung für Uhr und RAM	29
	4.2.6 Betriebsartenschalter	30
	4.2.7 LEDs	30
	4.3 Technische Daten	32
5	Einsatz CPU 315-4EC32	40
	5.1 Montage	40
	5.2 Anlaufverhalten	40
	5.3 Adressierung	41
	5.3.1 Übersicht	41
	5.3.2 Adressierung Rückwandbus Peripherie	41
	5.4 Hardware-Konfiguration - CPU	42
	5.5 Hardware-Konfiguration - I/O-Module	43
	5.6 Hardware-Konfiguration - Ethernet-PG/OP-Kanal	44
	5.7 Einstellung Standard CPU-Parameter	40
	5.7.1 Parameter CDU	40
	5.7.2 Parameter für MPI/DP	40 50
	5.8 Finstellung VIPA-spezifische CPU-Parameter	50
	5.8.1 Vorgebensweise	50
	5.8.2 VIPA-spezifische Parameter	52
	5.9 Projekt transferieren	52
	5.9.1 Transfer über MPI	53
	5.9.2 Transfer über Ethernet	54
		• •

	5.9.3 Transfer über MMC	. 54
	5.10 Zugriff auf integrierte Web-Seite	. 55
	5.11 Betriebszustände	. 57
	5.11.1 Übersicht	. 57
	5.11.2 Funktionssicherheit	. 59
	5.12 Urlöschen	. 60
	5.13 Firmwareupdate	. 62
	5.14 Rücksetzen auf Werkseinstellung	. 64
	5.15 Steckplatz für Speichermedien	. 65
	5.16 Erweiterter Know-how-Schutz	. 66
	5.17 MMC-Cmd - Autobefehle	. 67
	5.18 VIPA-spezifische Diagnose-Einträge	. 69
	5.19 Mit Testfunktionen Variablen steuern und beobachten.	. 85
6	Finsatz PtP-Kommunikation	87
•	6.1 Schnelleinstieg	. 07
	6.2 Prinzin der Datenübertragung	. 07 . 87
	6.3 Finsatz der RS485-Schnittstelle für PtP	. 07 . 88
	6.1 Parametrierung	. 00
	6.4.1 EC/SEC 216 - SER CEG	. 03 . 80
	6.5 Kommunikation	. 03
	6.5.1 Übersicht	. 33
	6.5.2 EC/SEC 217 SED SND	. 90
	6.5.3 EC/SEC 218 - SER BCV	. 33 QR
	6.6 Protokolle und Prozeduren	100
	6.7 Modbus - Funktionscodes	100
	6.8 Modbus - Reispiel zur Kommunikation	109
7	Finanta Ethernat Kommunikation Draduktiv	440
1	Z 1 Orwedlessen Jadustrial Ethernet in der Automatisie	112
	7.1 Grundlagen - Industrial Ethernet in der Automatisie-	112
	7.2 Grundlagen - ISO/OSI-Schichtenmodell	113
	7.3 Grundlagen - Begriffe	114
	7.4 Grundlagen - Protokolle	115
	7.5 Grundlagen - IP-Adresse und Subnetz	118
	7.6 Schnelleinstien	119
	7.7 Montage und Inbetriebnahme	120
	7.8 Hardware-Konfiguration - CPU	121
	7.9 Siemens S7-Verbindungen projektieren	121
	7 10 Offene Kommunikation projektieren	128
	7.11 NCM Diagnoso Hilfo zur Echlersuche	131
0		
0		121
	Einsatz Ethernet-Kommunikation - EtherCAT	134
	Einsatz Ethernet-Kommunikation - EtherCAT	134 134
	Einsatz Ethernet-Kommunikation - EtherCAT	134 134 134
	Einsatz Ethernet-Kommunikation - EtherCAT	134 134 134 135
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines 8.1.2 EtherCAT Zustandsmaschine 8.1.3 CoE - CANopen over Ethernet	134 134 134 135 137
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines 8.1.2 EtherCAT Zustandsmaschine 8.1.3 CoE - CANopen over Ethernet 8.1.4 ESI-Dateien	134 134 134 135 137 138
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines 8.1.2 EtherCAT Zustandsmaschine 8.1.3 CoE - CANopen over Ethernet 8.1.4 ESI-Dateien 8.2 Inbetriebnahme und Anlaufverhalten	134 134 135 137 138 138
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines. 8.1.2 EtherCAT Zustandsmaschine. 8.1.3 CoE - CANopen over Ethernet. 8.1.4 ESI-Dateien. 8.2 Inbetriebnahme und Anlaufverhalten. 8.2.1 Montage und Inbetriebnahme.	134 134 135 137 138 138 138
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines 8.1.2 EtherCAT Zustandsmaschine 8.1.3 CoE - CANopen over Ethernet 8.1.4 ESI-Dateien 8.2 Inbetriebnahme und Anlaufverhalten 8.2.1 Montage und Inbetriebnahme 8.2.2 Anlaufverhalten	134 134 135 137 138 138 138 138
	Einsatz Ethernet-Kommunikation - EtherCAT 8.1 Grundlagen EtherCAT 8.1.1 Allgemeines. 8.1.2 EtherCAT Zustandsmaschine. 8.1.3 CoE - CANopen over Ethernet. 8.1.4 ESI-Dateien. 8.2 Inbetriebnahme und Anlaufverhalten. 8.2.1 Montage und Inbetriebnahme. 8.2.2 Anlaufverhalten. 8.3 Hardware-Konfiguration - CPU.	134 134 135 137 138 138 138 138 138

8.4 E	therCAT Diagnose	143
8.4.1	Diagnose über den SPEED7 EtherCAT Manager	143
8.4.2	Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)	143
8.4.3	Diagnose über Systemzustandslisten - SZL	147
8.4.4	Diagnose über OB-Startinformationen	148
8.4.5	Diagnose über NCM-Diagnose	148
8.4.6	Diagnose über Diagnosepuffer CPU bzw. CP	148
8.4.7	Diagnose über Status-LEDs	148
8.5 A	larmverhalten	149
8.5.1	Übersicht	149
8.5.2	Alarmtypen	150
8.6 S	ystemeigenschaften	160
8.7 F	irmwareupdate	161
8.8 Z	ugriff auf das Objektverzeichnis	161
8.8.1	Übersicht	161
8.8.2	FB 52 - Read SDO - Lesezugriff auf Objektver- zeichnis	162
8.8.3	FB 53 - Write SDO - Schreibzugriff auf Objektver-	165
80 0	ZEICHINS	168
801	Objekt-verzeicht	168
802	CoE Communication Area Objects: 0x1000-0x1EEE	160
803	Generic Master Objects: 0x2000-0x20EE	172
894	Distributed Clocks Objects: 0x2000-0x2011	176
895	Slave specific objects	176
896	CoE Device Area Objects: 0xE000-0xEEEE	181
5.0.0		101

Copyright © VIPA GmbH

1 Allgemein

1.1 Copyright © VIPA GmbH

All Rights Reserved	Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.			
	Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Mate- rials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geän- dert werden, es sei denn in Übereinstimmung mit anwendbaren Ver- einbarungen. Verträgen oder Lizenzen.			
	Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessauto- matisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany			
	Tel.: +49 9132 744 -0			
	Fax.: +49 9132 744-1864			
	EMail: info@vipa.de			
	http://www.vipa.com			
	Es wurden alle Anstrengungen unternommen, um sicher- zustellen, dass die in diesem Dokument enthaltenen Infor- mationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informati- onen bleibt jedoch vorbehalten.			
	Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.			
EG-Konformitätserklä- rung	Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vor- schriften übereinstimmen. Die Übereinstimmung ist durch CE-Zei- chen gekennzeichnet.			
Informationen zur Kon- formitätserklärung	 Für weitere Informationen zur CE-Kennzeichnung und Konformitäts erklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH. 			

Warenzeichen	VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.			
	SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.			
	SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind einge- tragene Warenzeichen der Siemens AG.			
	Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.			
	Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.			
	Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzei- chen ihrer jeweiligen Eigentümer.			
Dokument-Support	Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:			
	VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany			
	Telefax: +49 9132 744-1204			
	EMail: documentation@vipa.de			
Technischer Support	Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:			
	VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany			
	Telefon: +49 9132 744-1150 (Hotline)			
	EMail: support@vipa.de			

1.2 Über dieses Handbuch

Zielsetzung und Inhalt Das Handbuch beschreibt die SPEED7 CPU 315-4EC32 aus dem System 300S von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

Produkt	BestNr.	ab Stand:	ab Stand:		
		CPU-HW	CPU-FW	CP-FW	
CPU 315SN/EC ECO	315-4EC32	01	V3.6.22	V2.0.10	
Zielgruppe	Das Handbuch i	st geschrieben f	ür Anwender mit	Grundkenntnissen in	

	der Automatisierungstechnik.		
Aufbau des Handbuchs	Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.		

Sicherheitshinweise

Orientierung im Doku- ment	 Als Orientierungshilfe stehen im Handbuch zur Verfügung: Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Verweise mit Seitenangabe 		
Verfügbarkeit	 Das Handbuch ist verfügbar in: gedruckter Form auf Papier in elektronischer Form als PDF-Datei (Adobe Acrobat Reader) 		
Piktogramme Signal- wörter	Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:		
	GEFAHR! Unmittelbar drohende oder mögliche Gefahr. Personen- schäden sind möglich.		
	VORSICHT! Bei Nichtbefolgen sind Sachschäden möglich.		
	<i>Zusätzliche Informationen und nützliche Tipps</i>		

1.3 Sicherheitshinweise

Bestimmungsgemäße Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweis für den Benutzer

2 Grundlagen

2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Verwenden Sie für den Versand immer die Originalverpackung.

Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

2.2 Arbeitsweise einer CPU

2.2.1 Allgemein

	Die CPU enthält einen Standardprozessor mit internem Programm- speicher. In Verbindung mit der integrierten SPEED7-Technologie erhalten Sie ein leistungsfähiges Gerät zur Prozessautomatisierung innerhalb der System 300S Familie. In einer CPU gibt es folgende Arbeitsweisen:
	 zyklische Bearbeitung zeitgesteuerte Bearbeitung alarmgesteuerte Bearbeitung Bearbeitung nach Priorität
zyklische Bearbeitung	Die zyklische Bearbeitung stellt den Hauptanteil aller Vorgänge in der CPU. In einem endlosen Zyklus werden die gleichen Bearbei- tungsfolgen wiederholt.
zeitgesteuerte Bearbei- tung	Erfordern Prozesse in konstanten Zeitabschnitten Steuersignale, so können Sie neben dem zyklischen Ablauf zeitgesteuert bestimmte Aufgaben durchführen z.B. zeitunkritische Überwachungsfunktionen im Sekundenraster.
alarmgesteuerte Bear- beitung	Soll auf ein Prozesssignal besonders schnell reagiert werden, so ordnen Sie diesem einen alarmgesteuerten Bearbeitungsabschnitt zu. Ein Alarm kann in Ihrem Programm eine Bearbeitungsfolge akti- vieren.
Bearbeitung nach Prio- rität	Die oben genannten Bearbeitungsarten werden von der CPU nach Wichtigkeitsgrad behandelt (Priorität). Da auf ein Zeit- oder Alarmer- eignis schnell reagiert werden muss, unterbricht die CPU zur Bearbei- tung dieser hochprioren Ereignisse die zyklische Bearbeitung, rea- giert auf diese Ereignisse und setzt danach die zyklische Bearbeitung wieder fort. Die zyklische Bearbeitung hat daher die niedrigste Prio- rität.
2.2.2 Programme	
	Das in jeder CPU vorhandene Programm unterteilt sich in:
	SystemprogrammAnwenderprogramm
Systemprogramm	Das Systemprogramm organisiert alle Funktionen und Abläufe der CPU, die nicht mit einer spezifischen Steuerungsaufgabe verbunden sind.
Anwenderprogramm	Hier finden Sie alle Funktionen, die zur Bearbeitung einer spezifi- schen Steuerungsaufgabe erforderlich sind. Schnittstellen zum Sys- temprogramm stellen die Operationsbausteine zur Verfügung.

Arbeitsweise einer CPU > Operanden

2.2.3 Operanden	
	Die CPU stellt Ihnen für das Programmieren folgende Operandenbe- reiche zur Verfügung:
	Prozessabbild und PeripherieMerker
	Zeiten und ZählerDatenbausteine
Prozessabbild und Peri- pherie	Auf das Prozessabbild der Aus- und Eingänge PAA/PAE kann Ihr Anwenderprogramm sehr schnell zugreifen. Sie haben Zugriff auf fol- gende Datentypen:
	 Einzelbits Bytes Wörter Doppelwörter
	Sie können mit Ihrem Anwenderprogramm über den Bus direkt auf Peripheriebaugruppen zugreifen. Folgende Datentypen sind möglich:
	BytesWörterBlöcke
Merker	Der Merkerbereich ist ein Speicherbereich, auf den Sie über Ihr Anwenderprogramm mit entsprechenden Operationen zugreifen können. Verwenden Sie den Merkerbereich für oft benötigte Arbeits- daten.
	Sie können auf folgende Datentypen zugreifen:
	 Einzelbits
	Bytes
	WörterDoppelwörter
Zeiten und Zähler	Sie können mit Ihrem Anwendungsprogramm eine Zeitzelle mit einem Wert zwischen 10ms und 9990s laden. Sobald Ihr Anwenderpro- gramm eine Startoperation ausführt, wird dieser Zeitwert um ein durch Sie vorgegebenes Zeitraster dekrementiert, bis Null erreicht wird.
	Für den Einsatz von Zählern können Sie Zählerzellen mit einem Anfangswert laden (max. 999) und diesen hinauf- bzw. herunter- zählen.
Datenbausteine	Ein Datenbaustein enthält Konstanten bzw. Variablen im Byte-, Wort- oder Doppelwortformat. Mit Operanden können Sie immer auf den aktuellen Datenbaustein zugreifen.
	Sie haben Zugriff auf folgende Datentypen:
	EinzelbitsBytesWörter

Doppelwörter

2.3 CPU 315-4EC32

Übersicht

Die CPU 315-4EC32 basiert auf der SPEED7-Technologie. Hierbei wird die CPU durch Coprozessoren im Bereich Programmierung und Kommunikation unterstützt und erhält somit eine Leistungssteigerung, so dass diese höchsten Anforderungen genügt.

- Programmiert wird die CPU in STEP[®]7 von Siemens. Hierzu können Sie den SIMATIC Manager von Siemens verwenden. Hierbei kommt der Befehlssatz der S7-400 von Siemens zum Einsatz.
- Module und CPUs aus dem System 300S von VIPA und Siemens können als Mischkonfiguration am Bus eingesetzt werden.
- Das Anwenderprogramm wird im batteriegepufferten RAM oder auf einem zusätzlich steckbaren MMC-Speichermodul gespeichert.
- Projektiert wird die CPU als CPU 315-2PN/DP (6ES7 315-2EH14-0AB0 V3.2) von Siemens.

Zugriffsmöglichkeiten

Bitte verwenden Sie zur Projektierung dieser CPU von VIPA immer die CPU 315-2PN/DP (6ES7 315-2EH14-0AB0 V3.2) von Siemens aus dem Hardware-Katalog. Zur Projektierung werden fundierte Kenntnisse im Umgang mit dem entsprechenden Siemens Projektiertool vorausgesetzt! Allgemeine Daten

Speicher	 Die CPU hat einen Speicher integriert. Angaben über die Speicherkapazität finden Sie auf der Frontseite Ihrer CPU. Der Speicher gliedert sich in folgende Teile: Ladespeicher 512kByte Codespeicher (50% des Arbeitsspeichers) Datenspeicher (50% des Arbeitsspeichers) Arbeitsspeicher 512kByte
Integrierter EtherCAT- Master	Die CPU hat einen EtherCAT-Master integriert. Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices " <i>EtherCAT-Netzwerk</i> ". Das " <i>EtherCAT-Netzwerk</i> " ist mittels GSDML im Hardware-Katalog zu installieren und kann mit dem VIPA-Tool SPEED7 EtherCAT Manager konfiguriert werden.
Integrierter Ethernet- PG/OP-Kanal	Auf der CPU befindet sich eine Ethernet-Schnittstelle für PG/OP- Kommunikation. Nach der Zuweisung von IP-Adress-Parametern über Ihr Projektier-Tool können Sie über die "Zielsystem"-Funktionen den Ethernet-PG/OP-Kanal direkt ansprechen und Ihre CPU pro- grammieren bzw. fernwarten. Sie haben auch die Möglichkeit über diese Verbindungen mit einer Visualisierungs-Software auf die CPU zuzugreifen.
Betriebssicherheit	 Anschluss über Federzugklemmen an Frontstecker Aderquerschnitt 0,082,5mm² Vollisolierung der Verdrahtung bei Modulwechsel Potenzialtrennung aller Peripherie-Module zum Rückwandbus
Aufbau/Maße	Maße Grundgehäuse: 2fach breit: (BxHxT) in mm: 80x125x120
Integriertes Netzteil	Die CPU hat ein Netzteil integriert. Das Netzteil ist mit DC 24V zu ver- sorgen. Über die Versorgungsspannung werden neben der internen Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt. Das Netzteil ist gegen Verpolung und Überstrom geschützt.

2.4 Allgemeine Daten

Konformität und Approbation				
Konformität				
CE	2006/95/EG	Niederspannungsrichtlinie		
	2004/108/EG	EMV-Richtlinie		
Approbation				
UL	UL 508	Zulassung für USA und Kanada		

Allgemeine Daten

Konformität und Approbation				
Sonstiges				
RoHS	2011/65/EU	Produkte bleifrei; Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten		

Personenschutz und Geräteschutz				
Schutzart	-	IP20		
Potenzialtrennung				
Zum Feldbus	-	Galvanisch entkoppelt		
Zur Prozessebene	-	Galvanisch entkoppelt		
Isolationsfestigkeit		-		
Isolationsspannung gegen Bezugserde				
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V		
Schutzmaßnahmen	-	gegen Kurzschluss		

Umgebungsbedingungen gemäß EN 61131-2				
Klimatisch				
Lagerung /Transport	EN 60068-2-14	-25+70°C		
Betrieb				
Horizontaler Einbau	EN 61131-2	0+60°C		
Vertikaler Einbau	EN 61131-2	0+60°C		
Luftfeuchtigkeit	EN 60068-2-30	RH1		
		(ohne Betauung, relative Feuchte 10 95%)		
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2		
Mechanisch				
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz		
Schock	EN 60068-2-27	15g, 11ms		

Montagebedingungen				
Einbauort	-	Im Schaltschrank		
Einbaulage	-	Horizontal und vertikal		

Allgemeine Daten

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	EN 61000-6-2		Industriebereich
Zone B		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kv bei Kontaktentiadung (Schanegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3
		EN 61000-4-5	Surge, Installationsklasse 3 *
*) Aufarund dar anargiaraiak	on Finnelinenules ist		ana automa Daachaltung mit Diitaahutaalamantan uuia – D. Diitaatra

*) Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

Einbaumaße

3 Montage und Aufbaurichtlinien

3.1 Einbaumaße

Maße Grundgehäuse

2fach breit (BxHxT) in mm: 80 x 125 x 120

Montagemaße

Maße montiert

Montage Standard-Bus

3.2 Montage Standard-Bus

Allgemein

Die einzelnen Module werden direkt auf eine Profilschiene montiert und über den Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder von hinten an das Modul zu stecken. Die Rückwandbus-Verbinder sind im Lieferumfang der Peripherie-Module enthalten.

Profilschiene	Bestellnummer	Α	В	C
	390-1AB60	160	140	10
	390-1AE80	482	466	8,3
	390-1AF30	530	500	15
	390-1AJ30	830	800	15
	390-9BC00*	2000	Bohrungen nur links	15

*) Verpackungseinheit 10 Stück

Busverbinder

Für die Kommunikation der Module untereinander wird beim System 300S ein Rückwandbus-Verbinder eingesetzt. Die Rückwandbus-Verbinder sind im Lieferumfang der Peripherie-Module enthalten und werden vor der Montage von hinten an das Modul gesteckt.

Verdrahtung

Montagemöglichkeiten

	Aufbau
	0 0
101 101	
liegender Aufbau	=₀

senkrechter Aufbau			ər
0)	0	
			٦
	0		
	, c	0	Π

Vorgehensweise

Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:

- waagrechter Aufbau: von 0 bis 60°C
- senkrechter Aufbau: von 0 bis 40°C
- liegender Aufbau: von 0 bis 40°C
- 1. Verschrauben Sie die Profilschiene mit dem Untergrund (Schraubengröße: M6) so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt.
- Achten Sie bei geerdetem Untergrund auf eine niederohmige 2. Verbindung zwischen Profilschiene und Untergrund.
- Verbinden Sie die Profilschiene mit dem Schutzleiter. Für diesen 3. ⊾ Zweck befindet sich auf der Profilschiene ein Stehbolzen mit M6-Gewinde.
- 4. Der Mindestquerschnitt der Leitung zum Schutzleiter muss 10mm² betragen.
- 5. Hängen Sie die Spannungsversorgung ein und schieben Sie diese nach links bis an den Erdungsbolzen der Profilschiene.
- Schrauben sie die Spannungsversorgung fest.
- 7. Nehmen Sie einen Rückwandbus-Verbinder und stecken Sie ihn wie gezeigt von hinten an die CPU.
- 8. Hängen Sie die CPU rechts von der Spannungsversorgung ein und schieben sie diese bis an die Spannungsversorgung.
- Klappen sie die CPU nach unten und schrauben Sie die CPU 9. wie gezeigt fest.
- 10. Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts neben dem Vorgänger-Modul einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

3.3 Verdrahtung

VORSICHT!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungs-versorgung oder an der Zuleitung, ist die Spannungs-zuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden.

Verdrahtung

Federklemmtechnik (grün)

Zur Verdrahtung der Spannungsversorgung der CPU kommt eine grüne Anschlussklemmen mit Federzugklemmtechnik zum Einsatz. Die Anschlussklemme ist als Stecker ausgeführt, der im verdrahteten Zustand vorsichtig abgezogen werden kann. Hier können Sie Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen. Hierbei dürfen sowohl flexible Litzen ohne Aderendhülse, als auch starre Leiter verwendet werden.

- Prüfabgriff für 2mm Messspitze 1
- 2 Verriegelung (orange) für Schraubendreher
- 3 Runde Öffnung für Drähte

Die nebenstehende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- 1. Zum Verdrahten drücken Sie mit einem geeigneten Schraubendreher, wie in der Abbildung gezeigt, die Verriegelung senkrecht nach innen und halten Sie den Schraubendreher in dieser Position.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen.
- 3. Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.

Frontstecker der Ein-/ Ausgabe-Module

Nachfolgend ist die Verdrahtung der 2 Frontstecker-Varianten aufgezeigt.

20-fach Schraubtechnik 392-1AJ00

- **1.** Öffnen Sie die Frontklappe Ihres Ein-/Ausgabe-Moduls.
- **2.** Bringen Sie den Frontstecker in Verdrahtungsstellung.

Hierzu stecken Sie den Frontstecker auf das Modul, bis er einrastet. In dieser Stellung ragt der Frontstecker aus dem Modul heraus und hat noch keinen Kontakt.

- **3.** Isolieren Sie Ihre Leitungen ab. Verwenden Sie ggf. Aderendhülsen.
- **4.** Fädeln Sie den beiliegenden Kabelbinder in den Frontstecker ein.
- 5. Beginnen Sie mit der Verdrahtung von unten nach oben, wenn Sie die Leitungen nach unten aus dem Modul herausführen möchten, bzw. von oben nach unten, wenn die Leitungen nach oben herausgeführt werden sollen.
- **6.** Schrauben Sie die Anschlussschrauben der nicht verdrahteten Schraubklemmen ebenfalls fest.
- **7.** Ziehen Sie den Kabelbinder für den Leitungsstrang fest.

.. 0.8 Nm

- 8. Drücken Sie die Entriegelungstaste am Frontstecker an der Moduloberseite und drücken Sie gleichzeitig den Frontstecker in das Modul, bis er einrastet.
- **9.** Der Frontstecker ist nun elektrisch mit Ihrem Modul verbunden.
- **10.** Schließen Sie die Frontklappe.
- Füllen Sie den Beschriftungsstreifen zur Kennzeichnung der einzelnen Kanäle aus und schieben Sie den Streifen in die Frontklappe.

Aufbaurichtlinien

40-fach Schraubtechnik 392-1AM00

- **1.** Öffnen Sie die Frontklappe Ihres Ein-/Ausgabe-Moduls.
- **2.** Bringen Sie den Frontstecker in Verdrahtungsstellung.

Hierzu stecken Sie den Frontstecker auf das Modul, bis er einrastet. In dieser Stellung ragt der Frontstecker aus dem Modul heraus und hat noch keinen Kontakt.

- **3.** Isolieren Sie Ihre Leitungen ab. Verwenden Sie ggf. Aderendhülsen.
- **4.** Beginnen Sie mit der Verdrahtung von unten nach oben, wenn Sie die Leitungen nach unten aus dem Modul herausführen möchten, bzw. von oben nach unten, wenn die Leitungen nach oben herausgeführt werden sollen.
- **5.** Schrauben Sie die Anschlussschrauben der nicht verdrahteten Schraubklemmen ebenfalls fest.
- **6.** Legen Sie den beigefügten Kabelbinder um den Leitungsstrang und den Frontstecker herum.
- 7. Jiehen Sie den Kabelbinder für den Leitungsstrang fest.

- **8.** Schrauben Sie die Befestigungsschraube für den Frontstecker fest.
- **9.** Der Frontstecker ist nun elektrisch mit Ihrem Modul verbunden.
- **10.** Schließen Sie die Frontklappe.
- **11.** Füllen Sie den Beschriftungsstreifen zur Kennzeichnung der einzelnen Kanäle aus und schieben Sie den Streifen in die Frontklappe.

0.4 ... 0.7 Nm

3.4 Aufbaurichtlinien

Allgemeines

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

^{0.4 ... 0.7} Nm

Was bedeutet EMV?	Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektro- magnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.
	Die Komponenten von VIPA sind für den Einsatz in Industrieumge- bungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV- Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.
Mögliche Störeinwir- kungen	Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:
	 Elektromagnetische Felder (HF-Einkopplung) Magnetische Felder mit energietechnischer Frequenz Bus-System Stromversorgung Schutzleiter
	Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschied- liche Kopplungsmechanismen in Ihre Steuerung.
	Man unterscheidet:
	 galvanische Kopplung kapazitive Kopplung induktive Kopplung Strahlungskopplung
Grundregeln zur Sicher- stellung der EMV	Häufig genügt zur Sicherstellung der EMV das Einhalten einiger ele- mentarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.
	 Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile. Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her. Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm. Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet. Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung. Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen). Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln. Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).

Aufbaurichtlinien

Ac	hten sie auf die einwandfreie Befestigung der Leitungsschirme.
_	Datenleitungen sind geschirmt zu verlegen.

- Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
- Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
- Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
- Verwenden Sie f
 ür geschirmte Datenleitungen metallische oder metallisierte Steckergeh
 äuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotential und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von Leitungen Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. μA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergeh
 äuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/ Schutzleiterschiene aufzulegen.

- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

VORSICHT! Bitte bei der

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.

Leistungsmerkmale

4 Hardwarebeschreibung

4.1 Leistungsmerkmale

CPU 315-4EC32

- SPEED7-Technologie integriert
- 512kByte Arbeitsspeicher integriert (256kByte Code, 256kByte Daten)
- 512kByte Ladespeicher
- EtherCAT-Master-Funktionalität
- RS485-Schnittstelle konfigurierbar für PtP-Kommunikation
- Ethernet-PG/OP-Schnittstelle integriert
- MPI-Schnittstelle
- MCC-Slot f
 ür externe Speichermedien
- Status-LEDs f
 ür Betriebszustand und Diagnose
- Echtzeituhr akkugepuffert
- E/A-Adressbereich digital/analog 2048Byte
- 512 Zeiten
- 512 Zähler
- 8192 Merker-Byte

Bestelldaten

Тур	Bestellnummer	Beschreibung
315SN/EC ECO	315-4EC32	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet- Interface für PG/OP, EtherCAT-Master-Funktionalität

4.2 Aufbau

CPU 315-4EC32

- VIPA PLC Steckplatz für Speichermedien (verriegelbar) 1 CPU 315 SN/EC ECO PW RN ST FC MC L/A S EC MT BF L/A S 2 LEDs des CPU-Teils 3 LEDs des integrierten EtherCAT-Masters 4 Betriebsarten-Schalter CPU MCC 5 Twisted Pair Schnittstelle für Ethernet-PG/OP-Kanal 6 Anschluss für DC 24V Spannungsversorgung RUN STOP MRES 7 **MPI-Schnittstelle** Δ 8 PtP-Schnittstelle VIPA 315-4EC32 X 2 9 Twisted Pair Schnittstelle für EtherCAT-Kommunikation -----Komponenten 5 - 9 befinden sich unter der Frontklappe! X50 X8 X1_O 6 8 9 X2O MPI X3 (PtP
- 4.2.2 Schnittstellen

X1: Spannungsversorgung

Die CPU besitzt ein eingebautes Netzteil:

- Das Netzteil ist mit DC 24V zu versorgen. Hierzu dient der DC 24V Anschluss, der sich unter der Frontklappe befindet.
- Mit der Versorgungsspannung werden neben der CPU-Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt.
- Das Netzteil ist gegen Verpolung und Überstrom geschützt.
- Die interne Elektronik ist galvanisch an die Versorgungsspannung gebunden.

Aufbau > Schnittstellen

X2: MPI-Schnittstelle	9polige SubD-Buchse:
	 Die MPI-Schnittstelle dient zur Verbindung zwischen Programmiergerät und CPU. Hierüber erfolgt beispielsweise die Projektierung und Programmierung. MPI dient zur Kommunikation zwischen mehreren CPUs oder zwischen HMIs und CPU. Standardmäßig ist die MPI-Adresse 2 eingestellt.
X5: Ethernet-PG/OP- Kanal	 8polige RJ45-Buchse: Die RJ45-Buchse dient als Schnittstelle zum Ethernet-PG/OP-Kanal. Mittels dieser Schnittstelle können Sie Ihre CPU programmieren bzw. fernwarten und auf die integrierte Web-Seite zugreifen. Projektierbare Verbindungen sind nicht möglich. Damit Sie online auf den Ethernet-PG/OP-Kanal zugreifen können, müssen Sie diesem IP-Adress-Parameter zuweisen.
PtP-Schnittstelle X3	 9polige SubD-Buchse: Bei dieser CPU ist die integrierte RS485-Schnittstelle fix auf PtP-Kommunikation (point to point) eingestellt. PtP-Funktionalität Mit der Funktionalität PtP ermöglicht die RS485-Schnittstelle eine serielle Punkt-zu-Punkt-Prozessankopplung zu verschiedenen Ziel- oder Quell-Systemen. Für den Betrieb ist keine zusätzliche Parameteranpassung in der Hardware-Konfiguration erforderlich. Unterstützt werden die Protokolle ASCII, STX/ETX, 3964R, USS und Modbus-Master (ASCII, RTU).
Schnittstelle für EtherCAT-Kommunika- tion X8	 8polige RJ45-Buchse: Verbinden Sie diese Schnittstellen mit der RJ45-Buchse "IN" Ihrer Slave-Station. EtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen Standard-CAT5-Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu 100m zwischen 2 Teilnehmern möglich. In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen. Der Einsatz von Hubs ist nicht möglich. Ein EtherCAT-Netz besteht immer aus einem Master und einer beliebigen Anzahl an EtherCAT-Slaves (Koppler). Jeder EtherCAT-Slave besitzt eine RJ45-Buchse "IN" und "OUT". Das ankommende EtherCAT-Kabel aus Richtung des Masters ist in die mit "IN" bezeichnete Buchse zu stecken. Die mit "OUT" bezeichnete Buchse ist mit dem nachfolgenden Teilnehmer zu verbinden. Beim jeweiligen letzten Teilnehmer bleibt die "OUT"-Buchse frei.

4.2.3 Speichermanagement

Speicher

Die CPU hat einen Speicher integriert. Angaben über die Speicherkapazität finden Sie auf der Frontseite Ihrer CPU. Der Speicher gliedert sich in folgende Teile:

- Ladespeicher 512kByte
- Codespeicher (50% des Arbeitsspeichers)
- Datenspeicher (50% des Arbeitsspeichers)
- Arbeitsspeicher 512kByte
- 4.2.4 Steckplatz für Speichermedien
 - Über diesen Steckplatz können Sie eine MMC (Multimedia card) als externes Speichermedium für Programme und Firmware stecken.
 - Die VIPA-Speicherkarten sind mit dem PC-Format FAT vorformatiert und können mit einem Kartenlesegerät beschrieben werden.
 - Nach PowerON bzw. nach Urlöschen überprüft die CPU, ob eine Speicherkarte gesteckt ist und sich hier für die CPU gültige Daten befinden.
 - Schieben Sie ihr Speichermedium in den Steckplatz, bis dieses geführt durch eine Federmechanik einrastet. Dies gewährleistet eine sichere Kontaktierung.
 - Mit der Schiebemechanik können Sie durch Schieben nach unten ein gestecktes Speichermedium gegen Herausfallen sichern.
 - Zum Entnehmen schieben Sie die Schiebemechanik wieder nach oben und drücken Sie das Speichermedium gegen den Federdruck nach innen, bis dieses mit einem Klick entriegelt wird.

VORSICHT!

Sofern das Speichermedium schon durch die Federmechanik entriegelt wurde, kann dieses bei Betätigung der Schiebemechanik herausspringen!

4.2.5 Batteriepufferung für Uhr und RAM

Jede CPU 31xS besitzt einen internen Akku, der zur Sicherung des RAMs bei Stromausfall dient. Zusätzlich wird die interne Uhr über den Akku gepuffert. Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für max. 30 Tage. Aufbau > LEDs

VORSICHT!

Bitte schließen Sie die CPU mindestens für 24 Stunden an die Spannungsversorgung an, damit der interne Akku entsprechend geladen wird.

Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch. Der BAT-Fehler hat keinen Einfluss auf den Ladevorgang.

Den BAT-Fehler können Sie wieder löschen, wenn einmalig beim Power-Cycle zwischen dem Aus- und Einschalten der Versorgungsspannung mindestens 30sec. liegen und der Akku der CPU voll geladen ist. Ansonsten bleibt bei einem kurzen Power-Cycle der BAT-Fehler bestehen und die CPU wird urgelöscht.

4.2.6 Betriebsartenschalter

	RUN
$ (\equiv)$	STOP
	MRES

- Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen.
- Beim Übergang vom Betriebszustand STOP nach RUN durchläuft die CPU den Betriebszustand ANLAUF.
- Mit der Tasterstellung MRES (Memory Reset) fordern Sie das Urlöschen an mit anschließendem Laden von Speicherkarte, sofern dort ein Projekt hinterlegt ist.

4.2.7 LEDs

LEDs CPU

Sobald die CPU intern mit 5V versorgt wird, leuchtet die grüne PW-LED (Power).

RN	ST	SF	FC	MC	Bedeutung
(RUN)	(STOP)	(SFAIL)	(FRCE)	(MMC)	
grün	gelb	rot	gelb	gelb	
Bootvorg	ang nach	NetzEIN			
•	BB*	•	•	•	* Blinken mit 10Hz: Firmware wird geladen.
•	•	•	•	•	Initialisierung: Phase 1
•	•	•	•	0	Initialisierung: Phase 2
•	•	•	0	0	Initialisierung: Phase 3
0	•	•	0	0	Initialisierung: Phase 4
Betrieb					
0	•	Х	Х	Х	CPU befindet sich im Zustand STOP.

Aufbau > LEDs

RN	ST	SF	FC	MC	Bedeutung
(RUN)	(STOP)	(SFAIL)	(FRCE)	(MMC)	
BB	0	Х	Х	Х	CPU befindet sich im Zustand Anlauf. Solange der OB100 durchlaufen wird, blinkt die RUN-LED, mindestens für 3s.
•	0	0	Х	Х	CPU befindet sich ohne Fehler im Zustand RUN.
Х	Х	•	Х	Х	Es liegt ein Systemfehler vor. Nähere Informationen hierzu finden Sie im Diagnosepuffer der CPU.
Х	Х	Х	•	Х	Variablen sind geforced (fixiert).
Х	Х	Х	Х	•	Zugriff auf Speicherkarte.
Х	BB*	0	0	0	* Blinken mit 10Hz: Konfiguration wird geladen.
Urlösche	n				
0	BB	Х	Х	Х	Urlöschen wird angefordert.
0	BB*	Х	Х	Х	* Blinken mit 5Hz: Urlöschen wird durchgeführt.
Rücksetzen auf Werkseinstellung					
•	•	0	0	0	Rücksetzen auf Werkseinstellung wird durchgeführt.
0	•	•	•	•	Rücksetzen auf Werkseinstellung war erfolgreich.
Firmware	eupdate				
0	•	BB	BB	•	Das abwechselnde Blinken zeigt an, dass neue Firm- ware auf der Speicherkarte vorhanden ist.
0	0	BB	BB	•	Das abwechselnde Blinken zeigt an, dass ein Firmwa- reupdate durchgeführt wird.
0	•	•	•	•	Firmwareupdate wurde fehlerfrei durchgeführt.
0	BB*	BB*	BB*	BB*	* Blinken mit 10Hz: Fehler bei Firmwareupdate.

an: • | aus: • | blinkend (2Hz): BB | nicht relevant: X

LEDs Ethernet-PG/OP-Kanal L/A, S

Die grüne L/A-LED (Link/Activity) zeigt an, dass der Ethernet-PG/OP-Kanal physikalisch mit Ethernet verbunden ist. Unregelmäßiges Blinken der L/A-LED zeigt Kommunikation des Ethernet-PG/OP-Kanals über Ethernet an.

Leuchtet die grüne S-LED (Speed), so hat der Ethernet-PG/OP-Kanal eine Übertragungsgrate von 100MBit/s ansonsten 10MBit/s.

EC	МТ	BF	Bedeutung
grün	gelb	rot	
0	0	0	Master ist im Zustand INIT
BB	0	0	Master ist im Zustand Pre-Op
Р	0	0	Master ist im Zustand Safe-Op
•	0	0	Master ist im Zustand OP

LEDs EtherCAT-Schnittstelle X8

Technische Daten

EC	МТ	BF	Bedeutung
Х	0	Х	Es liegt kein Maintenance-Ereignis an
Х	•	Х	Ein Maintenance-Ereignis liegt an. Näheres hierzu finden Sie in der Diagnose
Х	Х	0	Es liegt kein Fehler am EtherCAT-Bus vor
Х	Х	•	 EtherCAT-Busfehler, keine Verbindung zu Subnetz falsche Übertragungsgeschwindigkeit Vollduplexübertragung ist nicht aktiviert
Х	Х	В	 Ausfall eines angeschlossenen IO-Device Mindestens ein IO-Device ist nicht ansprechbar (Topologie- Fehler) Fehlerhafte Projektierung
0	B4	B4	Fehlerhafte Projektierung: Im Diagnosepuffer wurde 0xEA64 einge- tragen. Zusätzlich leuchtet die SF-LED der CPU.
0	BB*	BB*	* Das abwechselnde Blinken mit 4Hz zeigt an, dass ein Firmwareup- date des EtherCAT-Masters durchgeführt wird.
•	•	•	Firmwareupdate des EtherCAT-Masters wurde fehlerfrei durchge- führt.

an: • | aus: \circ | blinkend (1Hz): B | blinkend (2Hz): BB | B4: blinkend (4s an, 1s aus) | pulsierend: P | flackernd: F | nicht relevant: X

LEDs L/A, S

Die grüne L/A-LED (Link/Activity) zeigt an, dass der EtherCAT-Master physikalisch mit Ethernet verbunden ist. Unregelmäßiges Blinken der L/A-LED zeigt Kommunikation des EtherCAT-Masters über Ethernet an.

Leuchtet die grüne S-LED (Speed), so hat der EtherCAT-Master eine Übertragungsgrate von 100MBit/s ansonsten mit 10MBit/s.

Artikelnr.	315-4EC32
Bezeichnung	CPU 315SN/EC ECO
SPEED-Bus	-
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8 V
Verpolschutz	\checkmark
Stromaufnahme (im Leerlauf)	200 mA
Stromaufnahme (Nennwert)	0,7 A
Einschaltstrom	11 A
l²t	0,4 A²s
max. Stromabgabe am Rückwandbus	2 A
Verlustleistung	5,5 W
Lade- und Arbeitsspeicher	

Artikelnr.	315-4EC32
Ladespeicher integriert	512 KB
Ladespeicher maximal	512 KB
Arbeitsspeicher integriert	512 KB
Arbeitsspeicher maximal	512 KB
Speicher geteilt 50% Code / 50% Daten	\checkmark
Memory Card Slot	MMC-Card mit max. 1 GB
Ausbau	
Baugruppenträger max.	4
Baugruppen je Baugruppenträger	8 bei mehrzeiligem, 32 bei einzeiligem Aufbau
Anzahl DP-Master integriert	0
Anzahl DP-Master über CP	4
Betreibbare Funktionsbaugruppen	8
Betreibbare Kommunikationsbaugruppen PtP	8
Betreibbare Kommunikationsbaugruppen LAN	8
Befehlsbearbeitungszeiten	
Bitoperation, min.	0,01 µs
Wortoperation, min.	0,01 µs
Festpunktarithmetik, min.	0,01 µs
Gleitpunktarithmetik, min.	0,06 µs
Zeiten/Zähler und deren Remanenz	
Anzahl S7-Zähler	512
S7-Zähler Remanenz	einstellbar von 0 bis 512
S7-Zähler Remanenz voreingestellt	Z0 Z7
Anzahl S7-Zeiten	512
S7-Zeiten Remanenz	einstellbar von 0 bis 512
S7-Zeiten Remanenz voreingestellt	keine Remanenz
Datenbereiche und Remanenz	
Anzahl Merker	8192 Byte
Merker Remanenz einstellbar	einstellbar von 0 bis 8192
Merker Remanenz voreingestellt	MB0 MB15
Anzahl Datenbausteine	4095
max. Datenbausteingröße	64 KB
Nummernband DBs	1 4095
max. Lokaldatengröße je Ablaufebene	1024 Byte
max. Lokaldatengröße je Baustein	1024 Byte
Bausteine	

VIPA System 300S CPU 315SN/EC ECO

Hardwarebeschreibung

Artikelnr.	315-4EC32
Anzahl OBs	20
maximale OB-Größe	64 KB
Gesamtanzahl DBs, FBs, FCs	-
Anzahl FBs	2048
maximale FB-Größe	64 KB
Nummernband FBs	0 2047
Anzahl FCs	2048
maximale FC-Größe	64 KB
Nummernband FCs	0 2047
maximale Schachtelungstiefe je Prioklasse	8
maximale Schachtelungstiefe zusätzlich inner- halb Fehler OB	4
Uhrzeit	
Uhr gepuffert	\checkmark
Uhr Pufferungsdauer (min.)	6 w
Art der Pufferung	Vanadium Rechargeable Lithium Batterie
Ladezeit für 50% Pufferungsdauer	20 h
Ladezeit für 100% Pufferungsdauer	48 h
Genauigkeit (max. Abweichung je Tag)	10 s
Anzahl Betriebsstundenzähler	8
Uhrzeit Synchronisation	\checkmark
Synchronisation über MPI	Master/Slave
Synchronisation über Ethernet (NTP)	Slave
Adressbereiche (Ein-/Ausgänge)	
Peripherieadressbereich Eingänge	2048 Byte
Peripherieadressbereich Ausgänge	2048 Byte
Prozessabbild einstellbar	\checkmark
Prozessabbild Eingänge voreingestellt	256 Byte
Prozessabbild Ausgänge voreingestellt	256 Byte
Prozessabbild Eingänge maximal	2048 Byte
Prozessabbild Ausgänge maximal	2048 Byte
Digitale Eingänge	16384
Digitale Ausgänge	16384
Digitale Eingänge zentral	1024
Digitale Ausgänge zentral	1024
Integrierte digitale Eingänge	-

Artikelnr.	315-4EC32
Integrierte digitale Ausgänge	-
Analoge Eingänge	1024
Analoge Ausgänge	1024
Analoge Eingänge zentral	256
Analoge Ausgänge zentral	256
Integrierte analoge Eingänge	-
Integrierte analoge Ausgänge	-
Kommunikationsfunktionen	
PG/OP Kommunikation	\checkmark
Globale Datenkommunikation	\checkmark
Anzahl GD-Kreise max.	8
Größe GD-Pakete, max.	22 Byte
S7-Basis-Kommunikation	\checkmark
S7-Basis-Kommunikation Nutzdaten je Auftrag	76 Byte
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-
S7-Kommunikation Nutzdaten je Auftrag	160 Byte
Anzahl Verbindungen gesamt	32
Funktionalität Sub-D Schnittstellen	
Bezeichnung	X2
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	\checkmark
MPI	\checkmark
MP ² I (MPI/RS232)	-
DP-Master	-
DP-Slave	-
Punkt-zu-Punkt-Kopplung	-
Bezeichnung	X3
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	\checkmark
MPI	-
MP²I (MPI/RS232)	-

Hardwarebeschreibung

Artikelnr.	315-4EC32
DP-Master	-
DP-Slave	-
Punkt-zu-Punkt-Kopplung	\checkmark
Funktionalität MPI	
Anzahl Verbindungen, max.	32
PG/OP Kommunikation	\checkmark
Routing	\checkmark
Globale Datenkommunikation	\checkmark
S7-Basis-Kommunikation	\checkmark
S7-Kommunikation	\checkmark
S7-Kommunikation als Server	\checkmark
S7-Kommunikation als Client	-
Übertragungsgeschwindigkeit, min.	19,2 kbit/s
Übertragungsgeschwindigkeit, max.	12 Mbit/s
Funktionalität PROFIBUS Master	
PG/OP Kommunikation	-
Routing	-
S7-Basis-Kommunikation	-
S7-Kommunikation	-
S7-Kommunikation als Server	-
S7-Kommunikation als Client	-
Aktivieren/Deaktivieren von DP-Slaves	-
Direkter Datenaustausch (Querverkehr)	-
DPV1	-
Übertragungsgeschwindigkeit, min.	-
Übertragungsgeschwindigkeit, max.	-
Anzahl DP-Slaves, max.	-
Adressbereich Eingänge, max.	-
Adressbereich Ausgänge, max.	-
Nutzdaten Eingänge je Slave, max.	-
Nutzdaten Ausgänge je Slave, max.	-
Funktionalität PROFIBUS Slave	
PG/OP Kommunikation	-
Routing	-
S7-Kommunikation	-
S7-Kommunikation als Server	-
Technische Daten

Artikelnr.	315-4EC32
S7-Kommunikation als Client	-
Direkter Datenaustausch (Querverkehr)	-
DPV1	-
Übertragungsgeschwindigkeit, min.	-
Übertragungsgeschwindigkeit, max.	-
Automatische Baudratesuche	-
Übergabespeicher Eingänge, max.	-
Übergabespeicher Ausgänge, max.	-
Adressbereiche, max.	-
Nutzdaten je Adressbereich, max.	-
Point-to-Point Kommunikation	
PtP-Kommunikation	\checkmark
Schnittstelle potentialgetrennt	\checkmark
Schnittstelle RS232	-
Schnittstelle RS422	-
Schnittstelle RS485	\checkmark
Anschluss	9polige SubD Buchse
Übertragungsgeschwindigkeit, min.	150 bit/s
Übertragungsgeschwindigkeit, max.	115,5 kbit/s
Leitungslänge, max.	500 m
Point-to-Point Protokolle	
Protokoll ASCII	\checkmark
Protokoll STX/ETX	\checkmark
Protokoll 3964(R)	\checkmark
Protokoll RK512	-
Protokoll USS Master	\checkmark
Protokoll Modbus Master	\checkmark
Protokoll Modbus Slave	-
Spezielle Protokolle	-
Funktionalität RJ45 Schnittstellen	
Bezeichnung	X5
Physik	Ethernet 10/100 MBit
Anschluss	RJ45
Potenzialgetrennt	\checkmark
PG/OP Kommunikation	\checkmark
max. Anzahl Verbindungen	4

Hardwarebeschreibung

Technische Daten

Artikelnr.	315-4EC32
Produktiv Verbindungen	-
Bezeichnung	X8
Physik	Ethernet 10/100 MBit
Anschluss	RJ45
Potenzialgetrennt	\checkmark
PG/OP Kommunikation	\checkmark
max. Anzahl Verbindungen	8
Produktiv Verbindungen	\checkmark
Ethernet Kommunikations CP	
Anzahl projektierbarer Verbindungen, max.	8
Anzahl via NetPro projektierbarer Verbin- dungen, max.	8
S7-Verbindungen	BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv
Nutzdaten je S7-Verbindung, max.	32 KB
TCP-Verbindungen	FETCH PASSIV, WRITE PASSIV, Verbin- dungsaufbau passiv über Hantierungsbaustein
Nutzdaten je TCP-Verbindung, max.	64 KB
ISO-Verbindungen	-
Nutzdaten je ISO-Verbindung, max.	-
ISO on TCP Verbindungen (RFC 1006)	FETCH PASSIV, WRITE PASSIV, Verbin- dungsaufbau passiv über Hantierungsbaustein
Nutzdaten je ISO on TCP-Verbindung, max.	32 KB
UDP-Verbindungen	-
Nutzdaten je UDP-Verbindung, max.	-
UDP-Multicast-Verbindungen	-
UDP-Broadcast-Verbindungen	-
Ethernet Offene Kommunikation	
Anzahl Verbindungen, max.	8
Nutzdaten je ISO on TCP-Verbindung, max.	8 KB
Nutzdaten je native TCP-Verbindung, max.	8 KB
Nutzdaten je ad-hoc TCP-Verbindung, max.	1460 Byte
Nutzdaten je UDP-Verbindung, max.	1472 Byte
EtherCAT Master	
Anzahl der EtherCAT-Slaves	128
Aktualisierungszeit	500 μs 512 ms
Adressbereich Eingänge, max.	2 KB

Technische Daten

Artikelnr.	315-4EC32
Adressbereich Ausgänge, max.	2 KB
EoE Unterstützung	\checkmark
FoE Unterstützung	\checkmark
Distributed Clock Unterstützung	\checkmark
Hotconnect Slaves	\checkmark
Management & Diagnose	
Protokolle	ICMP
	LLC
Web based Diagnose	-
NCM Diagnose	\checkmark
Gehäuse	
Material	PPE
Befestigung	Profilschiene System 300
Mechanische Daten	
Abmessungen (BxHxT)	80 mm x 125 mm x 120 mm
Gewicht	380 g
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL508	in Vorbereitung

Anlaufverhalten

5 Einsatz CPU 315-4EC32

5.1 Montage

5.2 Anlaufverhalten

Stromversorgung ein- schalten	Nach dem Einschalten der Stromversorgung geht die CPU in den Betriebszustand über, der am Betriebsartenschalter eingestellt ist.		
Auslieferungszustand	Im Auslieferungszustand ist die CPU urgelöscht. Nach einem STOP→RUN Übergang geht die CPU ohne Programm in RUN.		
Anlauf mit gültiger Pro- jektierung in der CPU	Die CPU geht mit dem Programm, das sich im batteriegepufferten RAM befindet, in RUN.		
Anlauf bei leerem Akku	 Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für min. 30 Tage. Wird dieser Zeitraum überschritten, kann es zur vollkommenen Entladung des Akkus kommen. Hierbei wird das batteriegepufferte RAM gelöscht. In diesem Zustand führt die CPU ein Urlöschen durch. Ist eine MMC gesteckt, werden Programmcode und Datenbausteine von der MMC in den Arbeitsspeicher der CPU übertragen. Ist keine MMC gesteckt, transferiert die CPU permanent abgelegte "protected" Bausteine, falls diese vorhanden sind, in den Arbeitsspeicher. Abhängig von der Stellung des Betriebsartenschalters geht die CPU in RUN, sofern der OB81 vorhanden ist, bzw. bleibt im STOP. Dieser Vorgang wird im Diagnosepuffer unter folgendem Eintrag festgehalten: "Start Urlöschen automatisch (ungepuffert NetzEIN)". 		
	VORSICHT! Bei leerem Akku läuft die CPU nach einem Spannungs- reset mit einem BAT-Fehler an und führt ein automati- sches Urlöschen der CPU durch. Den BAT-Fehler können Sie wieder löschen, wenn einmalig beim Power-Cycle zwi- schen dem Aus- und Einschalten der Versorgungsspan- nung mindestens 30sec. liegen und der Akku der CPU voll geladen ist. Ansonsten bleibt bei einem kurzen Power- Cycle der BAT-Fehler bestehen und die CPU wird urge-		

löscht.

5.3 Adressierung

5.3.1 Übersicht

Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Beim Hochlauf der CPU vergibt diese steckplatzabhängig automatisch von 0 an aufsteigend Peripherieadressen für die gesteckten digitalen Ein- /Ausgabe-Module.

Sofern keine Hardwareprojektierung vorliegt, legt die CPU gesteckte Analog- Module bei der automatischen Adressierung auf gerade Adressen ab 256 ab.

5.3.2 Adressierung Rückwandbus Peripherie

Bei der CPU 315-4EC32 gibt es einen Peripheriebereich (Adresse 0 ... 2047) und ein Prozessabbild der Ein- und Ausgänge (je Adresse 0 ... 255). Beim Prozessabbild werden die Signalzustände der unteren Adresse (0 ... 255) zusätzlich in einem besonderen Speicherbereich gespeichert.

Das Prozessabbild ist in zwei Teile gegliedert:

- Prozessabbild der Eingänge (PAE)
- Prozessabbild der Ausgänge (PAA)

Nach jedem Zyklusdurchlauf wird das Prozessabbild aktualisiert.

Maximale Anzahl steck- barer Module	Für die CPU 315-4EC32 können Sie bis zu 8 Peripherie-Module pro Zeile projektieren.
	Für die Projektierung von Modulen, die über die Anzahl von 8 hinaus- gehen, können Zeilenanschaltungen verwendet werden. Hierbei setzen Sie im Siemens Hardware-Konfigurator auf Ihre 1. Profil- schiene auf Steckplatz 3 die Anschaltung IM 360 aus dem Hardware- Katalog. Nun können Sie Ihr System um bis zu 3 Profilschienen ergänzen, indem Sie jede auf Steckplatz 3 mit einer IM 361 von Sie- mens beginnen. Unter Berücksichtigung des max. Summenstroms können bei der CPU 315-4EC32 von VIPA bis zu 32 Module in einer Zeile angeordnet werden. Hierbei ist die Montage der IM 360/361 Anschaltungen von Siemens nicht erforderlich.
Über Hardware-Konfigu- ration Adressen defi- nieren	Über Lese- bzw. Schreibzugriffe auf die Peripheriebytes oder auf das Prozessabbild können Sie die Module ansprechen. Mit einer Hard- ware-Konfiguration können Sie Adressen definieren. Klicken Sie hierzu auf die Eigenschaften des entsprechenden Moduls und stellen Sie die gewünschte Adresse ein.

Hardware-Konfiguration - CPU

Automatische Adressierung

Falls Sie keine Hardware-Konfiguration verwenden möchten, tritt eine automatische Adressierung in Kraft. Bei der automatischen Adressierung belegen steckplatzabhängig DIOs immer 4Byte und AIOs, FMs, CPs immer 16Byte am Bus. Nach folgenden Formeln wird steckplatzabhängig die Anfangsadresse ermittelt, ab der das entsprechende Modul im Adressbereich abgelegt wird:

- DIOs: Anfangsadresse = 4×(Steckplatz-1)
- AIOs, FMs, CPs: Anfangsadresse = 16×(Steckplatz-1)+256

Beispiel Automatische Adressierung

In dem nachfolgenden Beispiel ist die Funktionsweise der automatischen Adressierung nochmals aufgeführt:

5.4 Hardware-Konfiguration - CPU

Voraussetzung

Die Konfiguration der CPU erfolgt im *"Hardware-Konfigurator"* von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit *"Extras* → *Katalog aktualisieren"* den Hardware-Katalog aktualisieren.

Hardware-Konfiguration - I/O-Module

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Bitte beachten Sie, dass diese SPEED7-CPU 4 AKKUs besitzt. Nach einer arithmetischen Operation (+I, -I, *I, /I, +D, -D, *D, /D, MOD, +R, -R, *R, /R) wird der Inhalt des AKKUs 3 und 4 in die AKKUs 2 und 3 geladen. Dies kann bei Programmen, die einen unveränderten AKKU 2 voraussetzen, zu Konflikten führen.

Nähere Informationen hierzu finden Sie im Handbuch "VIPA Operationsliste SPEED7" unter "Unterschiede zwischen SPEED7 und 300V Programmierung".

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 315-2PN/DP
X1	MPI/DP
X2	PN-IO
Х2	Port 1
Х2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2PN/DP (6ES7 315-2EH14-0AB0 V3.2).
- **4.** Über das Submodul *"X2 PN-IO"* projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.

5.5 Hardware-Konfiguration - I/O-Module

Hardware-Konfiguration der Module

Binden Sie nach der Hardware-Konfiguration der CPU beginnend mit Steckplatz 4 Ihre System 300 Module auf dem Bus in der gesteckten Reihenfolge ein.

Hardware-Konfiguration - Ethernet-PG/OP-Kanal

- ParametrierungZur Parametrierung doppelklicken Sie in Ihrer Steckplatzübersicht auf
das zu parametrierende Modul. Daraufhin öffnet sich ein Dialog-
fenster. Hier können Sie Ihre Parametereinstellungen vornehmen.
Unter Einsatz der SFCs 55, 56 und 57 können Sie zur Laufzeit Para-
meter ändern und an die entsprechenden Module übertragen. Hierbei
sind die modulspezifischen Parameter in sogenannten "Datensätzen"
abzulegen. Näheres zum Aufbau der Datensätze finden Sie in der
Beschreibung zu den Modulen.
- **Buserweiterung mit IM 360 und IM 361** Für die Projektierung von Modulen, die über die Anzahl von 8 hinausgehen, können Zeilenanschaltungen verwendet werden. Hierbei setzen Sie im Siemens Hardware-Konfigurator auf Ihre 1. Profilschiene auf Steckplatz 3 die Anschaltung IM 360 aus dem Hardware-Katalog. Nun können Sie Ihr System um bis zu 3 Profilschienen ergänzen, indem Sie jede auf Steckplatz 3 mit einer IM 361 von Siemens beginnen. Unter Berücksichtigung des max. Summenstroms können bei VIPA-SPEED7-CPUs bis zu 32 Module in einer Zeile angeordnet werden. Hierbei ist die Montage der IM 360/361 Anschaltungen von Siemens nicht erforderlich.

5.6 Hardware-Konfiguration - Ethernet-PG/OP-Kanal

Übersicht	Die CPU 315-4EC32 hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fern- warten. Mit dem PG/OP-Kanal haben Sie auch Zugriff auf die interne Web-Seite, auf der Sie Informationen zu Firmwarestand, angebun- dene Peripherie, aktuelle Zyklus-Zeiten usw. finden. Bei Erstinbetrieb- nahme bzw. nach dem Rücksetzen auf Werkseinstellungen besitzt der Ethernet-PG/OP-Kanal keine IP-Adresse. Damit Sie online über den Ethernet-PG/OP-Kanal auf die CPU zugreifen können, müssen Sie diesem gültige IP-Adress-Parameter über den Siemens SIMATIC Manager zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe".

Montage und Inbetriebnahme

- **1.** Bauen Sie Ihr System 300S mit Ihrer CPU auf.
- **2.** Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- **3.** Verbinden Sie die Ethernet-Buchse des Ethernet-PG/OP-Kanals mit Ethernet.
- **4.** Schalten Sie die Spannungsversorgung ein
 - Nach kurzer Hochlaufzeit ist der CP bereit für die Kommunikation. Er besitzt ggf. noch keine IP-Adressdaten und erfordert eine Urtaufe.

"Urtaufe" über Zielsys-Die Urtaufe über die Zielsystemfunktion erfolgt nach folgender Vorgetemfunktionen hensweise: 0 DC 24V 0 [] X8 X1₀ X5 ••••• X2 (MP Ethernet address PG/OP channel 1. Ethernet PG/OP channel 2. EtherCAT master Ermitteln Sie die aktuelle Ethernet (MAC) Adresse Ihres Ethernet PG/OP-Kanals. Sie finden diese immer als 1. Adresse unter der Frontklappe der CPU auf einem Aufkleber auf der linken Seite. **IP-Adress-Parameter** Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens zuweisen SIMATIC Manager ab Version V 5.3 & SP3 nach folgender Vorgehensweise: Starten Sie den Siemens SIMATIC Manager und stellen Sie 1. über "Extras → PG/PC-Schnittstelle einstellen" auf "TCP/IP -> Netzwerkkarte" ein. Diffnen Sie mit "Zielsystem → Ethernet-Teilnehmer bearbeiten" das gleichnamige Dialogfenster. Benutzen Sie die Schaltfläche [Durchsuchen], um die über 3. ⊾ MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf dem 1. Aufkleber unter der Frontklappe der CPU. 4. Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, <u>5.</u> Subnetz-Maske und den Netzübergang eintragen. 6. ► Bestätigen Sie mit IIP-Konfiguration zuweisen Ihre Eingabe. ⇒ Direkt nach der Zuweisung ist der Ethernet-PG/OP-Kanal über die angegebenen IP-Adress-Daten online erreichbar. Der Wert bleibt bestehen, solange dieser nicht neu zugewiesen, mit einer Hardware-Projektierung überschrieben oder Rücksetzen auf Werkseinstellung ausgeführt wird. 1. DÖffnen Sie den Siemens Hardware-Konfigurator und projek-**IP-Adress-Parameter in** Projekt übernehmen tieren Sie die Siemens CPU 315-2 PN/DP (6ES7 315-2EH14-0AB0 V3.2). 2. Projektieren Sie die Module am Standard-Bus. 3. Für den Ethernet-PG/OP-Kanal ist immer unterhalb der reell gesteckten Module ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu

platzieren.

Einstellung Standard CPU-Parameter > Parameter CPU

- **4.** Öffnen Sie durch Doppelklick auf den CP 343-1EX11 den Eigenschaften-Dialog und geben Sie für den CP unter *"Eigenschaften"* die zuvor zugewiesenen IP-Adress-Daten an.
- 5. Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 6. **Ubertragen Sie Ihr Projekt.**

5.7 Einstellung Standard CPU-Parameter

5.7.1 Parametrierung über Siemens CPU

Parametrierung über
Siemens CPUDa die CPU im Hardware-Konfigurator als Siemens CPU 315-2PN/
DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren ist, können Sie bei
der Hardware-Konfiguration unter den "Eigenschaften" der CPU
315-2PN/DP die Standard-Parameter für die VIPA-CPU einstellen.
Durch Doppelklick auf die CPU 315-2PN/DP gelangen Sie in das
Parametrierfenster für die CPU. Über die Register haben Sie Zugriff
auf alle Standard-Parameter Ihrer CPU.

			Parameter CP	0
Steckpl. 1	Modul		Param : Param :	Param : Param :
2	СРИ 🗧		Param : Param :	Param : Param :
X1	MPI/DP			
X2	PN-IO	l		
X2 P1	Port 1			
3				

5.7.2 Parameter CPU

Parameter, die unterstützt werden

Die CPU wertet nicht alle Parameter aus, welche Sie bei der Hardware-Konfiguration einstellen können. Die Parameter folgender Register werden aktuell nicht unterstützt: Taktsynchronalarme, Kommunikation und Web. Folgende Parameter werden zur Zeit in der CPU ausgewertet:

		Einstellung Standard CPU-Parameter > Parameter CPU
Allgemein	-	Kurzbezeichnung – Die Kurzbezeichnung der Siemens CPU 315-2EH14 ist CPU 315-2 PN/DP
I		Bestell-Nr./ Firmware – Bestellnummer und Firmware sind identisch zu den Angaben
		im Fenster "Hardware Katalog". Name
		 Als Name steht hier die Kurzbezeichnung der CPU. Wenn Sie den Namen ändern, erscheint dieser im Siemens SIMATIC Manager.
I		Anlagenkennzeichen – Hier haben Sie die Möglichkeit für die CPU ein spezifisches
		 Anlagenkennzeichen f
I		– Es ist gemais IEC 1346-1 hierarchisch aufgebaut. Ortskennzeichen
		 Das Ortskennzeichen ist Teil des Betriebsmittelkennzeichens. Hier können Sie die genaue Lage Ihrer Baugruppe innerhalb Ihrer Anlage angeben.
		Kommentar – Hier können Sie den Einsatzzweck der Baugruppe eingeben.
Anlauf	•	 Anlauf bei Sollausbau ungleich Istausbau Wenn "Anlauf bei Sollausbau ungleich Istausbau" deaktiviert ist und mindestens eine Baugruppe nicht auf dem projektierten Steckplatz steckt, oder dort eine Baugruppe von einem anderen Typ steckt, geht die CPU nicht in RUN und verbleibt in STOP
		 Wenn "Anlauf bei Sollausbau ungleich Istausbau" aktiviert ist, läuft die CPU an, auch wenn Baugruppen nicht auf den projek- tierten Steckplätzen stecken oder dort Baugruppen eines anderen Typs stecken (z.B. bei Inbetriebnahme).
I		 Überwachungszeit für Fertigmeldung durch Baugruppen [100ms] Maximale Dauer für die Fertigmeldung aller konfigurierten Baugruppen nach NetzEIN.
		 Hierbei werden auch angebundene PROFIBUS-DP-Slaves berücksichtigt, bis diese parametriert sind.
		 Wenn nach Ablauf dieser Zeit die Baugruppen keine Fertig- meldung an die CPU senden, ist der Istausbau ungleich dem Sollausbau.
I		Überwachungszeit für Übertragung der Parameter an Baugruppen [100ms]
		 Maximale Dauer f ür die Übertragung der Parameter an die parametrierbaren Baugruppen.
		 Hierbei werden auch angebundene PROFINET-IO-Devices berücksichtigt, bis diese parametriert sind.
		 Wenn nach Ablauf dieser Zeit nicht alle Baugruppen paramet- riert sind, ist der Istausbau ungleich dem Sollausbau.

Einstellung Standard CPU-Parameter > Parameter CPU

Zyklus / Taktmerker	-	 OB1-Prozessabbild zyklisch aktualisieren Dieser Parameter ist nicht relevant. Zyklusüberwachungszeit Hier geben Sie die Zyklusüberwachungszeit in ms ein. Wenn die Zykluszeit die Zyklusüberwachungszeit überschreitet, geht die CPU in STOP. Ursachen für eine Überschreitung: Kommunikationsprozesse Häufung von Alarmereignissen Fehler im CPU-Programm
		 Dieser Parameter ist nicht relevant. Zyklusbelastung durch Kommunikation Mit diesem Parameter können Sie die Dauer von Kommunika- tionsprozessen, welche immer auch die Zykluszeit verlängern.
		 in bestimmten Grenzen steuern. Bei Einstellung der Zyklusbelastung durch Kommunikation auf 50% kann sich eine Verdopplung der OB 1-Zykluszeit ergeben. Außerdem wird der OB 1-Zyklus zusätzlich durch asynchrone Ereignisse (z.B. Prozessalarme) verlängert.
		 Größe Prozessabbild der Ein-/Ausgänge Hier können Sie die Größe des Prozessabbilds max. 2048 für die Ein-/ Ausgabe-Peripherie festlegen (Default: 128). OB85-Aufruf bei Peripheriezugriffsfehler Sie können die versie gestellte Beelstien der OPU hei Deripher
		 Sie konnen die voreingestellte Reaktion der CPO bei Penphe- riezugriffsfehlern während der systemseitigen Aktualisierung des Prozessabbildes ändern. Die VIPA-CPU ist so voreingestellt, dass sie bei Peripheriezu- griffsfehlern keinen OB 85 aufruft und auch keinen Eintrag im Diagnosepuffer erzeugt.
		 Taktmerker Aktivieren Sie dieses Kästchen, wenn Sie einen Taktmerker einsetzen und geben Sie die Nummer des Merkerbytes ein.
		Das gewählte Merkerbyte kann nicht für die Zwischenspei- cherung von Daten genutzt werden.
Remanenz	•	 Anzahl Merkerbytes ab MB0 Die Anzahl der remanenten Merkerbytes ab Merkerbyte 0 können Sie hier angeben. Anzahl S7-Timer ab T0
	-	 Anzahl S7-Timer ab T0 ein. Anzahl S7-Zähler ab Z0 Tragen Sie die Anzahl der remanenten S7-Zähler ab Z0 hier ein.
		Bereiche – Diese Parameter sind nicht relevant.
Alarme	•	 Priorität Hier werden die Prioritäten angezeigt, nach denen der ent- sprechende Alarm-OB (Prozessalarm, Verzögerungsalarm, Asynchronfehleralarm) bearbeitet wird.

Einstellung Standard CPU-Parameter > Parameter CPU

Uhrzeitalarme	Priorität
	Aktiv
-	 Durch Anwahl von "Aktiv" wird die Funktionalität f ür Uhrzeita- larme aktiviert.
	Ausführung
	 Hier wählen Sie aus, wie oft die Alarme ausgeführt werden sollen.
	 Die Intervalle von minütlich bis j\u00e4hrlich beziehen sich auf die Einstellungen unter Startdatum und Uhrzeit.
	 Startdatum/Uhrzeit Hier geben Sie an, wann der Uhrzeitalarm zum ersten Mal
	ausgeführt werden soll.
	 Dieser Parameter wird nicht unterstützt.
Weckalarme	■ Priorität
	 Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Weckalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.
	Ausführung
	 Geben Sie die Zeitabstände in ms an, in denen die Weck- alarm-OBs bearbeitet werden.
	 Startzeitpunkt ist der Betriebszustandwechsel von STOP nach RUN.
	Phasenverschiebung
	 Geben Sie hier eine Zeit in ms an, um welche der tatsächliche Ausführungszeitpunkt des Weckalarms verzögert werden soll. Dies ist sinnvoll, wenn mehrere Weckalarme aktiv sind.
	 Mit der Phasenverschiebung können diese über den Zyklus hinweg verteilt werden.
	 Teilprozessabbild Dieser Parameter wird nicht unterstützt.
Diamaga/liku	
Diagnose/Unr	 STOP-Ursache melden Aktivieren Sie diesen Parameter, wenn die CPU bei Übergang nach STOP die STOP-Ursache an PG bzw. OP melden soll
	Anzahl Meldungen im Diagnosepuffer
	 Dieser Parameter wird ignoriert. Die CPU besitzt einen Diag- nosepuffer (Ringpuffer) für 100 Diagnosemeldungen.
	 Synchronisationsart Legen Sie hier fest, ob die Uhr andere Uhren synchronisiert oder nicht.
	 als Slave: Die Uhr wird von einer anderen Uhr synchronisiert.
	 als Master: Die Uhr synchronisiert andere Uhren als Master.
	- Keine. Es indel keine Synchronisation statt. Zeitintervall
	 Zeitintervalle, innerhalb welcher die Synchronisation erfolgen soll.
	Korrekturfaktor
	 Durch Vorgabe eines Korrekturfaktors in ms können Sie die Abweichung der Uhr innerhalb 24 Stunden ausgleichen.
	 Geht Ihre Uhr innerhalb von 24 Stunden 1s nach, können Sie dies mit dem Korrekturfaktor "+1000" ms ausgleichen.

Einstellung VIPA-spezifische CPU-Parameter > Vorgehensweise

Schutz	Schutzstufe
	 Hier können Sie eine von 3 Schutzstufen einstellen, um die CPU vor unbefugtem Zugriff zu schützen.
	 Schutzstufe 1 (voreingestellt):
	kein Passwort parametrierbar; keine Einschränkungen
	 Schutzstufe 2 mit Passwort:
	Kenntnis des Passworts: lesender und schreibender Zugriff
	Unkenntnis des Passworts: nur lesender Zugriff.
	– Schutzstufe 3:

e 3: Kenntnis des Passworts: lesender und schreibender Zugriff Unkenntnis des Passworts: weder lesender noch schreibender Zugriff

5.7.3 Parameter für MPI/DP

Über Doppelklick auf das Submodul MPI/DP gelangen Sie in den Eigenschaften-Dialog der MPI-Schnittstelle.

Allgemein

- Kurzbezeichnung: Hier wird als Kurzbezeichnung "MPI/DP" für die MPI-Schnittstelle aufgeführt.
 - Bestell-Nr.: Hier erfolgt keine Anzeige.
 - Name: Unter Name finden Sie die Bezeichnung "MPI/DP". Wenn Sie den Namen ändern, erscheint der neue Name im Siemens SIMATIC Manager.
 - Typ: Bitte beachten Sie, das die VIPA CPU ausschließlich den Typ "MPI" unterstützt.
 - Schnittstelle: Hier wird die MPI-Adresse eingeblendet.
 - Eigenschaften: Über diese Schaltfläche können Sie die Eigen-schaften der MPI-Schnittstelle einstellen.
 - Kommentar: Geben Sie hier den Einsatzzweck der MPI-Schnitt-stelle an.

Adresse

- Diagnose: Geben Sie hier eine Diagnoseadresse für die MPI-Schnittstelle an. Über diese Adresse bekommt die CPU eine Rückmeldung im Fehlerfall.
- Betriebsart, Konfiguration, Uhr: Diese Parameter werden nicht unterstützt.
- 5.8 Einstellung VIPA-spezifische CPU-Parameter

5.8.1 Vorgehensweise

Übersicht

Mit Ausnahme der VIPA-spezifischen CPU-Parameter erfolgt die CPU-Parametrierung im Parameter-Dialog der Siemens CPU. Durch Einbindung der SPEEDBUS.GSD können Sie in der Hardware-Konfiguration VIPA-spezifische Parameter einstellen. Hierbei haben Sie Zugriff auf folgende Parameter:

- Anzahl Remanenzmerker, Timer, Zähler
- Priorität OB 28, OB 29, OB 57

Einstellung VIPA-spezifische CPU-Parameter > Vorgehensweise

Voraussetzung Damit Sie die VIPA-spezifischen CPU-Parameter einstellen können, ist die Installation der SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich. Nach der Installation können Sie die CPU in einem PROFIBUS-Master-System projektieren und entsprechend die Parameter anpassen.

SPEEDBUS.GSD installieren Die GSD (Geräte-Stamm-Datei) ist in folgenden Sprachversionen online verfügbar. Weitere Sprachen erhalten Sie auf Anfrage:

Name	Sprache
SPEEDBUS.GSD	deutsch (default)
SPEEDBUS.GSG	deutsch
SPEEDBUS.GSE	englisch

Die GSD-Dateien finden Sie auf www.vipa.com im "Service"-Bereich.

Die Einbindung der SPEEDBUS.GSD erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie auf www.vipa.com
- 2. Klicken Sie auf "Service → Download → GSD- und EDS-Files → Profibus"
- **3.** Laden Sie die Datei Cx000023_Vxxx.
- **4.** Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die SPEEDBUS.GSD befindet sich im Verzeichnis VIPA_System_300S.
- **5.** Starten Sie den Hardware-Konfigurator von Siemens.
- 6. Schließen Sie alle Projekte.
- 7. ▶ Gehen Sie auf "Extras → Neue GSD-Datei installieren".
- 8. Navigieren Sie in das Verzeichnis VIPA_System_300S und geben Sie SPEEDBUS.GSD an.
 - Alle SPEED7-CPUs und -Module des System 300S von VIPA sind jetzt im Hardwarekatalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS enthalten.

Projekt transferieren

Hardware-Konfiguration

Die Einbindung der CPU 315-4EC32 erfolgt in Form eines virtuellen PROFIBUS Master-Systems nach folgender Vorgehensweise:

- **1.** Führen Sie eine Hardware-Konfiguration für die CPU durch. Kapitel 5.4 "Hardware-Konfiguration - CPU" auf Seite 42
- 2. Projektieren Sie immer als letztes Modul einen Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen und parametrieren Sie diesen in der Betriebsart "DP-Master".
- 3. Binden Sie das Slave-System "VIPA_SPEEDbus" an. Nach der Installation der SPEEDBUS.GSD finden Sie dieses im Hardware-Katalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS.
- **4.** Stellen Sie für das Slave-System die PROFIBUS-Adresse 100 ein.
- **5.** Platzieren Sie auf dem Steckplatz 0 die VIPA CPU 315-4EC32 aus dem Hardware-Katalog von VIPA_SPEEDbus.
- **6.** Durch Doppelklick auf die eingefügte CPU 315-4EC32 gelangen Sie in den Eigenschaften-Dialog der CPU.

5.8.2 VIPA-spezifische Parameter

Im Eigenschaften-Dialog der VIPA-CPU haben Sie Zugriff auf die nachfolgend aufgeführten Parameter.

5.8.2.1 Anzahl Remanenz- Merker

Geben Sie hier die Anzahl der Merker-Bytes an. Durch Eingabe von 0 wird der Wert übernommen, welchen Sie in den Parametern der Siemens CPU unter Remanenz > Anzahl Merker-Bytes ab MB0 angegeben haben. Ansonsten wird der hier angegebene Wert (1 ... 8192) übernommen. Default: 0

5.8.2.2 Priorität von OB 28, OB 29 und OB 57

Die Priorität legt die Reihenfolge der Unterbrechung des entsprechenden Alarm-OBs fest. Hierbei werden folgende Prioritäten unterstützt: 0 (Alarm-OB ist deaktiviert), 2, 3, 4, 9, 12, 16, 17, 24. Default: 24

5.9 Projekt transferieren

Übersicht

Sie haben folgende Möglichkeiten für den Projekt-Transfer in die CPU:

- Transfer über MPI
- Transfer über Ethernet
- Transfer über MMC

5.9.1 Transfer über MP	I		
Allgemein	Für den Transfer über MPX2: MPI-Schnittstelle	I besitzt die CPU folgend	e Schnittstelle:
Netz-Struktur	Der Aufbau eines MPI-Net PROFIBUS-Netzes. Das h verwenden für beide Netze Die einzelnen Teilnehmer PROFIBUS-Kabel verbund 315-4EC32, dass die Gesa überschreitet. Defaultmäß betrieben. VIPA-CPUs we	izes gleicht elektrisch der neißt, es gelten dieselben e die gleichen Komponer werden über Busanschlu den. Bitte beachten Sie h amtausdehnung des MPI ig wird das MPI-Netz mit rden mit der MPI-Adress	m Aufbau eines Regeln und Sie Iten zum Aufbau. Issstecker und ierbei für die CPU -Netzes 50m nicht 187,5kBaud e 2 ausgeliefert.
MPI-Programmierkabel	Die MPI-Programmierkabe von VIPA. Die Kabel biete den PC und einen busfähi grund des RS485-Anschlu direkt auf einen an der RS stecken. Jeder Busteilneh Adresse am Bus, wobei di viert ist.	el erhalten Sie in verschie n einen RS232- bzw. US gen RS485-Anschluss fü isses dürfen Sie die MPI- 485-Buchse schon geste mer identifiziert sich mit e e Adresse 0 für Program	edenen Varianten B-Anschluss für r die CPU. Auf- Programmierkabel eckten Stecker auf- einer eindeutigen miergeräte reser-
Abschlusswiderstand	Eine Leitung muss mit ihre werden. Hierzu schalten S am letzten Teilnehmer eine Sie darauf, dass die Teilne zugeschaltet ist, immer mi es zu Störungen auf dem l	em Wellenwiderstand abg tie den Abschlusswiderst es Netzes oder eines Se ehmer, an denen der Abs t Spannung versorgt sind Bus kommen.	geschlossen and am ersten und gments zu. Achten chlusswiderstand I. Ansonsten kann
STEP7 von Siemens			
	Abschluss	MPI-Netz	ADSCHIUSS

MPI-Programmierkabel

Vorgehensweise Transfer über MPI-Schnittstelle

1. Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPI-Buchse Ihrer CPU.

max. 50m

- 2. Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- 3. ► Wählen Sie im Menü "Extras → PG/PC-Schnittstelle einstellen".
- 4. Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- 5. Stellen Sie im Register MPI die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige *Adresse* an.
- **6.** Wechseln Sie in das Register *Lokaler Anschluss*.

Projekt transferieren > Transfer über MMC

- **7.** Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Baud ein.
- Mit "Zielsystem → Laden in Baugruppe" können Sie Ihr Projekt über MPI in die CPU übertragen und mit "Zielsystem → RAM nach ROM kopieren" auf einer MMC sichern, falls diese gesteckt ist.

5.9.2 Transfer über Ethernet

Die CPU besitzt für den Transfer über Ethernet folgende Schnittstelle:

■ X5: Ethernet-PG/OP-Kanal

Transfer

- **1.** Für den Transfer verbinden Sie, wenn nicht schon geschehen, die entsprechende Ethernet-Buchse mit Ihrem Ethernet.
- 2. Söffnen Sie Ihr Projekt im Siemens SIMATIC Manager.
- 3. Stellen Sie über "Extras → PG/PC-Schnittstelle" den Zugriffsweg "TCP/IP → Netzwerkkarte " ein.
- 4. ▶ Gehen Sie auf "Zielsystem → Laden in Baugruppe" es öffnet sich das Dialogfenster "Zielbaugruppe auswählen". Wählen Sie die Zielbaugruppe aus und geben Sie als Teilnehmeradresse die IP-Adress-Parameter des entsprechenden Ethernet-Schnittstelle an. Sofern keine neue Hardware-Konfiguration in die CPU übertragen wird, wird die hier angegebene Ethernet-Verbindung dauerhaft als Transferkanal im Projekt gespeichert.
- 5. Starten Sie mit [OK] den Transfer.

Systembedingt kann es zu einer Meldung kommen, dass sich die projektierte von der Zielbaugruppe unterscheidet. Quittieren Sie diese Meldung mit [OK].

 \rightarrow Ihr Projekt wird übertragen und kann nach der Übertragung in der CPU ausgeführt werden.

5.9.3 Transfer über MMC

Die MMC (**Mem**ory **C**ard) dient als externes Speichermedium. Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer MMC befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis befindet und einen der folgenden Dateinamen hat:

- S7PROG.WLD
- AUTOLOAD.WLD

Mit "Datei → Memory-Card-Datei → Neu" können Sie im Siemens SIMATIC Manager eine WLD-Datei erzeugen. Danach kopieren Sie aus dem Baustein-Ordner Ihres Projekts alle Bausteine und die Systemdaten in die WLD-Datei.

- **Transfer MMC** \rightarrow **CPU**Das Übertragen des Anwenderprogramms von der MMC in die CPU
erfolgt je nach Dateiname nach Urlöschen oder nach PowerON.
 - S7PROG.WLD wird nach Urlöschen von der MMC gelesen.
 - *AUTOLOAD.WLD* wird nach NetzEIN von der MMC gelesen.

Das Blinken der MC-LED der CPU kennzeichnet den Übertragungsvorgang. Bitte beachten Sie, dass Ihr Anwenderspeicher ausreichend Speicherplatz für Ihr Anwenderprogramm bietet, ansonsten wird Ihr Anwenderprogramm unvollständig geladen und die SF-LED leuchtet.

Transfer CPU \rightarrow **MMC** Bei einer in der CPU gesteckten MMC wird durch einen Schreibbefehl der Inhalt des batteriegepufferten RAMs als S7PROG.WLD auf die MMC übertragen.

Den Schreibbefehl starten Sie aus dem Siemens SIMATIC Manager auf Bausteinebene über "Zielsystem → RAM nach ROM kopieren". Während des Schreibvorgangs blinkt die MC-LED. Erlischt die LED, ist der Schreibvorgang beendet.

Soll dieses Projekt automatisch nach einem NetzEIN von der MMC geladen werden, so müssen Sie dieses auf der MMC in *AUTO-LOAD.WLD* umbenennen.

Kontrolle des Transfervorgangs Nach einem MMC-Zugriff erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf *"Zielsystem → Baugruppenzustand"*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster.

> Nähere Informationen zu den Ereignis-IDs "Übersicht der Ereignis-IDs" auf Seite 70.

5.10 Zugriff auf integrierte Web-Seite

Voraussetzung Es wird vorausgesetzt, dass zwischen dem PC mit Internet-Browser und der CPU 315-4EC32 eine Verbindung über den PG/OP-Kanal besteht. Dies können Sie testen über Ping auf die IP-Adresse des Ethernet-PG/OP-Kanals. Zugriff auf integrierte Web-Seite

Web-Seite

Der Zugriff auf die Web-Seite erfolgt über die IP-Adresse des Ethernet-PG/OP-Kanals. Die Web-Seite dient ausschließlich der Informationsausgabe. Die angezeigten Werte können nicht geändert werden.

CPU mit Ethernet-PG/OP

Slot 100	
VIPA 315-4EC32 V Px000201.pkg,	BestNr., Firmware-Vers.,
SERIALNUMBER 05439	Package, Senen-Nr.
SUPPORTDATA :	Angaben für den Support
PRODUCT V3596, HARDWARE V0112, 5757C-V11 , HX000071.110 , Bx000227 V6596, Ax000086 V1200, Ax000127 V1020, fx000007.wld V1180, FlashFileSystem : V102	
Memorysizes (Bytes): LoadMem : 524288, Work- MemCode : 262144, WorkMemData : 262144	Angaben zum Speicherausbau Ladespeicher, Arbeitsspei- cher(Code/Daten)
OnBoardEthernet : MacAddress : 0020D50144C1, IP-Add- ress : 172.20.120.62, SubnetMask : 255.255.255.0, Gateway : 172.20.120.62	Ethernet-PG/OP: Adressan- gaben
Cpu state : Run	CPU-Statusangabe
FunctionRS485 X2/COM1: MPI	Betriebsart RS485
FunctionRS485 X3/COM2: PtP	(MPI: MPI-Betrieb, PtP: Punkt zu Punkt-Betrieb)
Cycletime [microseconds] : min=0 cur=770 ave=750	CPU-Zykluszeit:
max=878	min= minimale
	cur= aktuelle
	max= maximale
ArmLoad [percent] : cur=67, max=70	Angaben für den Support
PowerCycleHxRetries : 29, 0, 0, 0, 0	
AutoCompress activated	

Betriebszustände > Übersicht

Slot 206	CPU-Komponente: EtherCAT IO-Controller
V0.0.1 Px000221.pkg,	Angaben für den Support
SUPPORTDATA :	
Bx000562 V2050	
PRODUCT V2050, Hx000075 V1210	
ModuleType ACDB0100	
Address Input 2046	

Standard Bus

Standard Bus	Module am Standard-Bus
BaudRate Read Mode1, BaudRate Write Mode1	Angaben für den Support
Line 1: ModuleType 94F9: IM36x	IM-Anschaltung falls vor- handen
Rack 0 /Slot 4	Rack-Nr. / Steckplatz
ModuleType: 9FC3: Digital Input 32 Baseaddress Input 0	Typkennung des Moduls Projektierte Basisadresse ggf. Firmware-Nr. und Package
Rack 0 /Slot 5	Rack-Nr. / Steckplatz
Line 2: ModuleType A4FE: IM36x	IM-Anschaltung falls vor- handen
Rack 1 /Slot 4	
ModuleType: 9FC3: Digital Input 32 Baseaddress Input 0	Typkennung des Moduls Projektierte Basisadresse ggf. Firmware-Nr. und Package
Rack 1 /Slot 5	Rack-Nr. / Steckplatz

5.11 Betriebszustände

5.11.1 Übersicht

Die CPU kennt 4 Betriebszustände:

- Betriebszustand STOP
- Betriebszustand ANLAUF
- Betriebszustand RUN
- Betriebszustand HALT

In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organisationsbaustein als Anwenderschnittstelle aufgerufen. Betriebszustände > Übersicht

Betriebszustand STOP	 Das Anwenderprogramm wird nicht bearbeitet. Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten. Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt. RUN-LED aus STOP-LED an
Betriebszustand ANLAUF	 Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Der Ablauf des OBs wird zeitlich nicht überwacht. Im Anlauf-OB können weitere Bau- steine aufgerufen werden. Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsausgabesperre ist aktiv. RUN-LED blinkt, solange der OB 100 bearbeitet wird und für mindestens 3s, auch wenn der Anlauf kürzer ist oder die CPU aufgrund eines Fehler in STOP geht. Dies zeigt den Anlauf an. STOP-LED aus Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebezustend DUN über
	Betriedszustand RUN über.
Betriebszustand RUN	 Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können. Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert. Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle Ausgänge sind freigegeben. RUN-LED an STOP-LED aus
Betriebszustand HALT	Die CPU bietet Ihnen die Möglichkeit bis zu 3 Haltepunkte zur Pro- grammdiagnose einzusetzen. Das Setzen und Löschen von Halte- punkten erfolgt in Ihrer Programmierumgebung. Sobald ein Halte- punkt erreicht ist, können Sie schrittweise Ihre Befehlszeilen abarbeiten.
Voraussetzung	Für die Verwendung von Haltepunkten müssen folgende Vorausset-
	 Das Testen im Einzelschrittmodus ist in AWL möglich, ggf. über "Ansicht → AWL" Ansicht in AWL ändern Der Baustein muss online geöffnet und darf nicht geschützt sein.
Vorgehensweise zur	1. ▶ Blenden Sie über "Ansicht → Haltepunktleiste" diese ein.
Arbeit mit Haltepunkten	 Setzen Sie Ihren Cursor auf die Anweisungszeile, in der ein Haltepunkt gesetzt werden soll.
	3. Setzen Sie den Haltepunkt mit <i>"Test</i> → Haltepunkt setzen".
	⇒ Die Anweisungszeile wird mit einem Kreisring markiert.

- **4.** ∠ Zur Aktivierung des Haltepunkts gehen Sie auf "*Test* → *Haltepunkt*" aktiv.
 - ⇒ Der Kreisring wird zu einer Kreisfläche.
- 5. Bringen Sie Ihre CPU in RUN.
 - ⇒ Wenn Ihr Programm auf den Haltepunkt trifft, geht Ihre CPU in den Zustand HALT über, der Haltepunkt wird mit einem Pfeil markiert und die Registerinhalte werden eingeblendet.
- 6. Nun können Sie mit "Test → Nächste Anweisung ausführen" schrittweise Ihren Programmcode durchfahren oder über "Test → Fortsetzen" Ihre Programmausführung bis zum nächsten Haltepunkt fortsetzen.
- Mit "Test → (Alle) Haltepunkte löschen" können Sie (alle) Haltepunkte wieder löschen.
- Verhalten im Betriebszustand HALT
- RUN-LED blinkt und die STOP-LED leuchtet.
- Die Bearbeitung des Codes ist angehalten. Alle Ablaufebenen werden nicht weiterbearbeitet.
- Alle Zeiten werden eingefroren.
- Echtzeituhr läuft weiter.
- Ausgänge werden abgeschaltet (BASP ist aktiv).
- Projektierte CP-Verbindungen bleiben bestehen.

Der Einsatz von Haltepunkten ist immer möglich. Eine Umschaltung in die Betriebsart Testbetrieb ist nicht erforderlich.

Sobald Sie mehr als 2 Haltepunkte gesetzt haben, ist eine Einzelschrittbearbeitung nicht mehr möglich.

5.11.2 Funktionssicherheit

Die CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms) und eine parametrierbare Zykluszeitüberwachung (parametrierbar min. 1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU durchführen und diese in einen definierten STOP-Zustand versetzen. Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende Systemeigenschaften:

Ereignis	betrifft	Effekt
$RUN \to STOP$	allgemein	BASP (Befehls-Ausgabe-Sperre) wird gesetzt.
	zentrale digitale Aus- gänge	Die Ausgänge werden abgeschaltet.

Urlöschen

Ereignis	betrifft	Effekt	
	zentrale analoge Aus- gänge	Die Ausgänge werden abgeschaltet.	
		 Spannungsausgänge geben 0V aus Stromausgänge 020mA geben 0mA aus Stromausgänge 420mA geben 4mA aus 	
		Falls parametriert können auch Ersatzwerte ausgegeben werden.	
	dezentrale Ausgänge	Verhalten wie bei zentralen digitalen/analogen Ausgängen	
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Sta- tion zyklisch gelesen und die aktuellen Werte zur Verfügung gestellt.	
STOP → RUN bzw. NetzEin	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der Aufruf des OB 100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen \rightarrow PAE lesen \rightarrow OB 1.	
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Sta- tion einmalig gelesen und die aktuellen Werte zur Verfügung gestellt.	
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen \rightarrow OB 1 \rightarrow PAA schreiben.	
PAE: Prozessabbild der Eingänge, PAA: Prozessabbild der Ausgänge			

5.12 Urlöschen

Übersicht Beim Urlöschen wird der komplette Anwenderspeicher gelöscht. Ihre Daten auf der Speicherkarte bleiben erhalten. Bei urgelöschter CPU übernimmt der EtherCAT-Master eine Default-Konfiguration. Das EtherCAT-System befindet sich dann im Zustand PreOp. Sie haben 2 Möglichkeiten zum Urlöschen: Urlöschen über Betriebsartenschalter Urlöschen über Konfigurations-Software wie z.B. Siemens SIMATIC Manager Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr in Ihrer CPU befindet. Urlöschen über Voraussetzung Betriebsartenschalter ▶ Ihre CPU muss sich im STOP-Zustand befinden. Stellen Sie hierzu den CPU-Betriebsartenschalter auf "STOP".

⇒ Die STOP-LED leuchtet.

Urlöschen

- **1.** Bringen Sie den Betriebsartenschalter in Stellung MRES und halten Sie ihn ca. 3 Sekunden.
 - ⇒ Die STOP-LED geht von Blinken über in Dauerlicht.
- 2. Bringen Sie den Betriebsartenschalter in Stellung STOP und innerhalb von 3 Sekunden kurz in MRES dann wieder auf STOP.
 - ⇒ Die STOP-LED blinkt (Urlösch-Vorgang).
- **3.** Das Urlöschen ist abgeschlossen, wenn die STOP-LED in Dauerlicht übergeht.
 - ⇒ Die STOP-LED leuchtet. Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

- Urlöschen über Siemens SIMATIC Manager Voraussetzung: Ihre CPU muss sich im STOP-Zustand befinden. Mit dem Menübefehl "Zielsystem → Betriebszustand" bringen Sie Ihre CPU in STOP.
 - Urlöschen: Über den Menübefehl "Zielsystem → Urlöschen" fordern Sie das Urlöschen an. In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten. Während des Urlöschvorgangs blinkt die STOP-LED. Geht die STOP-LED in Dauerlicht über, ist der Urlöschvorgang abgeschlossen.
- Automatisch nachladen Falls nach dem Urlöschen auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden. → Die MC-LED leuchtet. Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.
- **Rücksetzen auf Werks**einstellung Das *Rücksetzen auf Werkseinstellung* löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand. Bitte beachten Sie, dass hierbei auch die MPI-Adresse defaultmäßig auf 2 zurückgestellt wird! *Kapitel 5.14 "Rücksetzen auf Werkseinstellung" auf Seite 64*

Firmwareupdate

5.13 Firmwareupdate

Übersicht

- Sie haben die Möglichkeit unter Einsatz einer MMC für die CPU und ihre Komponenten ein Firmwareupdate durchzuführen. Hierzu muss sich in der CPU beim Hochlauf eine entsprechend vorbereitete MMC befinden.
- Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede update-fähige Komponente und jeden Hardware-Ausgabestand ein pkg-Dateiname reserviert, der mit "px" beginnt und sich in einer 6-stelligen Ziffer unterscheidet. Bei jedem updatefähigen Modul finden Sie den pkg-Dateinamen unter der Frontklappe auf einem Aufkleber auf der rechten Seite des Moduls.
- Nach NetzEIN und CPU-STOP prüft die CPU, ob eine *.pkg-Datei auf der MMC vorhanden ist. Wenn sich diese Firmware-Version von der zu überschreibenden Firmware-Version unterscheidet, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updateanforderung installieren.

Firmware package and Version

Aktuelle Firmware auf www.vipa.com

Die aktuellsten Firmwarestände finden Sie auf www.vipa.com im Service-Bereich. Beispielsweise sind für den Firmwareupdate der CPU 315-4EC32 und Ihrer Komponenten für den Ausgabestand 1 folgende Dateien erforderlich:

- 315-4EC32, Ausgabestand 1: Px000201.pkg
- EtherCAT-Master: Px000221.pkg

VORSICHT!

Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist. Setzen Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung!

Bitte beachten Sie auch, dass sich die zu überschreibende Firmware-Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.

Firmwarestand des SPEED7-Systems über Web-Seite ausgeben

Die CPU hat eine Web-Seite integriert, die auch Informationen zum Firmwarestand der SPEED7-Komponenten bereitstellt. Über den Ethernet-PG/OP-Kanal haben Sie Zugriff auf diese Web-Seite. Zur Aktivierung des PG/OP-Kanals müssen Sie diesem IP-Parameter zuweisen. Dies kann im Siemens SIMATIC Manager entweder über eine Hardware-Konfiguration erfolgen, die Sie über MMC bzw. MPI einspielen oder über Ethernet durch Angabe der MAC-Adresse unter "Zielsystem → Ethernet-Adresse vergeben". Danach können Sie mit einem Web-Browser über die angegebene IP-Adresse auf den PG/ OP-Kanal zugreifen. Kapitel 5.10 "Zugriff auf integrierte Web-Seite" auf Seite 55

Firmware laden und auf MMC übertragen

- Gehen Sie auf www.vipa.com
- Klicken Sie auf "Service → Download → Firmware".
- Navigieren Sie über "System 300S → CPU" zu Ihrer CPU und laden Sie die zip-Datei auf Ihren PC.
- Entpacken Sie die zip-Datei und kopieren Sie die extrahierten pkg-Dateien auf Ihre MMC.

VORSICHT!

Beim Firmwareupdate wird automatisch ein Urlöschen durchgeführt. Sollte sich Ihr Programm nur im Ladespeicher der CPU befinden, so wird es hierbei gelöscht! Sichern Sie Ihr Programm, bevor Sie ein Firmwareupdate durchführen! Auch sollten Sie nach dem Firmwareupdate ein "Rücksetzen auf Werkseinstellung" durchführen. *∜ Kapitel 5.14 "Rücksetzen auf Werkseinstellung" auf Seite 64*

Firmware von MMC in CPU übertragen

- Bringen Sie den Betriebsartenschalter Ihrer CPU in Stellung STOP. Schalten Sie die Spannungsversorgung aus. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsversorgung ein.
- 2. Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der LEDs SF und FC an, dass auf der MMC mindestens eine aktuellere Firmware-Datei gefunden wurde.
- 3. Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den Betriebsartenschalter kurz nach MRES tippen und dann den Schalter in der STOP-Position belassen.
- 4. Während des Update-Vorgangs blinken die LEDs SF und FC abwechselnd und die MC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
- 5. Das Update ist fehlerfrei beendet, wenn die LEDs PW, ST, SF, FC und MC leuchten. Blinken diese schnell, ist ein Fehler aufgetreten.
 - $\prod_{i=1}^{n}$

Erst dann, wenn die LEDs PW, ST, SF, FC und MC an der CPU leuchten, dürfen Sie einen Power-Cycle an der CPU durchführen! Rücksetzen auf Werkseinstellung

- 6. Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FC. Fahren Sie mit Punkt 3 fort.
 - Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen. Führen Sie jetzt wie nachfolgend beschrieben ein Rücksetzen auf Werkseinstellungen durch. Danach ist die CPU wieder einsatzbereit.

5.14 Rücksetzen auf Werkseinstellung

Vorgehensweise

Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand.

Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 und die IP-Adresse des Ethernet-PG/OP-Kanals auf 0.0.0.0 zurückgestellt wird!

Sie können auch das Rücksetzen auf Werkseinstellung mit dem MMC-Cmd FACTORY_RESET ausführen. *♦ Kapitel 5.17 "MMC-Cmd - Autobefehle" auf Seite 67*

- **1.** Bringen Sie die CPU in STOP.
- 2. Drücken Sie den Betriebsartenschalter für ca. 30 Sekunden nach unten in Stellung MRES. Hierbei blinkt die STOP-LED. Nach ein paar Sekunden leuchtet die STOP-LED. Die STOP-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die STOP-LED leuchtet.
- 3. Nach dem 6. Mal Leuchten der STOP-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken. Jetzt leuchtet die grüne RUN-LED einmal auf. Das bedeutet, dass das RAM vollständig gelöscht ist.
- 4. Zur Bestätigung des Rücksetzvorgangs leuchten die LEDs PW, ST, SF, FC und MC. Leuchtet diese nicht, wurde nur Urlöschen ausgeführt und das Rücksetzen auf Werkseinstellung ist fehlgeschlagen. In diesem Fall können Sie den Vorgang wiederholen. Das Rücksetzen auf Werkseinstellung wird nur dann ausgeführt, wenn die STOP-LED genau 6 Mal geleuchtet hat.
- 5. Am Ende des Rücksetzvorgangs leuchten die LEDs PW, ST, SF, FC und MC. Danach ist die Spannungsversorgung aus- und wieder einzuschalten.

Steckplatz für Speichermedien

Die nachfolgende Abbildung soll die Vorgehensweise verdeutlichen:

cknlatz für Speichermedien

5.15 Steckplatz für S	peicnermeaien
Übersicht	Auf der Frontseite der CPU befindet sich ein Steckplatz für Speicher- medien. Über diesen Steckplatz können Sie eine Multimedia Card (MMC) als externes Speichermedium für Programme und Firmware stecken. Mittels vorgegebener Dateinamen können Sie die CPU ver- anlassen automatisch ein Projekt zu laden bzw. eine Kommandodatei auszuführen.
Zugriff auf das Spei- chermedium	 Zu folgenden Zeitpunkten erfolgt ein Zugriff auf ein Speichermedium: Nach Urlöschen Die CPU prüft, ob ein Projekt mit dem Namen S7PROG.WLD vorhanden ist. Wenn ja, wird dieses automatisch geladen. Die CPU prüft, ob ein Projekt mit dem Namen PROTECT.WLD mit geschützten Bausteinen vorhanden ist. Wenn ja, wird dieses automatisch geladen. Diese Bausteine verbleiben in der CPU bis zum Rücksetzen der CPU auf Werkseinstellungen oder Laden einer "leeren" PROTECT.WLD. Nach NetzEIN Die CPU prüft, ob ein Projekt mit dem Namen AUTO-LOAD.WLD vorhanden ist. Wenn ja, wird Urlöschen durchgeführt und das Projekt automatisch geladen. Die CPU prüft, ob eine Kommandodatei mit dem Namen VIPA_CMD.MMC vorhanden ist. Wenn ja, wird die Kommandodatei geladen und die enthaltenen Befehle werden ausgeführt. Nach NetzEIN und CPU-STOP prüft die CPU, ob eine *.pkg-Datei (Firmware-Datei) vorhanden ist. Wenn ja, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updateanforderung installieren. Einmalig im Zustand STOP Wird eine Speicherkarte mit einer Kommandodatei mit dem Namen VIPA_CMD.MMC gesteckt, so wird die Kommandodatei geladen und die enthaltenen Befehle werden ausgeführt.

Erweiterter Know-how-Schutz

5.16 Erweiterter Know-how-Schutz

ÜbersichtNeben dem "Standard" Know-how-Schutz besitzen die SPEED7-
CPUs von VIPA einen "erweiterten" Know-how-Schutz, der einen
sicheren Baustein-Schutz vor Zugriff Dritter bietet.

Standard-Schutz Beim Standard-Schutz von Siemens werden auch geschützte Bausteine in das PG übertragen, aber deren Inhalt nicht dargestellt. Durch entsprechende Manipulation ist der Know-how-Schutz aber nicht sichergestellt.

Erweiterter Schutz Mit dem von VIPA entwickelten "erweiterten" Know-how-Schutz besteht aber die Möglichkeit Bausteine permanent in der CPU zu speichern. Beim "erweiterten" Schutz übertragen Sie die zu schützenden Bausteine in eine WLD-Datei mit Namen protect.wld. Durch Stecken der MMC und anschließendem Urlöschen werden die in protect.wld gespeicherten Bausteine permanent in der CPU abgelegt. Geschützt werden können OBs, FBs und FCs. Beim Zurücklesen von geschützten Bausteinen in Ihr PG werden ausschließlich die Baustein-Header geladen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht ausgelesen werden.

Bausteine mit protect.wld schützen Erzeugen Sie in Ihrem Projektiertool mit *"Datei → Memory Card Datei* → *Neu"* eine WLD-Datei und benennen Sie diese um in "protect.wld". Übertragen Sie die zu schützenden Bausteine in die Datei, indem Sie diese mit der Maus aus Ihrem Projekt in das Dateifenster von protect.wld ziehen.

protect.wld mit Urlöschen in CPU übertragen Übertragen Sie die Datei protect.wld auf eine MMC-Speicherkarte, stecken Sie die MMC in Ihre CPU und führen Sie nach folgender Vorgehensweise Urlöschen durch:

Mit Urlöschen werden die in protect.wld enthaltenen Bausteine, permanent vor Zugriffen Dritter geschützt, in der CPU abgelegt.

- Schutzverhalten Geschützte Bausteine werden durch eine neue protect.wld überschrieben. Mit einem PG können Dritte auf geschützte Bausteine zugreifen, hierbei wird aber ausschließlich der Baustein-Header in das PG übertragen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht ausgelesen werden.
- Geschützte Bausteine überschreiben bzw. Iöschen Sie haben jederzeit die Möglichkeit geschützte Bausteine durch gleichnamige Bausteine im RAM der CPU zu überschreiben. Diese Anderung bleibt bis zum nächsten Urlöschen erhalten. Geschützte Bausteine können nur dann vom PG dauerhaft überschrieben werden, wenn diese zuvor aus der protect.wld gelöscht wurden. Durch Übertragen einer leeren protect.wld von der MMC können Sie in der CPU alle geschützten Bausteine löschen.
- **Einsatz von geschützten Bausteinen** Da beim Auslesen eines "protected" Bausteins aus der CPU die Symbol-Bezeichnungen fehlen, ist es ratsam dem Endanwender die "Bausteinhüllen" zur Verfügung zu stellen. Erstellen Sie hierzu aus allen geschützten Bausteinen ein Projekt. Löschen Sie aus diesen Bausteinen alle Netzwerke, so dass diese ausschließlich die Variablen-Definitionen in der entsprechenden Symbolik beinhalten.

5.17 MMC-Cmd - Autobefehle

Übersicht	Eine Kommando-Datei auf einer MMC wird unter folgenden Bedin- gungen automatisch ausgeführt:
	 CPU befindet sich in STOP und MMC wird gesteckt Bei jedem Einschaltvorgang (NetzEIN)
Kommando-Datei	Bei der <i>Kommando</i> -Datei handelt es sich um eine Text-Datei mit einer Befehlsabfolge, die unter dem Namen vipa_cmd.mmc im Root- Verzeichnis der MMC abzulegen ist. Die Datei muss mit dem 1. Befehl CMD_START beginnen, gefolgt von den gewünschten Befehlen (kein anderer Text) und ist immer mit dem letzten Befehl CMD_END abzuschließen.
	Texte wie beispielsweise Kommentare nach dem letzten Befehl <i>CMD_END</i> sind zulässig, da diese ignoriert werden. Sobald eine Kommandodatei erkannt und ausgeführt wird, werden die Aktionen in der Datei Logfile.txt auf der MMC gespeichert. Zusätzlich finden Sie für jeden ausgeführten Befehl einen Diagnoseeintrag im Diagnose- puffer.
Befehle	Bitte beachten Sie, dass Sie immer Ihre Befehlsabfolge mit <i>CMD_START</i> beginnen und mit <i>CMD_END</i> beenden.

Kommando	Beschreibung	Diagnoseeintrag
CMD_START	In der ersten Zeile muss CMD_START stehen.	0xE801
	Fehlt CMD_START erfolgt ein Diagnoseeintrag	0xE8FE

MMC-Cmd - Autobefehle

Kommando	Beschreibung	Diagnoseeintrag
WAIT1SECOND	Wartet ca. 1 Sekunde.	0xE803
WEBPAGE	Speichert die Web-Seite der CPU als Datei "webpage.htm" auf der MMC.	0xE804
LOAD_PROJECT	Ruft die Funktion "Urlöschen mit Nachladen von der MMC" auf. Durch Angabe einer wld- Datei nach dem Kommando, wird diese wld- Datei nachgeladen, ansonsten wird die Datei "s7prog.wld" geladen.	0xE805
SAVE_PROJECT	Speichert das Anwenderprojekt (Bausteine und Hardware-Konfiguration) auf der MMC als "s7prog.wld".Falls bereits eine Datei mit dem Namen "s7prog.wld" existiert, wird diese in "s7prog.old" umbenannt. Sollte Ihre CPU durch ein Passwort geschützt sein, so müssen Sie dies als Parameter mitliefern. Ansonsten wird kein Projekt geschrieben. Beispiel: SAVE_PROJECT passwort	0xE806
FACTORY_RESET	Führt "Rücksetzen auf Werkseinstellung" durch.	0xE807
DIAGBUF	Speichert den Diagnosepuffer der CPU als Datei "diagbuff.txt" auf der MMC.	0xE80B
SET_NETWORK	Mit diesem Kommando können Sie die IP-Para- meter für den Ethernet-PG/OP-Kanal einstellen. Die IP-Parameter sind in der Reihenfolge IP- Adresse, Subnetz-Maske und Gateway jeweils getrennt durch ein Komma im Format von x.x.x.x einzugeben. Wird kein Gateway ver- wendet, tragen Sie die IP-Adresse als Gateway ein.	0xE80E
CMD_END	In der letzten Zeile muss CMD_END stehen.	0xE802

Beispiele Nachfolgend ist der Aufbau einer Kommando-Datei an Beispielen gezeigt. Den jeweiligen Diagnoseeintrag finden Sie in Klammern gesetzt.

Beispiel 1

CMD_START	Kennzeichnet den Start der Befehlsliste (0xE801)
LOAD_PROJECT proj.wld	Urlöschen und Nachladen von "proj.wld" (0xE805)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WEBPAGE	Web-Seite als "webpage.htm" speichern (0xE804)
DIAGBUF	Diagnosepuffer der CPU als "diagbuff.txt" speichern (0xE80B)
CMD_END	Kennzeichnet das Ende der Befehlsliste (0xE802)
beliebiger Text	Texte nach dem CMD_END werden nicht mehr ausgewertet.

Beispiel 2

CMD_START	Kennzeichnet den Start der Befehlsliste (0xE801)
LOAD_PROJECT proj2.wld	Urlöschen und Nachladen von "proj2.wld" (0xE805)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
	IP-Parameter (0xE80E)
SET_NETWORK 172.16.129.210,25	5.255.224.0,172.16.129.210
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WEBPAGE	Web-Seite als "webpage.htm" speichern (0xE804)
DIAGBUF	Diagnosepuffer der CPU als "diagbuff.txt" speichern (0xE80B)
CMD_END	Kennzeichnet das Ende der Befehlsliste (0xE802)
beliebiger Text	Texte nach dem CMD_END werden nicht mehr ausgewertet.

Die Parameter IP-Adresse, Subnetz-Maske und Gateway erhalten Sie von Ihrem Systemadministrator.

Wird kein Gateway verwendet, tragen Sie die IP-Adresse als Gateway ein.

5.18 VIPA-spezifische Diagnose-Einträge

Einträge im Diagnose- puffer	Sie haben die Möglichkeit im Siemens SIMATIC Manager den Diag- nosepuffer der CPU auszulesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Ein- träge, welche ausschließlich in Form einer Ereignis-ID angezeigt werden.				
	auf die Speicherkarte gespeichert.				
	 Die CPUs von VIPA unterstützen alle Register des Bau- gruppenzustands. Eine nähere Beschreibung der ein- zelnen Register finden Sie in der Online-Hilfe Ihres Sie- mens SIMATIC Managers. 				
Anzeige der Diagnose-	Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens				

Anzeige der Diagnoseeinträge

Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATIC Manager auf *"Zielsystem* → *Baugruppenzustand"*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster: VIPA-spezifische Diagnose-Einträge

Baugru	ppenzustanc									
fad: Erreio	chbare Teilnehr	ner MPI = 2					Betrie	ebszusta	and CPU	: RUN
	Diagnosepuf	fer								
Nr. 8 9 10	Uhrzeit 13:18:11:370	Datum 19.12.2011	Ereig Ereig	nis I nis-ID): 16# I	EOCC				
11 12 13	 	 	 						VIF	'A-I
Details: 										

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Übersicht der Ereignis-IDs

Ereignis-ID	Bedeutung
0x115C	Herstellerspezifischer Alarm (OB 57) bei EtherCAT
	OB: OB-Nummer (57)
	ZInfo1: Logische Adresse des Slaves, der den Alarm ausgelöst hat
	ZInfo2: Alarmtyp
	ZInfo3: Reserviert
0xE003	Fehler beim Zugriff auf Peripherie
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE004	Mehrfach-Parametrierung einer Peripherieadresse
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE005	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE006	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE007	Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich
0xE008	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE009	Fehler beim Zugriff auf Standard-Rückwandbus
0xE010	Nicht definierte Baugruppe am Rückwandbus erkannt
	Zinfo2: Steckplatz
	Zinfo3: Typkennung
0xE011	Masterprojektierung auf Slave-CPU nicht möglich oder fehlerhafte Slave- Konfiguration

VIPA-spezifische Diagnose-Einträge

Ereignis-ID	Bedeutung
0xE012	Fehler bei Parametrierung
0xE013	Fehler bei Schieberegisterzugriff auf Standardbus-Digitalmodule
0xE014	Fehler bei Check_Sys
0xE015	Fehler beim Zugriff auf Master
	Zinfo2: Steckplatz des Masters (32=Kachelmaster)
0xE016	Maximale Blockgröße bei Mastertransfer überschritten
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE017	Fehler beim Zugriff auf integrierten Slave
0xE018	Fehler beim Mappen der Master-Peripherie
0xE019	Fehler bei Erkennung des Standard Rückwandbus Systems
0xE01A	Fehler bei Erkennung der Betriebsart (8 / 9 Bit)
0xE01B	Fehler - Maximale Anzahl steckbarer Baugruppen überschritten
0xE020	Fehler - Alarminformationen undefiniert
0xE030	Fehler vom Standard-Bus
0xE033	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE0B0	SPEED7 kann nicht mehr gestoppt werden
	(Evtl. undefinierter BCD-Wert bei Timer)
0xE0C0	Nicht genug Speicherplatz im Arbeitsspeicher für Codebaustein (Baustein zu groß)
0xE0CB	Fehler bei SZL-Zugriff
	Zinfo1: 4=SZL falsch, 5=SubSZL falsch, 6=Index falsch
	Zinfo2: SZL-ID
	Zinfo3: Index

VIPA-spezifische Diagnose-Einträge

Ereignis-ID	Bedeutung
0xE0CC	Kommunikationsfehler MPI / Seriell
	Zinfo1: Code
	1: Falsche Priorität
	2: Pufferüberlauf
	3: Telegrammformatfehler
	4: Falsche SZL-Anforderung (SZL-ID ungültig)
	5: Falsche SZL-Anforderung (SZL-SubID ungültig)
	6: Falsche SZL-Anforderung (SZL-Index ungültig)
	7: Falsche Wert
	8: Falscher RetVal
	9: Falscher SAP
	10: Falscher Verbindungstyp
	11: Falsche Sequenzhummer
	12: Fehlerhalte Bausteinhummer im Telegramm
	14: Insktive Funktion
	15: Fehlerhafte Größe im Telegramm
	20: Fehler beim Schreiben auf die Speicherkarte
	90: Fehlerhafte Puffergröße
	98: Unbekannter Fehler
	99: Interner Fehler
0xE0CD	Fehler bei DP-V1 Auftragsverwaltung
0xE0CE	Fehler: Timeout beim Senden der i-Slave Diagnose
0xE0CF	Timeout beim Laden einer neuen HW-Konfiguration (Timeout-Zeit: 39 Sekunden)
0xE100	Speicherkarten-Zugriffsfehler
0xE101	Speicherkarten-Fehler Filesystem
0xE102	Speicherkarten-Fehler FAT
0xE104	Speicherkarten-Fehler beim Speichern
0xE200	Speicherkarte schreiben beendet (Copy Ram2Rom)
0xE210	Speicherkarte Lesen beendet (Nachladen nach Urlöschen)
0xE21E	Speicherkarte Lesen: Fehler beim Nachladen (nach Urlöschen), Datei "Pro- tect.wld" zu groß
0xE21F	Speicherkarte Lesen: Fehler beim Nachladen (nach Urlöschen), Lesefehler, Speicher voll
0xE300	Internes Flash Schreiben beendet (Copy Ram2Rom)
0xE310	Internes Flash Lesen beendet (Nachladen nach Batterieausfall)
Ereignis-ID	Bedeutung
-------------	--
0xE311	Internes Flash fx0000yy.wld Datei zu groß, Laden fehlerhaft
0xE400	Speicherkarte mit der Option Speichererweiterung wurde gesteckt.
0xE401	Speicherkarte mit der Option Speichererweiterung wurde gezogen.
0xE402	Die PROFIBUS-DP-Master-Funktionalität ist nicht aktiviert. Die Schnittstelle ist weiter als MPI-Schnittstelle aktiv.
0xE403	Die PROFIBUS-DP-Slave-Funktionalität ist nicht aktiviert. Die Schnittstelle ist weiter als MPI-Schnittstelle aktiv.
0xE500	Speicherverwaltung: Baustein ohne zugehörigen Eintrag in der BstListe gelöscht
	Zinfo2: BlockTyp
	Zinfo3: BlockNr
0 5004	
0xE604	Mehrfach-Parametrierung einer Peripherieadresse für Ethernet-PG/OP- Kanal
	Zinfo1: Peripherie-Adresse
	Zinfo3:
	0: Peripherie-Adresse ist Eingang, 1: Peripherie-Adresse ist Ausgang
0xE701	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE703	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE720	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE721	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE801	CMD - Autobefehl: CMD_START erkannt und erfolgreich ausgeführt
0xE802	CMD - Autobefehl: CMD_END erkannt und erfolgreich ausgeführt
0xE803	CMD - Autobefehl: WAIT1SECOND erkannt und erfolgreich ausgeführt
0xE804	CMD - Autobefehl: WEBPAGE erkannt und erfolgreich ausgeführt
0xE805	CMD - Autobefehl: LOAD_PROJECT erkannt und erfolgreich ausgeführt
0xE806	CMD - Autobefehl: SAVE_ PROJECT
	Zinfo3: 0x0000: SAVE_PROJECT erkannt und erfolgreich ausgeführt
	Zinfo3: 0x8000: Fehler beim Ausführen von SAVE_ PROJECT z.B. falsches Passwort
0xE807	CMD - Autobefehl: FACTORY_RESET erkannt und erfolgreich ausgeführt
0xE80B	CMD - Autobefehl: DIAGBUF erkannt und erfolgreich ausgeführt
0xE80E	CMD - Autobefehl: SET_NETWORK erkannt und erfolgreich ausgeführt
0xE816	CMD - Autobefehl: SAVE_ PROJECT: Fehler - CPU urgelöscht - es wurde keine wld-Datei erzeugt.
0xE8FB	CMD - Autobefehl: Fehler: Initialisierung des Ethernet-PG/OP-Kanals mittels SET_NETWORK fehlerhaft.

Ereignis-ID	Bedeutung
0xE8FC	CMD - Autobefehl: Fehler: In SET_NETWORK wurden nicht alle IP-Para- meter angegeben.
0xE8FE	CMD - Autobefehl: Fehler: CMD_START nicht gefunden
0xE8FF	CMD - Autobefehl: Fehler: Fehler beim Lesen des CMD-Files (Speicher- karten-Fehler)
0xE901	Checksummen-Fehler
0xEA00	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA01	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA02	SBUS: Interner Fehler (intern gestecktes Submodul nicht erkannt) Zinfo1: Interner Steckplatz
0xEA03	SBUS: Kommunikationsfehler CPU - PROFINET-IO-Controller Zinfo1: Steckplatz Zinfo2: Status (0: OK, 1: ERROR, 2: BUSSY, 3: TIMEOUT, 4: LOCKED, 5: UNKNOWN)
0xEA04	SBUS: Mehrfach-Parametrierung einer Peripherieadresse Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite
0xEA05	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA07	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA08	SBUS: Parametrierte Eingangsdatenbreite ungleich der gesteckten Ein- gangsdatenbreite Zinfo1: Parametrierte Eingangsdatenbreite Zinfo2: Steckplatz Zinfo3: Eingangsdatenbreite der gesteckten Baugruppe
0xEA09	SBUS: Parametrierte Ausgangsdatenbreite ungleich der gesteckten Aus- gangsdatenbreite Zinfo1: Parametrierte Ausgangsdatenbreite Zinfo2: Steckplatz Zinfo3: Ausgangsdatenbreite der gesteckten Baugruppe
0xEA10	SBUS: Eingangs-Peripherieadresse außerhalb des Peripheriebereiches Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite

Ereignis-ID	Bedeutung
0xEA11	SBUS: Ausgangs-Peripherieadresse außerhalb des Peripheriebereiches Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz
	Zinfo3: Datenbreite
0xEA12	SBUS: Fehler beim Datensatz schreiben
	Zinfo1: Steckplatz
	Zinfo2: Datensatznummer
	Zinfo3: Datensatzlange
0xEA14	SBUS: Mehrfach-Parametrierung einer Peripherieadresse (Diagnosead- resse)
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
	Zinfo3: Datenbreite
0xEA15	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA18	SBUS: Fehler beim Mappen der Masterperipherie
	Zinfo2: Steckplatz des Masters
0xEA19	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA20	Fehler - RS485-Schnittstelle ist nicht auf PROFIBUS-DP-Master eingestellt aber es ist ein PROFIBUS-DP-Master projektiert.
0xEA21	Fehler - Projektierung RS485-Schnittstelle X2/X3:
	PROFIBUS-DP-Master ist projektiert aber nicht vorhanden
	Zinfo2: Schnittstelle x
0xEA22	Fehler - RS485-Schnittstelle X2 - Wert ist außerhalb der Grenzen
	Zinfo: Projektierter Wert von X2
0xEA23	Fehler - RS485-Schnittstelle X3 - Wert ist außerhalb der Grenzen
	Zinfo: Projektierter Wert von X3
0xEA24	Fehler - Projektierung RS485-Schnittstelle X2/X3:
	Schnittstelle/Protokoll ist nicht vorhanden, die Defaulteinstellungen werden verwendet.
	Zinfo2: Projektierter Wert für X2
	Zinfo3: Projektierter Wert für X3
0xEA30	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA40	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA41	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!

Ereignis-ID	Bedeutung
0xEA50	Fehler - PROFINET-Konfiguration
	Zinfo1: User-Slot des PROFINET-IO-Controllers
	Zinfo2: IO-Device-Nr.
	Zinfo3: IO-Device Slot
0xEA51	Fehler - Kein PROFINET-IO-Controller auf dem projektierten Slot erkannt
	Zinfo1: User-Slot des PROFINET-IO-Controllers
	Zinfo2: Erkannte Typkennung auf dem projektierten Slot
0xEA53	Fehler - PROFINET-Konfiguration - Es sind zu viele PROFINET-IO-Devices projektiert
	Zinfo1 : Anzahl der projektierten Devices
	Zinfo2 : Steckplatz
	Zinfo3 : Maximal mögliche Anzahl Devices
0xEA54	Fehler - PROFINET-IO-Controller meldet Mehrfachparametrierung einer Peripherieadresse
	Zinfo1: Peripherieadresse
	Zinfo2: User-Slot des PROFINET-IO-Controllers
	Zinfo3: Datenbreite
0xEA61 0xEA63	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA64	PROFINET/EtherCAT-CP
	Konfigurationsfehler Zinfo1:
	Bit 0: Zu viele Devices
	Bit 1: Zu viele Devices pro Millisekunde
	Bit 2: Zu viele Eingangsbytes pro Millisekunde
	Bit 3: Zu viele Ausgangsbytes pro Millisekunde
	Bit 4: Zu viele Eingangsbytes pro Device
	Bit 5: Zu viele Ausgangsbytes pro Device
	Bit 6: Zu viele Produktiv-Verbindungen
	Bit 7: Zu viele Eingangsbytes im Prozessabbild
	Bit 8: Zu viele Ausgangsbytes im Prozessabbild
	Bit 9: Konfiguration nicht verfügbar
	Bit 10: Konfiguration ungültig
	Bit 11: Zykluszeit zu klein
	Bit 12: Aktualisierungszeit zu groß
	Bit 13: Ungültige Devicenummer
	Bit 14: CPU ist als I-Device konfiguriert
	Bit 15: IP Adresse auf anderem Weg beziehen, wird für die IP-Adresse des Controllers nicht unterstützt
0xEA65	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!

Ereignis-ID	Bedeutung
0xEA66	PROFINET-IO-Controller
	Fehler im Kommunikationsstack
	PK: Rackslot
	OBNr: StackError.Service
	Datld: StackError.DeviceRef
	ZInfo1: StackError.Error.Code
	ZInfo2: StackError.Error.Detail
	ZInfo3: StackError.Error.AdditionalDetail
	<< 8 + StackError.Error.AreaCode
0xEA67	Fehler - PROFINET-IO-Controller - Datensatz lesen
	PK: Fehlertyp
	0: DATA_RECORD_ERROR_LOCAL
	1: DATA_RECORD_ERROR_STACK
	2: DATA_RECORD_ERROR_REMOTE
	OBNr: PROFINET-IO-Controller slot
	Datld: Device-Nr
	ZInfo1: Datensatznummer
	ZInfo2: Datensatzhandle
	ZInfo3: Interner Fehlercode für Service-Zwecke
0xEA68	Fehler - PROFINET-IO-Controller - Datensatz schreiben
	PK: Fehlertyp
	0: DATA_RECORD_ERROR_LOCAL
	1: DATA_RECORD_ERROR_STACK
	2: DATA_RECORD_ERROR_REMOTE
	OBNr: PROFINET-IO-Controller slot
	Datld: Device-Nr
	ZInfo1: Datensatznummer
	ZInfo2: Datensatzhandle
	ZInfo3: Interner Fehlercode für Service-Zwecke
0xEA69	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA6A	PROFINET-IO-Controller
	Service-Fehler im Kommunikationsstack
	PK: Rackslot
	OBNr: ServiceIdentifier
	Datld: 0
	ZInfo1: ServiceError.Code
	ZInfo2: ServiceError.Detail
	ZInfo3: ServiceError.AdditionalDetail

Ereignis-ID	Bedeutung
0xEA6B	PROFINET-IO-Controller Vendor ID mismatch PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: -
0xEA6C	PROFINET-IO-Controller Device ID mismatch PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: -
0xEA6D	PROFINET-IO-Controller No empty name PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: -
0xEA6E	PROFINET-IO-Controller RPC response missing PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: -

Ereignis-ID	Bedeutung
0xEA6F	PROFINET-IO-Controller
	PN module mismatch
	PK: Rackslot
	OBNr: PLC-Mode
	Datld: 0
	ZInfo1: Device ID
	ZInfo2: -
	ZInfo3: -
0xEA97	Speicherfehler SBUS-Service Kanal
	ZInfo3 = Slot
0xEA98	Timeout beim Warten, dass ein SBUS-Modul (Server) rebootet hat
0xEA99	Fehler beim File-Lesen über SBUS
0xEAA0	Emac Error ist aufgetreten
	OBNr: Aktueller PLC-Mode
	ZInfo1: Diagnoseadresse des Masters / Controllers
	ZInfo2:
	0: Kein Rx Queue ist voll
	1: Kein Sendepuffer verfügbar
	2: Sendestrom ist abgerissen; senden fehlgeschlagen
	3: Wiederholungsversuche ausgeschöpft
	4: Kein Emptangsputter in Emac DMA verfügbar
	5: Emac DMA Transfer abgebrochen
	6: Queue Overflow
	7: Nicht erwartetes Packet emprangen
	Zinios. Anzani del augetretenen Fenier
UXEABU	ORNER Aktualler RI C Made
	Zinfo1: Diagnoscodrosco dos Masters/Controllers
	ZintoT. Diagnoseaulesse des Masters/Controllers
	0x02: 100MBit Half-Duplex
	0x03: 100Mbit Full-Duplex
	0x05: 10Mbit Half-Duplex
	0xFF: Link Mode nicht definiert
0xEB03	SLIO Fehler beim IO-Mapping
0xEB10	SLIO Fehler: Busfehler
	Zinfo1: Fehlerart
	0x82: ErrorAlarm

Ereignis-ID	Bedeutung
0xEB20	SLIO Fehler: Alarminformationen undefiniert
0xEB21	SLIO Fehler bei Zugriff auf Konfigurationsdaten
0xEC03	EtherCAT: Konfigurationsfehler ZInfo1: Errorcode 1: NUMBER_OF_SLAVES_NOT_SUPPORTED 2: SYSTEM_IO_NR_INVALID 3: INDEX_FROM_SLOT_ERROR 4: MASTER_CONFIG_INVALID 5: MASTER_TYPE_ERROR 6: SLAVE_DIAG_ADDR_INVALID 7: SLAVE_ADDR_INVALID 8: SLAVE_MODULE_IO_CONFIG_INVALID 9: LOG_ADDR_ALREADY_IN_USE 10: NULL_PTR_CHECK_ERROR 11: IO_MAPPING_ERROR 12: ERROR
0xEC04	EtherCAT: Mehrfach-Parametrierung einer Peripherieadresse Zinfo1 : Peripherie-Adresse Zinfo2 : Steckplatz
0xEC10	EtherCAT: Wiederkehr Bus mit allen Slaves OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC10 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master (> 0)

Ereignis-ID	Bedeutung
0xEC11	EtherCAT: Wiederkehr Bus mit fehlenden Slaves OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC11 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master (> 0)
0xEC12	EtherCAT: Wiederkehr Slave OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC12 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AlStatusCode
0xEC30	EtherCAT: Topologie OK OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC30 ZInfo2: Diagnoseadresse des Masters
0xEC50	EtherCAT: DC nicht in Sync ZInfo1: Diagnoseadresse des Masters
0xED10	EtherCAT: Ausfall Bus OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED10 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master

Ereignis-ID	Bedeutung
0xED12	EtherCAT: Ausfall Slave OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED12 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AIStatusCode
0xED20	EtherCAT: Bus-Statuswechsel, der keinen OB86 hervorruft OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED20 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master
0xED21	EtherCAT: fehlerhafter Bus-Statuswechsel OB: 0x00 PK: 0x00 DatlD: 0xXXYY: XX=0x54 bei Eingangsadresse in Zlnfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) Zlnfo1: 0xXXYY (XX = current state, YY = expected state) Zlnfo2: Diagnoseadresse des Masters Zlnfo3: ErrorCode: 0x0008: Busy 0x0008: Unzulässige Parameter 0x000E: Unzulässiger Status 0x0010: Zeitüberschreitung

Ereignis-ID	Bedeutung
0xED22	EtherCAT: Slave-Statuswechsel, der keinen OB86 hervorruft OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED22 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in Zlnfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AlStatusCode
0xED30	EtherCAT: Topolgy Mismatch OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED30 ZInfo2: Diagnoseadresse des Masters
0xED31	EtherCAT: Alarm Queue Overflow OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED31 ZInfo2: Diagnoseadresse des Masters
0xED40 0xED4F	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xED50	EtherCAT: DC in Sync ZInfo1: Diagnoseadresse des Masters
0xED60	EtherCAT: Diagnosepuffer CP: Slave-Statuswechsel PK: 0 OB: PLC-Mode DatID 1/2: 0 ZInfo1: 0x00YY: YY: Neuer EtherCAT-Status des Slaves ZInfo2: EtherCAT-Stationsadresse Zinfo3: AlStatusCode (EtherCAT-spezifischer Fehlercode)

Ereignis-ID	Bedeutung
0xED61	EtherCAT: Diagnosepuffer CP: CoE-Emergency PK: EtherCAT-Stationsadresse (Low-Byte) OB: EtherCAT-Stationsadresse (High-Byte) DatID 1/2: Error-Code ZInfo1: 0xYYZZ: YY: Error-Register ZZ: MEF Byte 1 ZInfo 2: 0xYYZZ: YY: MEF Byte 2 ZZ: MEF Byte 3 Zinfo3: 0xYYZZ: YY: MEF Byte 4 ZZ: MEF Byte 5
0xED62	EtherCAT: Diagnosepuffer CP: Fehler bei SDO-Zugriff während State-Wechsel PK: EtherCAT-Stationsadresse (Low-Byte) OB: EtherCAT-Stationsadresse (High-Byte) DatID 1/2: Subindex ZInfo1: Index ZInfo2: SDO-Errorcode (High-Word) Zinfo3: SDO-Errorcode (Low-Word)
0xED70	EtherCAT: Diagnosepuffer CP: Doppelte Hot Connect Gruppe erkannt PK: 0 OB: PLC-Mode DatID 1/2: 0 ZInfo1: Diagnoseadresse des Masters ZInfo2: EtherCAT-Stationsadresse Zinfo3: 0
0 5500	
UXEE00	Zusatzintormation bei UNDEF_OPCODE
0xEEU1	CDL wurde kemplett urgeläget, de der Heeblauf pach NetzEIN nicht
VALLE	beendet werden konnte.
0xEF11 0xEF13	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!

Mit Testfunktionen Variablen steuern und beobachten

Ereignis-ID	edeutung					
0xEFFF	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!					
PK: C-Sourcemodul	PK: C-Sourcemodulnummer DatID: Zeilennummer					
5.19 Mit Testfu	Inktionen Variablen steuern und beobachten					
Ubersicht	Zur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie in Ihrem Siemens SIMATIC Manager unter dem Menüpunkt Test verschiedene Testfunktionen aufrufen.					
	 Mit der Testfunktion "Test → Beobachten" können die Signalzustände von Operanden und das VKE angezeigt werden. Mit der Testfunktion "Zielsystem → Variablen beobachten/steuern" können die Signalzustände von Variablen geändert und angezeigt werden. 					
"Test → Beobachte	n " Diese Testfunktion zeigt die aktuellen Signalzustände und das VKE der einzelnen Operanden während der Programmbearbeitung an. Es können außerdem Korrekturen am Programm durchgeführt werden.					
	O Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein!					
	Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Pro- zessalarme unterbrochen werden. Die Unterbrechung der Statusbe- arbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbre- chungsstelle nicht mehr gültig sind. Die CPU hört an der Unterbre- chungsstelle auf, Daten für die Statusanzeige zu sammeln und über- gibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0. Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeit- und Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:					
	 das Verknüpfungsergebnis VKE Status / AKKU 1 AKKU 2 Zustandsbyte absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?". 					
"Zielsystem → Variablen beobachten/steuerr	Diese Testfunktion gibt den Zustand eines beliebigen Operanden (Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende einer Programmbearbeitung an. Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.					

Mit Testfunktionen Variablen steuern und beobachten

- Steuern von Ausgängen
 - Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden.
 - Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.
- Steuern von Variablen
 - Folgende Variablen können geändert werden: E, A, M, T, Z und D.
 - Unabhängig von der Betriebsart der CPU wird das Prozessabbild binärer und digitaler Operanden verändert.
 - In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden.
 - Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

6 Einsatz PtP-Kommunikation

6.1 Schnelleinstieg

Allgemein	 Bei dieser CPU ist die integrierte RS485-Schnittstelle fix auf PtP-Kommunikation (point to point) eingestellt. PtP-Funktionalität Für den Betrieb ist keine zusätzliche Parameteranpassung in der Hardware-Konfiguration erforderlich. Mit der Funktionalität PtP ermöglicht die RS485-Schnittstelle eine serielle Punkt-zu-Punkt-Prozessankopplung zu verschiedenen Ziel- oder Quell-Systemen. 				
Protokolle	Unterstützt werden o 3964R, USS und Mo	die Protokolle bzw. F odbus.	Prozeduren ASCII, STX/ETX,		
Parametrierung	Die Parametrierung unter Einsatz des F(tokolle mit Ausnahm legen.	der seriellen Schnitt C/SFC 216 (SER_CI le von ASCII die Par	stelle erfolgt zur Laufzeit ⁻ G). Hierbei sind für alle Pro- ameter in einem DB abzu-		
Kommunikation	Mit FCs/SFCs steuern Sie die Kommunikation. Das Senden erfolgt unter Einsatz des FC/SFC 217 (SER_SND) und das Empfangen üb FC/SFC 218 (SER_RCV). Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RetV einen Rückgabewert geliefert, der unter anderem auch aktuelle Info mationen über die Quittierung der Gegenseite beinhaltet. Bei den Protokollen USS und Modbus können Sie durch Aufruf des FC/SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm au lesen. Die FCs/SFCs befinden sich im Lieferumfang der CPU.				
Übersicht der FCs/SFCs für die serielle Kommu- nikation	Folgende FC/SFCs satz:	kommen für die seri	elle Kommunikation zum Ein-		
	FC/SFC Beschreibung				
	FC/SFC 216	SER CFG	RS485 Parametrieren		

FC/SFC 216	SER_CFG	RS485 Parametrieren
FC/SFC 217	SER_SND	RS485 Senden
FC/SFC 218	SER_RCV	RS485 Empfangen

6.2 Prinzip der Datenübertragung

 Übersicht
 Die Datenübertragung wird zur Laufzeit über FC/SFCs gehandhabt. Das Prinzip der Datenübertragung ist für alle Protokolle identisch und soll hier kurz gezeigt werden.
 Daten, die von der CPU in den entsprechenden Datenkanal geschrieben werden, werden in einen FIFO-Sendepuffer (first in first out) mit einer Größe von 2x1024Byte abgelegt und von dort über die Schnittstelle ausgegeben.

Empfängt die Schnittstelle Daten, werden diese in einem FIFO-Empfangspuffer mit einer Größe von 2x1024Byte abgelegt und können dort von der CPU gelesen werden. Einsatz der RS485-Schnittstelle für PtP

- Sofern Daten mittels eines Protokolls übertragen werden, erfolgt die Einbettung der Daten in das entsprechende Protokoll automatisch.
- Im Gegensatz zu ASCII- und STX/ETX erfolgt bei den Protokollen 3964R, USS und Modbus die Datenübertragung mit Quittierung der Gegenseite.
- Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.
- Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

RS485-PtP-Kommunikation

6.3 Einsatz der RS485-Schnittstelle für PtP

Eigenschaften RS485

- Logische Zustände als Spannungsdifferenz zwischen 2 verdrillten Adern
- Serielle Busverbindung in Zweidrahttechnik im Halbduplex-Verfahren
- Datenübertragung bis 500m Entfernung
- Datenübertragungsrate bis 115,2kBit/s

PtP-Schnittstelle X3

9polige SubD-Buchse

Pin	RS485
1	n.c.
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

6.4 Parametrierung

6.4.1 FC/SFC 216 - SER_CFG

Beschreibung

Die Parametrierung erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 (SER_CFG). Hierbei sind die Parameter für STX/ETX, 3964R, USS und Modbus in einem DB abzulegen.

Parameter	Deklaration	Datentyp	Beschreibung
PROTOCOL	IN	BYTE	1=ASCII, 2=STX/ETX, 3=3964R
PARAMETER	IN	ANY	Zeiger zu den Protokoll-Parametern
BAUDRATE	IN	BYTE	Nr. der Baudrate
CHARLEN	IN	BYTE	0=5Bit, 1=6Bit, 2=7Bit, 3=8Bit
PARITY	IN	BYTE	0=Non, 1=Odd, 2=Even
STOPBITS	IN	BYTE	1=1Bit, 2=1,5Bit, 3=2Bit
FLOWCONTROL	IN	BYTE	1 (fix)
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

Parameter

Alle Zeitangaben für Timeouts sind als Hexadezimaler Wert anzugeben. Den Hex-Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden mit der Baudrate multiplizieren.

Beispiel:

Gewünschte Zeit 8ms bei einer Baudrate von 19200Baud Berechnung: 19200Bit/s x 0,008s \approx 154Bit \rightarrow (9Ah) Als Hex-Wert ist 9Ah vorzugeben.

PROTOCOLGeben Sie hier das Protokoll an, das verwendet werden soll.Zur Auswahl stehen:

- 1: ASCII
- 2: STX/ETX
- 3: 3964R
- 4: USS Master
- 5: Modbus RTU Master
- 6: Modbus ASCII Master

PARAMETER (als DB)Bei eingestelltem ASCII-Protokoll wird dieser Parameter ignoriert.Für die Protokolle geben Sie hier einen DB an, der die Kommunikati-
onsparameter beinhaltet und für die jeweiligen Protokolle STX/ETX,
3964R, USS und Modbus folgenden Aufbau hat:

Datenbaustein bei STX/ETX					
DBB0:	STX1	BYTE	(1. Start-Zeichen in hexadezi- maler Form)		
DBB1:	STX2	BYTE	(2. Start-Zeichen in hexadezi- maler Form)		
DBB2:	ETX1	BYTE	(1. Ende-Zeichen in hexadezi- maler Form)		

DBB3:	ETX2	BYTE	(2. Ende-Zeichen in hexadezi- maler Form)
DBW4:	TIMEOUT	WORD	(max. zeitlicher Abstand zwi- schen 2 Telegrammen)

Das Zeichen für Start bzw. Ende sollte immer ein Wert kleiner 20 sein, ansonsten wird das Zeichen ignoriert! Tragen Sie immer für nicht benutzte Zeichen FFh ein!

Datenbaustein bei 3964R

DBB0:	Prio	BYTE	(Die Priorität beider Partner muss unterschiedlich sein)
DBB1:	ConnAttmptNr	BYTE	(Anzahl der Verbindungsauf- bauversuche)
DBB2:	SendAttmptNr	BYTE	(Anzahl der Telegrammwieder- holungen)
DBB4:	CharTimeout	WORD	(Zeichenverzugszeit)
DBW6:	ConfTimeout	WORD	(Quittungsverzugszeit)

Datenbaustein bei USS				
DBW0:	Timeout	WORD	(Verzugszeit)	

Datenbaustein bei Modbus-Master					
DBW0:	Timeout	WORD	(Antwort-Verzugszeit)		

BAUDRATE

Geschwindigkeit der Datenübertragung in Bit/s (Baud).

04h:	1200Baud	05h:	1800Baud	06h:	2400Baud	07h:	4800Baud
08h:	7200Baud	09h:	9600Baud	0Ah:	14400Baud	0Bh:	19200Baud
0Ch:	38400Baud	0Dh:	57600Baud	0Eh:	115200Baud		

CHARLEN

Anzahl der Datenbits, auf die ein Zeichen abgebildet wird.					
0: 5Bit	1: 6Bit	2: 7Bit	3: 8Bit		

PARITY

Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle werden die Informationsbits um das Paritätsbit erweitert, das durch seinen Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt, aber nicht ausgewertet.

	0: NONE		1: ODD	2: EVEN
STOPBITS	Die Stopbit	s werden ied	dem zu übertragenden 2	Zeichen nachgesetzt
	und kennze	eichnen das	Ende eines Zeichens.	<u>.</u>
	1: 1Bit		2: 1,5Bit	3: 2Bit
	Der Param	eter FL OW/C		Reim Senden ist
	RTS=1, be	im Empfange	en ist RTS=0.	
RETVAL FC/SFC 216	Rückgabev	verte, die de	r Baustein liefert:	
(Rückgabewert)				
	Fehler-	Beschreib	Jna	
	code			
	0000h	kein Fehler		
	0000h 809Ah	kein Fehler Schnittstelle für PROFIB	e ist nicht vorhanden bz US verwendet.	w. Schnittstelle wird
	0000h 809Ah	kein Fehler Schnittstelle für PROFIB Bei der VIP	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU ui	w. Schnittstelle wird
	0000h 809Ah	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO ist ein anderes	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU u t nur das ASCII Protoko Protokoll ausgewählt v	w. Schnittstelle wird nd FeatureSet Il konfigurierbar. Wird vird der FC/SFC 216
	0000h 809Ah	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO isi ein anderes ebenfalls m	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU u t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo	w. Schnittstelle wird nd FeatureSet Il konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO isi ein anderes ebenfalls m Fehler in FO	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU u t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo C/SFC-Parameter x, mit	w. Schnittstelle wird nd FeatureSet oll konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO ist ein anderes ebenfalls m Fehler in FC 1: Fehler in	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU un t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo C/SFC-Parameter x, mit <i>PROTOKOLL</i>	w. Schnittstelle wird nd FeatureSet Il konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO ist ein anderes ebenfalls m Fehler in FO 1: Fehler in 2: Fehler in	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU un t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode ve C/SFC-Parameter x, mit <i>PROTOKOLL</i> <i>PARAMETER</i>	w. Schnittstelle wird nd FeatureSet oll konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO isi ein anderesi ebenfalls m Fehler in FC 1: Fehler in 2: Fehler in 3: Fehler in	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU un t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo C/SFC-Parameter x, mit <i>PROTOKOLL</i> <i>PARAMETER</i> <i>BAUDRATE</i>	w. Schnittstelle wird nd FeatureSet oll konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO isi ein anderesi ebenfalls m Fehler in FC 1: Fehler in 2: Fehler in 3: Fehler in 4: Fehler in	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU un t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo C/SFC-Parameter x, mit <i>PROTOKOLL</i> <i>PARAMETER</i> <i>BAUDRATE</i> <i>CHARLENGTH</i>	w. Schnittstelle wird nd FeatureSet Il konfigurierbar. Wird vird der FC/SFC 216 erlassen.
	0000h 809Ah 8x24h	kein Fehler Schnittstelle für PROFIB Bei der VIP PTP_NO isi ein anderes ebenfalls m Fehler in FC 1: Fehler in 2: Fehler in 3: Fehler in 4: Fehler in 5: Fehler in	e ist nicht vorhanden bz US verwendet. A System SLIO-CPU un t nur das ASCII Protoko Protokoll ausgewählt v it diesem Fehlercode vo C/SFC-Parameter x, mit <i>PROTOKOLL</i> <i>PARAMETER</i> <i>BAUDRATE</i> <i>CHARLENGTH</i> <i>PARITY</i>	w. Schnittstelle wird nd FeatureSet oll konfigurierbar. Wird vird der FC/SFC 216 erlassen.

7: Fehler in *FLOWCONTROL* (Parameter fehlt)

809xh	Fehler in Wert des FC/SFC-Parameter x, mit x:
	1: Fehler in PROTOKOLL
	3: Fehler in BAUDRATE
	4: Fehler in CHARLENGTH
	5: Fehler in PARITY
	6: Fehler in STOPBITS
8092h	Zugriffsfehler auf Parameter-DB (DB zu kurz)
828xh	Fehler in Parameter x von DB-Parameter mit x:
	1: Fehler im 1. Parameter
	2: Fehler im 2. Parameter

6.5 Kommunikation

6.5.1 Übersicht

Die Kommunikation erfolgt über die Sende- und Empfangsbausteine FC/SFC 217 (SER_SND) und FC/SFC 218 (SER_RCV). Die FCs/SFCs befinden sich im Lieferumfang der CPU.

6.5.2 FC/SFC 217 - SER_SND

Beschreibung Mit diesem Baustein werden Daten über die serielle Schnittstelle gesendet. Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RETVAL einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Sendedaten
DATALEN	OUT	WORD	Länge der Sendedaten
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR	Geben Sie hier einen Bereich vom Typ Pointer für den Sendepuffer an, in den die Daten, die gesendet werden sollen, abzulegen sind. Anzugeben sind Typ, Anfang und Länge. Beispiel:		
	Daten liege	en in DB5 ab 0.0 mit einer Länge von 124Byte	
	DataPtr:=P	#DB5.DBX0.0 BYTE 124	
DATALEN	Wort, in de	m die Anzahl der gesendeten Bytes abgelegt wird.	
	Werden un an die serie können, ka länge von <i>l</i> berücksich	ter ASCII die Daten intern mittels FC/SFC 217 schneller elle Schnittstelle übertragen als sie gesendet werden nn aufgrund eines Pufferüberlaufs die zu sendende Daten- DATALEN abweichen. Dies sollte im Anwenderprogramm tigt werden!	
	Bei STX/E DATAPTR	TX , 3964R , Modbus und USS wird immer die unter angegebene Länge oder 0 eingetragen.	
RETVAL FC/SFC 217 (Rückgabewerte)	Rückgabev	verte, die der Baustein liefert:	
	Fehler- code	Beschreibung	
	0000h	Daten gesendet - fertig	

Nichts gesendet (Datenlänge 0)

1000h

Fehler- code	Beschreibung
20xxh	Protokoll wurde fehlerfrei ausgeführt mit xx-Bitmuster für Diagnose
7001h	Daten liegen im internen Puffer - aktiv (busy)
7002h	Transfer - aktiv
80xxh	Protokoll wurde fehlerhaft ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
90xxh	Protokoll wurde nicht ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
8x24h	Fehler in FC/SFC-Parameter x, mit x:
	1: Fehler in DATAPTR
	2: Fehler in DATALEN
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)
807Fh	Interner Fehler
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet
809Bh	Schnittstelle nicht konfiguriert

Protokollspezifische RETVAL-Werte

ASCII

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9002h	Daten sind zu kurz (0Byte)

STX/ETX

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)
9004h	Unzulässiges Zeichen

3964R

Wert	Beschreibung
2000h	Senden fertig ohne Fehler
80FFh	NAK empfangen - Fehler in der Kommunikation
80FEh	Datenübertragung ohne Quittierung der Gegenseite oder mit fehlerhafter Quittierung
9000h	Pufferüberlauf (keine Daten gesendet)

Wert	Beschreibung
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)

USS

Fehler- code	Beschreibung
2000h	Senden fertig ohne Fehler
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FEh	Falsches Startzeichen in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Modbus RTU/ASCII Master

Fehler- code	Beschreibung
2000h	Senden fertig (positive Slave-Rückmeldung vorhanden)
2001h	Senden fertig (negative Slave-Rückmeldung vorhanden)
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FDh	Länge der Rückantwort ist zu lang
80FEh	Falscher Funktionscode in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Prinzip der Programmierung

Nachfolgend soll kurz die Struktur zur Programmierung eines Sendeauftrags für die verschiedenen Protokolle gezeigt werden.

3964R

Kommunikation > FC/SFC 218 - SER_RCV

6.5.3 FC/SFC 218 - SER_RCV

BeschreibungMit diesem Baustein werden Daten über die serielle Schnittstelle
empfangen.Bei den Protokollen USS und Modbus können Sie durch Aufruf des
FC/SFC 218 SER_RCV nach einem SER_SND das Quittungstele-
gramm auslesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Empfangspuffer
DATALEN	OUT	WORD	Länge der empfangenen Daten
ERROR	OUT	WORD	Fehler-Nr.
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR

Geben Sie hier einen Bereich vom Typ Pointer für den Empfangspuffer an, in den die Daten, die empfangen werden, abzulegen sind. Anzugeben sind Typ, Anfang und Länge. Beispiel:

Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen DataPtr:=P#DB5.DBX0.0 BYTE 124

DATALEN Wort, in dem die Anzahl der empfangenen Bytes abgelegt wird.

Bei **STX/ETX** und **3964R** wird immer die Länge der empfangenen Nutzdaten oder 0 eingetragen.

Unter **ASCII** wird hier die Anzahl der gelesenen Zeichen eingetragen. Dieser Wert kann von der Telegrammlänge abweichen.

ERROR In diesem Wort erfolgt ein Eintrag im Fehlerfall. Folgende Fehlermeldungen können protokollabhängig generiert werden:

ASCII

Bit	Fehler	Beschreibung
0	overrun	Überlauf, ein Zeichen konnte nicht schnell genug aus der Schnittstelle gelesen werden kann
1	framing error	Fehler, der anzeigt, dass ein definierter Bitrahmen nicht übereinstimmt, die zulässige Länge über- schreitet oder eine zusätzliche Bitfolge enthält (Stopbitfehler)
2	parity	Paritätsfehler
3	overflow	Der Puffer ist voll.

STX/ETX

Bit	Fehler	Beschreibung
0	over- flow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.
1	char	Es wurde ein Zeichen außerhalb des Bereichs 20h 7Fh empfangen.
3	over- flow	Der Puffer ist voll.

3964R / Modbus RTU/ASCII Master

Bit	Fehler	Beschreibung
0	over- flow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.

RETVAL FC/SFC 218 (Rückgabewert)

Rückgabewerte, die der Baustein liefert:

Fehler- code	Beschreibung
0000h	kein Fehler
1000h	Empfangspuffer ist zu klein (Datenverlust)
8x24h	Fehler in FC/SFC-Parameter x, mit x:
	1: Fehler in DATAPTR
	2: Fehler in DATALEN
	3: Fehler in ERROR
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet
809Bh	Schnittstelle ist nicht konfiguriert

Protokolle und Prozeduren

Prinzip der Programmierung

Nachfolgend sehen Sie die Grundstruktur zur Programmierung eines Receive-Auftrags. Diese Struktur können Sie für alle Protokolle verwenden.

6.6 Protokolle und Prozeduren

Die CPU unterstützt folgende Protokolle und Prozeduren:

- ASCII-Übertragung
- STX/ETX
- 3964R
- USS
- Modbus

ASCII

Übersicht

Die Datenkommunikation via ASCII ist die einfachste Form der Kommunikation. Die Zeichen werden 1 zu 1 übergeben. Bei ASCII werden je Zyklus mit dem Lese-FC/SFC die zum Zeitpunkt des Aufrufs im Puffer enthaltenen Daten im parametrierten Empfangsdatenbaustein abgelegt. Ist ein Telegramm über mehrere Zyklen verteilt, so werden die Daten überschrieben. Eine Empfangsbestätigung gibt es nicht. Der Kommunikationsablauf ist vom jeweiligen Anwenderprogramm zu steuern. Einen entsprechenden Receive_ASCII-FB finden Sie im Service-Bereich unter www.vipa.com.

STX/ETX STX/ETX ist ein einfaches Protokoll mit Start- und Ende-Kennung. Hierbei stehen STX für **S**tart of **T**ext und ETX für **E**nd of **T**ext. Die Prozedur STX/ETX wird zur Übertragung von ASCII-Zeichen eingesetzt. Sie arbeitet ohne Blockprüfung (BCC).

- Sollen Daten von der Peripherie eingelesen werden, muss das Start-Zeichen vorhanden sein, anschließend folgen die zu übertragenden Zeichen. Danach muss das Ende-Zeichen vorliegen. Abhängig von der Byte-Breite können folgende ASCII-Zeichen übertragen werden: 5Bit: nicht zulässig: 6Bit: 20...3Fh, 7Bit: 20...7Fh, 8Bit: 20...FFh.
- Die Nutzdaten, d.h. alle Zeichen zwischen Start- und Ende-Kennung, werden nach Empfang des Schlusszeichens an die CPU übergeben.
- Beim Senden der Daten von der CPU an ein Peripheriegerät werden die Nutzdaten an den FC/SFC 217 (SER_SND) übergeben und von dort mit angefügten Start- und Endezeichen über die serielle Schnittstelle an den Kommunikationspartner übertragen.
- Es kann mit 1, 2 oder keiner Start- und mit 1, 2 oder keiner Ende-Kennung gearbeitet werden.
- Wird kein Ende-Zeichen definiert, so werden alle gelesenen Zeichen nach Ablauf einer parametrierbaren Zeichenverzugszeit (Timeout) an die CPU übergeben.

Als Start- bzw. Ende-Kennung sind alle Hex-Werte von 00h bis 1Fh zulässig. Zeichen größer 1Fh werden ignoriert und nicht berücksichtigt. In den Nutzdaten sind Zeichen kleiner 20h nicht erlaubt und können zu Fehlern führen. Die Anzahl der Start- und Endezeichen kann unterschiedlich sein (1 Start, 2 Ende bzw. 2 Start, 1 Ende oder andere Kombinationen). Für nicht verwendete Start- und Endezeichen muss in der Hardware-Konfiguration FFh eingetragen werden.

Telegrammaufbau:

Protokolle und Prozeduren

3964

Die Prozedur 3964R steuert die Datenübertragung bei einer Punktzu-Punkt-Kopplung zwischen der CPU und einem Kommunikationspartner. Die Prozedur fügt bei der Datenübertragung den Nutzdaten Steuerzeichen hinzu. Durch diese Steuerzeichen kann der Kommunikationspartner kontrollieren, ob die Daten vollständig und fehlerfrei bei ihm angekommen sind.

Die Prozedur wertet die folgenden Steuerzeichen aus:

- STX: Start of Text
- DLE: Data Link Escape
- ETX: End of Text
- BCC: Block Check Character
- NAK: Negative Acknowledge

Sie können pro Telegramm maximal 255Byte übertragen.

Prozedurablauf

Wird ein "DLE" als Informationszeichen übertragen, so wird dieses zur Unterscheidung vom Steuerzeichen "DLE" beim Verbindungsauf- und -abbau auf der Sendeleitung doppelt gesendet (DLE-Verdoppelung). Der Empfänger macht die DLE-Verdoppelung wieder rückgängig.

Unter 3964R <u>muss</u> einem Kommunikationspartner eine niedrigere Priorität zugeordnet sein. Wenn beide Kommunikationspartner gleichzeitig einen Sendeauftrag erteilen, dann stellt der Partner mit niedriger Priorität seinen Sendeauftrag zurück.

USS

Das USS-Protokoll (**U**niverselle **s**erielle **S**chnittstelle) ist ein von Siemens definiertes serielles Übertragungsprotokoll für den Bereich der Antriebstechnik. Hiermit lässt sich eine serielle Buskopplung zwischen einem übergeordneten Master - und mehreren Slave-Systemen aufbauen. Das USS-Protokoll ermöglich durch Vorgabe einer fixen Telegrammlänge einen zeitzyklischen Telegrammverkehr.

Folgende Merkmale zeichnen das USS-Protokoll aus:

- Mehrpunktfähige Kopplung
- Master-Slave Zugriffsverfahren

Protokolle und Prozeduren

- Single-Master-System
- Maximal 32 Teilnehmer
- Einfacher, sicherer Telegrammrahmen

Es gilt:

- Am Bus können 1 Master und max. 31 Slaves angebunden sein.
- Die einzelnen Slaves werden vom Master über ein Adresszeichen im Telegramm angewählt.
- Die Kommunikation erfolgt ausschließlich über den Master im Halbduplex-Betrieb.
- Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

Die Telegramme für Senden und Empfangen haben folgenden Aufbau:

Master-Slave-Telegramm

STX	LGE	ADR	PKE		IND		PWE		STW		HSW		BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	

Slave-Master-Telegramm

STX	LGE	ADR	PKE		IND		PWE		ZSW		HIW		BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	
				mit STX STW LGE ZSW ADR HSW PKE HIW IND BCC PWE	- Start - Steue - Teleg - Zusta - Adres - Haup - Para - Haup - Index - Block - Para	zeicher erwort grammla andswo sse otsollwe meterke stistwer a c Check meterw	änge rt ert ennung t c Chara ert	cter					

USS-Broadcast mit gesetztem Bit 5 in ADR-Byte

Broadcast

Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht ist Bit 5 im ADR-Byte auf 1 zu setzen. Hierbei wird die Slave-Adr. (Bit 0 ... 4) ignoriert. Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über FC/SFC 218 SER_RCV erforderlich. Nur Schreibaufträge dürfen als Broadcast gesendet werden.

Modbus	-	Das Protokoll Modbus ist ein Kommunikationsprotokoll, das eine hierarchische Struktur mit einem Master und mehreren Slaves festlegt.
	-	Physikalisch arbeitet Modbus über eine serielle Halbduplex-Ver- bindung. Es treten keine Buskonflikte auf, da der Master immer nur mit einem Slave kommunizieren kann.
	1	Nach einer Anforderung vom Master wartet dieser solange auf die Antwort des Slaves, bis eine einstellbare Wartezeit abgelaufen ist. Während des Wartens ist eine Kommunikation mit einem anderen Slave nicht möglich.
		Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des FC/SFC 218 SER RCV auszulesen.

 Die Anforderungs-Telegramme, die ein Master sendet und die Antwort-Telegramme eines Slaves haben den gleichen Aufbau:

Telegrammaufbau

Startzei-	Slave-	Funktions-	Daten	Flusskon-	Endezei-
chen	Adresse	Code		trolle	chen

Broadcast mit Slave- Adresse = 0	 Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht wird die Slave-Adresse 0 eingetragen. Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über FC/SFC 218 SER_RCV erforderlich. Nur Schreibaufträge dürfen als Broadcast gesendet werden.
ASCII-, RTU-Modus	 Bei Modbus gibt es zwei unterschiedliche Übertragungsmodi. Die Modus-Wahl erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 SER_CFG. ASCII-Modus: Jedes Byte wird im 2 Zeichen ASCII-Code übertragen. Die Daten werden durch Anfang- und Ende-Zeichen gekennzeichnet. Dies macht die Übertragung transparent aber auch langsam.
	RTU-Modus: Jedes Byte wird als ein Zeichen übertragen. Hier- durch haben Sie einen höheren Datendurchsatz als im ASCII- Modus. Anstelle von Anfang- und Ende-Zeichen wird eine Zeit- überwachung eingesetzt.
Unterstützte Modbus- Protokolle	 Die RS485-Schnittstelle unterstützt folgende Modbus-Protokolle: Modbus RTU Master Modbus ASCII Master

6.7 Modbus - Funktionscodes

Namenskonventionen	Für Modbus gibt es Namenskonventionen, die hier kurz aufgeführt sind:

Eine Beschreibung der Funktions-Codes finden Sie auf den Folgeseiten.

Übersicht

Mit folgenden Funktionscodes können Sie von einem Modbus-Master auf einen Slave zugreifen. Die Beschreibung erfolgt immer aus Sicht des Masters:

Code	Befehl	Beschreibung
01h	Read n Bits	n Bit lesen von Master-Ausgabe-Bereich 0x
02h	Read n Bits	n Bit lesen von Master-Eingabe-Bereich 1x
03h	Read n Words	n Worte lesen von Master-Ausgabe-Bereich 4x
04h	Read n Words	n Worte lesen von Master-Eingabe-Bereich 3x
05h	Write 1 Bit	1 Bit schreiben in Master-Ausgabe-Bereich 0x
06h	Write 1 Word	1 Wort schreiben in Master-Ausgabe-Bereich 4x
0Fh	Write n Bits	n Bit schreiben in Master-Ausgabe-Bereich 0x
10h	Write n Words	n Worte schreiben in Master-Ausgabe-Bereich 4x

Sichtweise für "Eingabe"- und "Ausgabe"-Daten

Die Beschreibung der Funktionscodes erfolgt immer aus Sicht des Masters. Hierbei werden Daten, die der Master an den Slave schickt, bis zu ihrem Ziel als "Ausgabe"-Daten (OUT) und umgekehrt Daten, die der Master vom Slave empfängt als "Eingabe"-Daten (IN) bezeichnet.

Antwort des Slaves

Liefert der Slave einen Fehler zurück, wird der Funktionscode mit 80h "verodert" zurückgesendet.

Ist kein Fehler aufgetreten, wird der Funktionscode zurückgeliefert.

Slave-Antwort:	Funktionscode OR 80h	\rightarrow Fehler
	Funktionscode	\rightarrow OK

Byte-Reihenfolge im Wort

1 Wort High-Byte Low-Byte

Prüfsumme CRC, RTU, LRC	Die aufgezeigten Prüfsummen CRC bei RTU- und LRC bei ASCII- Modus werden automatisch an jedes Telegramm angehängt. Sie werden nicht im Datenbaustein angezeigt.
Read n Bits 01h, 02h	Code 01h: n Bit lesen von Master-Ausgabe-Bereich 0x Code 02h: n Bit lesen von Master-Eingabe-Bereich 1x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Bit	Anzahl der Bits	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave- Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Byte	Daten 2. Byte	 Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Byte	1Byte	1Wort
				max. 250Byte	

Read n Words 03h, 04h	03h: n Worte lesen von Master-Ausgabe-Bereich 4x
	04h: n Worte lesen von Master-Eingabe-Bereich 3x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse 1.Bit	Anzahl der Worte	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave- Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Wort	Daten 2. Wort		Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Wort	1Wort		1Wort
			1	max. 125Worte	e	

Code 05h: 1 Bit schreiben in Master-Ausgabe-Bereich 0x
Eine Zustandsänderung erfolgt unter "Zustand Bit" mit folgenden Werten:
"Zustand Bit" = 0000h \rightarrow Bit = 0
"Zustand Bit" = FF00h \rightarrow Bit = 1

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write 1 Word 06h Code 06h: 1 Wort schreiben in Master-Ausgabe-Bereich 4x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort
Modbus - Beispiel zur Kommunikation

Write n Bits 0Fh

Code 0Fh: n Bit schreiben in Master-Ausgabe-Bereich 0x Bitte beachten Sie, dass die Anzahl der Bits zusätzlich in Byte anzugeben sind.

Kommandotelegramm

Slave- Adresse	Funk- tions- Code	Adresse 1. Bit	Anzahl der Bits	Anzahl der Bytes	Daten 1. Byte	Daten 2. Byte		Prüf- summe CRC/ LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Byte	1Byte	1Byte	1Wort
					n	nax. 250Byt	e	

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Bit	Anzahl der Bits	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write n Words 10h Code 10h: n Worte schreiben in Master-Ausgabe-Bereich

Kommandotelegramm

Slave- Adresse	Funk- tions- Code	Adresse 1. Wort	Anzahl der Worte	Anzahl der Bytes	Daten 1. Wort	Daten 2. Wort		Prüf- summe CRC/ LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Wort	1Wort	1Wort	1Wort
					m	ax. 125Woi	te	

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Wort	Anzahl der Worte	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

6.8 Modbus - Beispiel zur Kommunikation

Übersicht	In dem Beispiel wird eine Kommunikation zwischen einem Master und einem Slave über Modbus aufgebaut. Folgende Komponenten sind für das Beispiel erforderlich:
	 CPU 31xS als Modbus RTU-Master CPU 21xSER-1 als Modbus RTU-Slave Siemens SIMATIC Manager und Möglichkeit für Projekttransfer

Modbus-Kabel-Verbindung

Modbus - Beispiel zur Kommunikation

Vorgehensweise	Bauen Sie ein Modbus-System bestehend aus CPU 31xS als Modbus-Master und CPU 21xSER-1 als Modbus-Slave und Modbus-Kabel auf.
	2. Projektieren Sie die Master-Seite! Erstellen Sie hierzu ein SPS- Anwenderprogramm nach folgender Struktur:
	OB 100:

Aufruf SFC 216 (Konfiguration als Modbus RTU-Master) mit Timeout-Angabe und Fehlerauswertung.

OB 1:

Aufruf des SFC 217 (SER_SND) wobei mit Fehlerauswertung die Daten gesendet werden. Hierbei ist das Telegramm gemäß den Modbus-Vorgaben aufzubauen. Aufruf des SFC 218 (SER_RECV) wobei mit Fehlerauswertung die Daten empfangen werden.

- **3.** Projektieren Sie die Slave-Seite! Das SPS-Anwenderprogramm auf der Slave-Seite sollte folgenden Aufbau haben:
 - OB 100: Aufruf SFC 216 (Konfiguration als Modbus RTU-Slave) mit Timeout-Angabe und Modbus-Adresse im DB und Fehlerauswertung
 - OB 1:

Aufruf des SFC 217 (SER_SND) für den Datentransport von der Slave-CPU in den Ausgangs-Puffer. Aufruf des SFC 218 (SER_RECV) für den Datentransport vom Eingangspuffer in die CPU. Für beide Richtungen ist eine entsprechende Fehlerauswertung vorzusehen.

Struktur für die jeweiligen SPS-Programme für Master- und Slave-Seite:

Modbus - Beispiel zur Kommunikation

Grundlagen - Industrial Ethernet in der Automatisierung

7 Einsatz Ethernet-Kommunikation - Produktiv

7.1 Grundlagen - Industrial Ethernet in der Automatisierung

Übersicht

Der Informationsfluss in einem Unternehmen stellt sehr unterschiedliche Anforderungen an die eingesetzten Kommunikationssysteme. Je nach Unternehmensbereich hat ein Bussystem unterschiedlich viele Teilnehmer, es sind unterschiedlich große Datenmengen zu übertragen, die Übertragungsintervalle variieren. Aus diesem Grund greift man je nach Aufgabenstellung auf unterschiedliche Bussysteme zurück, die sich wiederum in verschiedene Klassen einteilen lassen. Eine Zuordnung verschiedener Bussysteme zu den Hierarchieebenen eines Unternehmens zeigt das folgende Modell:

Industrial Ethernet

Physikalisch ist Industrial Ethernet ein elektrisches Netz auf Basis einer geschirmten Twisted Pair Verkabelung oder ein optisches Netz auf Basis eines Lichtwellenleiters. Ethernet ist definiert durch den internationalen Standard IEEE 802.3.

Der Netzzugriff bei Industrial Ethernet entspricht dem in der IEEE 802.3 festgelegten CSMA/CD-Verfahren (**C**arrier **S**ense **M**ultiple **A**ccess/**C**ollision **D**etection - Mithören bei Mehrfachzugriff/ Kollisionserkennung):

- Jeder Teilnehmer "hört" ständig die Busleitung ab und empfängt die an ihn adressierten Sendungen.
- Ein Teilnehmer startet eine Sendung nur, wenn die Leitung frei ist.
- Starten zwei Teilnehmer gleichzeitig eine Sendung, so erkennen sie dies, stellen die Sendung ein und starten nach einer Zufallszeit erneut.
- Durch Einsatz von Switches wird eine kollisionsfreie Kommunikation zwischen den Teilnehmern gewährleistet.

7.2 Grundlagen - ISO/OSI-Schichtenmodell

•	
Übersicht	Das ISO/OSI-Schichtenmodell basiert auf einem Vorschlag, der von der International Standards Organization (ISO) entwickelt wurde. Es stellt den ersten Schritt zur internationalen Standardisierung der ver- schiedenen Protokolle dar. Das Modell trägt den Namen ISO-OSI- Schichtenmodell. OSI steht für O pen S ystem Interconnection, die Kommunikation offener Systeme. Das ISO/OSI-Schichtenmodell ist keine Netzwerkarchitektur, da die genauen Dienste und Protokolle, die in jeder Schicht verwendet werden, nicht festgelegt sind. Sie finden in diesem Modell lediglich Informationen über die Aufgaben, welche die jeweilige Schicht zu erfüllen hat. Jedes offene Kommuni- kationssystem basiert heutzutage auf dem durch die Norm ISO 7498 beschriebenen ISO/OSI Referenzmodell. Das Referenzmodell struk- turiert Kommunikationssysteme in insgesamt 7 Schichten, denen jeweils Teilaufgaben in der Kommunikation zugeordnet sind. Dadurch wird die Komplexität der Kommunikation auf verschiedene Ebenen verteilt und somit eine größere Übersichtlichkeit erreicht.
	Folgende Schichten sind definiert:
	 Schicht 7 - Application Layer (Anwendung) Schicht 6 - Presentation Layer (Darstellung) Schicht 5 - Session Layer (Sitzung) Schicht 4 - Transport Layer (Transport) Schicht 3 - Network Layer (Netzwerk) Schicht 2 - Data Link Layer (Sicherung) Schicht 1 - Physical Layer (Bitübertragungemechanismen)
	kann sich ein Kommunikationssystem auf bestimmte Teilschichten beschränken.
Schicht 1 - Bitübertra- gungsschicht (physical layer)	Die Bitübertragungsschicht beschäftigt sich mit der Übertragung von Bits über einen Kommunikationskanal. Allgemein befasst sich diese Schicht mit den mechanischen, elektrischen und prozeduralen Schnittstellen und mit dem physikalischen Übertragungsmedium, das sich unterhalb der Bitübertragungsschicht befindet:
	 Wie viel Volt entsprechen einer logischen 0 bzw. 1? Wie lange muss die Spannung für ein Bit anliegen? Pinbelegung der verwendeten Schnittstelle.
Schicht 2 - Sicherungs- schicht (data link layer)	Diese Schicht hat die Aufgabe, die Übertragung von Bitstrings zwi- schen zwei Teilnehmern sicherzustellen. Dazu gehören die Erken- nung und Behebung bzw. Weitermeldung von Übertragungsfehlern, sowie die Flusskontrolle. Die Sicherungsschicht verwandelt die zu übertragenden Rohdaten in eine Datenreihe. Hier werden Rahmen- grenzen beim Sender eingefügt und beim Empfänger erkannt. Dies wird dadurch erreicht, dass am Anfang und am Ende eines Rahmens spezielle Bitmuster gesetzt werden. In der Sicherungsschicht wird häufig noch eine Flussregelung und eine Fehlererkennung integriert. Die Datensicherungsschicht ist in zwei Unterschichten geteilt, die LLC- und die MAC-Schicht. Die MAC (Media Access Control) ist die untere Schicht und steuert die Art, wie Sender einen einzigen Über- tragungskanal gemeinsam nutzen. Die LLC (Logical Link Control) ist die obere Schicht und stellt die Verbindung für die Übertragung der Datenrahmen von einem Gerät zum anderen her

Grundlagen - Begriffe

Schicht 3 - Netzwerk- schicht (network layer)	Die Netzwerkschicht wird auch Vermittlungsschicht genannt. Die Auf- gabe dieser Schicht besteht darin, den Austausch von Binärdaten zwischen nicht direkt miteinander verbundenen Stationen zu steuern. Sie ist für den Ablauf der logischen Verknüpfungen von Schicht 2- Verbindungen zuständig. Dabei unterstützt diese Schicht die Identifi- zierung der einzelnen Netzwerkadressen und den Auf- bzw. Abbau von logischen Verbindungskanälen. IP basiert auf Schicht 3. Eine weitere Aufgabe der Schicht 3 besteht in der priorisierten Übertra- gung von Daten und die Fehlerbehandlung von Datenpaketen. IP (Internet Protokoll) basiert auf Schicht 3.
Schicht 4 - Transport- schicht (transport layer)	Die Aufgabe der Transportschicht besteht darin, Netzwerkstrukturen mit den Strukturen der höheren Schichten zu verbinden, indem sie Nachrichten der höheren Schichten in Segmente unterteilt und an die Netzwerkschicht weiterleitet. Hierbei wandelt die Transportschicht die Transportadressen in Netzwerkadressen um. Gebräuchliche Trans- portprotokolle sind: TCP, SPX, NWLink und NetBEUI.
Schicht 5 - Sitzungs- schicht (session layer)	Die Sitzungsschicht wird auch Kommunikationssteuerungsschicht genannt. Sie erleichtert die Kommunikation zwischen Service- Anbieter und Requestor durch Aufbau und Erhaltung der Verbindung, wenn das Transportsystem kurzzeitig ausgefallen ist. Auf dieser Ebene können logische Benutzer über mehrere Verbindungen gleich- zeitig kommunizieren. Fällt das Transportsystem aus, so ist es die Aufgabe, gegebenenfalls eine neue Verbindung aufzubauen. Darüber hinaus werden in dieser Schicht Methoden zur Steuerung und Syn- chronisation bereitgestellt.
Schicht 6 - Darstel- lungsschicht (presenta- tion layer)	Auf dieser Ebene werden die Darstellungsformen der Nachrichten behandelt, da bei verschiedenen Netzsystemen unterschiedliche Dar- stellungsformen benutzt werden. Die Aufgabe dieser Schicht besteht in der Konvertierung von Daten in ein beiderseitig akzeptiertes Format, damit diese auf den verschiedenen Systemen lesbar sind. Hier werden auch Kompressions-/Dekompressions- und Verschlüsse- lungs-/ Entschlüsselungsverfahren durchgeführt. Man bezeichnet diese Schicht auch als Dolmetscherdienst. Eine typische Anwendung dieser Schicht ist die Terminalemulation.
Schicht 7 - Anwen- dungsschicht (applica- tion layer)	Die Anwendungsschicht stellt sich als Bindeglied zwischen der eigentlichen Benutzeranwendung und dem Netzwerk dar. Sowohl die Netzwerk-Services wie Datei-, Druck-, Nachrichten-, Datenbank- und Anwendungs-Service als auch die zugehörigen Regeln gehören in den Aufgabenbereich dieser Schicht. Diese Schicht setzt sich aus einer Reihe von Protokollen zusammen, die entsprechend den wach- senden Anforderungen der Benutzer ständig erweitert werden.

7.3 Grundlagen - Begriffe

Netzwerk (LAN) Ein Netzwerk bzw. LAN (Local Area Network) verbindet verschiedene Netzwerkstationen so, dass diese miteinander kommunizieren können. Netzwerkstationen können PCs, IPCs, TCP/IP-Baugruppen, etc. sein. Die Netzwerkstationen sind, durch einen Mindestabstand getrennt, mit dem Netzwerkkabel verbunden. Die Netzwerkstationen und das Netzwerkkabel zusammen bilden ein Gesamtsegment. Alle Segmente eines Netzwerks bilden das Ethernet (Physik eines Netzwerks).

Twisted Pair	Früher gab es das Triaxial- (Yellow Cable) oder Thin Ethernet-Kabel (Cheapernet). Mittlerweile hat sich aber aufgrund der Störfestigkeit das Twisted Pair Netzwerkkabel durchgesetzt. Die CPU hat einen Twisted-Pair-Anschluss. Das Twisted Pair Kabel besteht aus 8 Adern, die paarweise miteinander verdrillt sind. Aufgrund der Verdrillung ist dieses System nicht so störanfällig wie frühere Koaxialnetze. Ver- wenden Sie für die Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen. Abweichend von den beiden Ethernet- Koaxialnetzen, die auf einer Bus-Topologie aufbauen, bildet Twisted Pair ein Punkt-zu-Punkt-Kabelschema. Das hiermit aufzubauende Netz stellt eine Stern-Topologie dar. Jede Station ist einzeln direkt mit dem Sternkoppler (Hub/Switch) zu einem Ethernet verbunden.
Hub (Repeater)	Ein Hub ist ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Seine Aufgabe ist dabei, die Signale in beide Rich- tungen zu regenerieren und zu verstärken. Gleichzeitig muss er in der Lage sein, segmentübergreifende Kollisionen zu erkennen, zu verar- beiten und weiter zu geben. Er kann nicht im Sinne einer eigenen Netzwerkadresse angesprochen werden, da er von den angeschlos- senen Stationen nicht registriert wird. Er bietet Möglichkeiten zum Anschluss an Ethernet oder zu einem anderen Hub bzw. Switch.
Switch	Ein Switch ist ebenfalls ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Mehrere Stationen bzw. Hubs werden über einen Switch verbunden. Diese können dann, ohne das restliche Netzwerk zu belasten, über den Switch miteinander kommunizieren. Eine intelligente Hardware analysiert für jeden Port in einem Switch die eingehenden Telegramme und leitet diese kollisionsfrei direkt an die Zielstationen weiter, die am Switch angeschlossen sind. Ein Switch sorgt für die Optimierung der Bandbreite in jedem einzeln angeschlossenen Segment eines Netzes. Switches ermöglichen exklusiv nach Bedarf wechselnde Verbindungen zwischen ange- schlossenen Segmenten eines Netzes.

7.4 Grundlagen - Protokolle

Übersicht	In Protokollen ist ein Satz an Vorschriften oder Standards definiert, der es Kommunikationssystemen ermöglicht, Verbindungen herzu- stellen und Informationen möglichst fehlerfrei auszutauschen. Ein all- gemein anerkanntes Protokoll für die Standardisierung der kom- pletten Kommunikation stellt das ISO/OSI-Schichtenmodell dar. & Kapitel 7.2 "Grundlagen - ISO/OSI-Schichtenmodell" auf Seite 113						
	Folgende Protokolle kommen im EtherCAT-Master zum Einsatz:						
	 Siemens S7-Verbindungen Offene Kommunikation TCP native gemäß RFC 793 ISO on TCP gemäß RFC 1006 UDP gemäß RFC 768 						
Siemens S7-Verbin- dungen	Mit der Siemens S7-Kommunikation können Sie auf Basis von Sie- mens STEP [®] 7 größere Datenmengen zwischen SPS-Systemen über- tragen. Hierbei sind die Stationen über Ethernet zu verbinden. Voraussetzung für die Siemens S7-Kommunikation ist eine projek- tierte Verbindungstabelle, in der die Kommunikationsverbindungen definiert werden. Hierzu können Sie beispielsweise NetPro von Sie- mens verwenden.						

Grundlagen - Protokolle

Eigenschaften:

- Eine Kommunikationsverbindung ist durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert.
- Die Quittierung der Datenübertragung erfolgt vom Partner auf Schicht 7 des ISO/OSI-Schichtenmodells.
- Zur Datenübertragung auf SPS-Seite sind für Siemens S7-Verbindungen die FB/SFB-VIPA-Hantierungsbausteine zu verwenden.

Nähere Informationen zum Einsatz der Bausteine finden Sie im Handbuch Operationsliste HB00_OPL_SP7 in Kapitel "VIPA-spezifische Bausteine".

- **Offene Kommunikation** Bei der *"Offenen Kommunikation"* erfolgt die Kommunikation über das Anwenderprogramm bei Einsatz von Hantierungsbausteinen. Diese Bausteine sind auch Bestandteil des Siemens SIMATIC Manager. Sie finden diese in der *"Standard Library"* unter *"Communication Blocks"*.
 - Verbindungsorientierte Protokolle:

Verbindungsorientierte Protokolle bauen vor der Datenübertragung eine (logische) Verbindung zum Kommunikationspartner auf und bauen diese nach Abschluss der Datenübertragung ggf. wieder ab. Verbindungsorientierte Protokolle werden eingesetzt, wenn es bei der Datenübertragung insbesondere auf Sicherheit ankommt. Auch wird hier die richtige Reihenfolge der empfangenen Pakete gewährleistet. Über eine physikalische Leitung können in der Regel mehrere logische Verbindungen bestehen. Bei den FBs zur Offenen Kommunikation über Industrial Ethernet werden die folgenden verbindungsorientierten Protokolle unterstützt:

– TCP native gemäß RFC 793:

Bei der Datenübertragung über TCP nativ werden weder Informationen zur Länge noch über Anfang und Ende einer Nachricht übertragen. Auch besteht keine Möglichkeit zu erkennen, wo ein Datenstrom endet und der nächste beginnt. Die Übertragung ist stream-orientiert. Aus diesem Grund sollten Sie in den FBs bei Sender und Empfänger identische Datenlängen angeben. Falls die empfangene Anzahl der Daten von der parametrierten Länge abweicht, erhalten Sie entweder Daten, welche nicht die vollständigen Telegrammdaten enthalten oder mit dem Inhalt eines nachfolgenden Telegramms aufgefüllt sind.

- ISO on TCP gemäß RFC 1006:

Bei der Datenübertragung werden Informationen zur Länge und zum Ende einer Nachricht übertragen. Die Übertragung ist blockorientiert. Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich.

Verbindungslose Protokolle:

Bei den verbindungslosen Protokollen entfallen Verbindungsaufund Verbindungsabbau zum remoten Partner. Verbindungslose Protokolle übertragen die Daten unquittiert und damit ungesichert zum remoten Partner.

- UDP gemäß RFC 768:

Bei Aufruf des Sendebausteins ist ein Verweis auf die Adressparameter des Empfängers (IP-Adresse und Port-Nr.) anzugeben. Auch werden Informationen zur Länge und zum Ende einer Nachricht übertragen. Analog erhalten Sie nach Abschluss des Empfangsbausteins einen Verweis auf die Adressparameter des Senders (IP-Adresse und Port-Nr.). Damit sie Sende- und Empfangsbaustein nutzen können, müssen Sie zuvor sowohl auf der Sender- als auch auf der Empfängerseite einen lokalen Kommunikationszugangspunkt einrichten. Bei jedem Sendauftrag können Sie den remoten Partner durch Angabe seiner IP-Adresse und seiner Port-Nr. neu referenzieren. Grundlagen - IP-Adresse und Subnetz

7.5 Grundlagen - IP-Adresse und Subnetz

Aufbau IP-Adresse	Unterstützt wird ausschließlich IPv4. Unter IPv4 ist die IP-Adresse eine 32-Bit-Adresse, die innerhalb des Netzes eindeutig sein muss und sich aus 4 Zahlen zusammensetzt, die jeweils durch einen Punkt getrennt sind. Jede IP-Adresse besteht aus einer <i>Net-ID</i> und <i>Host-ID</i> und hat folgenden								
	Aufbau: XXX . XXX . XXX . XXX								
	Werteberei	ch: 0	00.000	0.000	0.000	bis 255.255	.25	5.255	
Net-ID, Host-ID	Die Net work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert. Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.								
Subnetz-Maske	Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der <i>Sub- netz-Maske</i> weiter aufgeteilt werden, in eine <i>Subnet-ID</i> und eine neue <i>Host-ID</i> . Derjenige Bereich der ursprünglichen <i>Host-ID</i> , welcher von Einsen der Subnetz-Maske überstrichen wird, wird zur <i>Subnet-ID</i> , der Rest ist die neue <i>Host-ID</i> .								der <i>Sub-</i> nd eine neue velcher von <i>ibnet-ID</i> , der
	Subnetz-M	laske	9			binär alle "1"		binär alle "0"	
	IPv4 Adresse					Net-ID	Host-ID		
	Subnetz-Maske und IPv4 Adresse					Net-ID	Sı	Ibnet-ID	neue Host- ID
Adresse bei Erstinbet- riebnahme	Bei der Erstinbetriebnahme der CPU besitzen der Ethernet-PG/OP- Kanal und der EtherCAT-Anschluss keine IP-Adresse. So weisen Sie dem Ethernet-PG/OP-Kanal IP-Adress-Daten zu & Kapitel 5.6 "Hardware-Konfiguration - Ethernet-PG/OP-Kanal" auf Seite 44. So weisen Sie dem EtherCAT-Anschluss IP-Adress-Daten zu							et-PG/OP- ten zu <i>-Kanal"</i> n zu	
Adress-Klassen	Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4 Byte = 32Bit lang sind.							bis Klasse	
	Klasse A	0	Netw	ork-I	D (1+	·7bit)		Host-ID (2	24bit)
	Klasse B	10	Ne	etwor	k-ID ((2+14bit) Hos		Host-ID	(16bit)
	Klasse C	110		Netw	/ork-l	D (3+21bit)		Hos	t-ID (8bit)
	Klasse D 1110 Multicast Gruppe								
	Klasse E	111	10		Rese	erviert			
	Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert. Die Adressformate der 3 Klassen A,B,C unter- scheiden sich lediglich dadurch, dass Network-ID und Host-ID ver- schieden lang sind							enutzt, die besondere C unter- st-ID ver-	

Schnelleinstieg

Private IP Netze Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden. Zur Bildung privater IP-Netze sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

Netzwerk Klasse	von IP	bis IP	Standard Sub- netz-Maske
A	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>

(Die Host-ID ist jeweils unterstrichen.)

Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = "0"	Identifier dieses Netzwerks, reserviert!
Host-ID = maximal (binär kom-	Broadcast-Adresse dieses Netz-
plett "1")	werks

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnetz-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

7.6 Schnelleinstieg

Übersicht	Bei der Erstinbetriebnahme bzw. nach dem Urlöschen mit erneutem PowerON der CPU besitzen der Ethernet PG/OP-Kanal und der EtherCAT-Master keine IP-Adresse. Diese sind lediglich über ihre MAC-Adresse erreichbar. Mittels der MAC-Adressen, die sich auf Aufkleber unterhalb der Frontklappe befinden in der Reihenfolge Adresse PG/OP-Kanal und darunter Adresse EtherCAT-Master, können Sie der entsprechenden Komponente IP-Adress-Daten zuweisen. Die Zuweisung erfolgt hier direkt über die Hardware-Konfi- guration im Siemens SIMATIC Manager.
Schritte der Projektie- rung	Die Projektierung des EtherCAT-Master für Produktiv-Verbindungen sollte nach folgender Vorgehensweise erfolgen:
	Montage und InbetriebnahmeHardware-Konfiguration - CPU

Montage und Inbetriebnahme

- Verbindungen projektieren
 - Siemens S7-Verbindungen (Projektierung erfolgt über Siemens NetPro, die Kommunikation über VIPA Hantierungsbausteine)
 Offene Kommunikation
 - (Projektierung und Kommunikation erfolgen über Standard-Hantierungsbausteine)
- Transfer des Gesamtprojekts in die CPU.

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, ist die CPU 315-4EC32 von VIPA als CPU 315-2 PN/ DP (6ES7 315-2EH14-0AB0 V3.2) zu projektieren!

Der EtherCAT-Master ist über das CPU-Submodul X2 (PN-IO) zu parametrieren.

Den Ethernet-PG/OP-Kanal der CPU 315-4EC32 projektieren Sie immer als 1. Modul nach den reell gesteckten Modulen am Standard-Bus als CP343-1 (343-1EX11) von Siemens.

7.7 Montage und Inbetriebnahme

Voraussetzung

Für den Einsatz von Ethernet-Produktiv-Verbindungen mit dem EtherCAT-Master ist eine EtherCAT-Umsetzbaugruppe zu verwenden, welche das Protokoll EoE (Ethernet over EtherCAT) unterstützt.

Informationen, wie Sie die EtherCAT-Umsetzbaugruppe einbinden, finden Sie im Handbuch zu Ihrer Umsetzbaugruppe.

Montage

- 1. Bauen Sie Ihr System 300S mit Ihrer CPU auf.
- **2.** Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- **3.** Binden Sie ihren EtherCAT-Master mittels der EtherCAT-Schnittstelle in Ihr EtherCAT-Netz ein.
- **4.** Binden sie Ihre EtherCAT-Umsetzbaugruppe in EtherCAT ein.
- **5.** Verbinden Sie den Ethernet-Anschluss der EtherCAT-Umsetzbaugruppe mit ihrem Ethernet
- Schalten Sie die Spannungsversorgung ein.
 - Nach kurzer Hochlaufzeit befindet sich der EtherCAT-Master im Leerlauf. Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzt der EtherCAT-Master und der Ethernet-PG/OP-Kanal keine IP-Adresse.

Die Zuweisung einer IP-Adresse für Ethernet-Produktiv-Verbindungen über den EtherCAT-Master erfolgt über die Hardware-Konfiguration der CPU über das Sub-Modul "PN-IO".

7.8 Hardware-Konfiguration - CPU

Voraussetzung Die Konfiguration der CPU erfolgt im "Hardware-Konfigurator" von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit "Extras → Katalog aktualisieren" den Hardware-Katalog aktualisieren.

> Für die Projektierung werden fundierte Kenntnisse im Umgang Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 315-2PN/DP
X1	MPI/DP
X2	PN-IO
Х2	Port 1
Х2	Port 2
3	

Parametrierung der IP-Adress-Daten für den EtherCAT-Master

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- **3.** Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2PN/DP (6ES7 315-2EH14-0AB0 V3.2).
- **4.** Über das Submodul *"X2 PN-IO"* projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.

Für den Einsatz von Ethernet-Produktiv-Verbindungen mit dem EtherCAT-Master ist eine EtherCAT-Umsetzbaugruppe zu verwenden, welche das Protokoll EoE (Ethernet over EtherCAT) unterstützt. Informationen, wie Sie die EtherCAT-Umsetzbaugruppe einbinden, finden Sie im Handbuch zu Ihrer Umsetzbaugruppe. Über die PN-IO-Eigenschaften können Sie IP-Adressdaten für den EtherCAT-Master vergeben. Durch Doppelklick auf die Komponente PN-IO öffnen Sie den Eigenschaften-Dialog.

- Geben Sie unter "Allgemein" einen Gerätenamen an.
- Geben Sie "Eigenschaften" IP-Adresse, Subnetz-Maske und Gateway an und wählen Sie das gewünschte Subnetz aus.

7.9 Siemens S7-Verbindungen projektieren

ÜbersichtDie Projektierung von S7-Verbindungen, d.h. die "Vernetzung" zwi-
schen den Stationen erfolgt in NetPro von Siemens. NetPro ist eine
grafische Benutzeroberfläche zur Vernetzung von Stationen. Eine
Kommunikationsverbindung ermöglicht die programmgesteuerte
Kommunikation zwischen zwei Teilnehmern am Industrial Ethernet.
Die Kommunikationspartner können hierbei im selben Projekt oder -
bei Multiprojekten - in den zugehörigen Teilprojekten verteilt ange-
ordnet sein. Kommunikationsverbindungen zu Partnern außerhalb
eines Projekts werden über das Objekt "In unbekanntem Projekt"
oder mittels Stellvertreterobjekten wie "Andere Stationen" oder Sie-
mens "SIMATIC S5 Station" projektiert. Die Kommunikation steuern
Sie durch Einsatz von VIPA Hantierungsbausteinen in Ihrem Anwen-
derprogramm. Für den Einsatz dieser Bausteine sind immer projek-
tierte Kommunikationsverbindungen auf der aktiven Seite erforderlich.

Eigenschaften einer	
Kommunikationsverbin-	
dung	

Folgende Eigenschaften zeichnen eine Kommunikationsverbindung aus:

- Eine Station führt immer einen aktiven Verbindungsaufbau durch.
- Bidirektionaler Datentransfer (Senden und Empfangen auf einer Verbindung).
- Beide Teilnehmer sind gleichberechtigt, d.h. jeder Teilnehmer kann ereignisabhängig den Sende- bzw. Empfangsvorgang anstoßen.
- Mit Ausnahme der UDP-Verbindung wird bei einer Kommunikationsverbindung die Adresse des Kommunikationspartners über die Projektierung festgelegt. Hierbei ist immer von einer Station der Verbindungsaufbau aktiv durchzuführen.

Voraussetzung

- Siemens SIMATIC Manager V 5.5 SP2 oder h
 öher und SIMATIC NET sind installiert.
- Bei der Hardware-Konfiguration wurden dem CP über die Eigenschaften von PN-IO IP-Adress-Daten zugewiesen.

Alle Stationen außerhalb des aktuellen Projekts müssen mit Stellvertreterobjekten, wie z.B. Siemens "SIMATIC S5" oder "Andere Station" oder mit dem Objekt "In unbekanntem Projekt" projektiert sein. Sie können aber auch beim Anlegen einer Verbindung den Partnertyp "unspezifiziert" anwählen und die erforderlichen Remote-Parameter im Verbindungsdialog direkt angeben.

Arbeitsumgebung von NetPro Zur Projektierung von Verbindungen werden fundierte Kenntnisse im Umgang mit NetPro von Siemens vorausgesetzt! Nachfolgend soll lediglich der grundsätzliche Einsatz von NetPro gezeigt werden. Nähre Informationen zu NetPro finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation. NetPro starten Sie, indem Sie im Siemens SIMATIC Manager auf ein "Netz" klicken oder innerhalb Ihrer CPU auf "Verbindungen".

Die Arbeitsumgebung von NetPro hat folgenden Aufbau:

- 1 *Grafische Netzansicht:* Hier werden alle Stationen und Netzwerke in einer grafischen Ansicht dargestellt. Durch Anwahl der einzelnen Komponenten können Sie auf die jeweiligen Eigenschaften zugreifen und ändern.
- 2 Netzobjekte: In diesem Bereich werden alle verfügbaren Netzobjekte in einer Verzeichnisstruktur dargestellt. Durch Ziehen eines gewünschten Objekts in die Netzansicht können Sie weitere Netzobjekte einbinden und im Hardware-Konfigurator öffnen.
- 3 Verbindungstabelle: In der Verbindungstabelle sind alle Verbindungen tabellarisch aufgelistet. Diese Liste wird nur eingeblendet, wenn Sie die CPU einer verbindungsfähigen Baugruppe angewählt haben. In dieser Tabelle können Sie mit dem gleichnamigen Befehl neue Verbindungen einfügen.

SPS-Stationen

Für jede SPS-Station und ihre Komponente haben Sie folgende grafische Darstellung. Durch Anwahl der einzelnen Komponenten werden Ihnen im Kontext-Menü verschiedene Funktionen zu Verfügung gestellt:

- 1 Station: Dies umfasst eine SPS-Station mit Rack, CPU und Kommunikationskomponenten. Über das Kontext-Menü haben Sie die Möglichkeit eine aus den Netzobjekten eingefügte Station im Hardware-Konfigurator mit den entsprechenden Komponenten zu projektieren. Nach der Rückkehr in NetPro werden die neu projektierten Komponenten dargestellt.
- 2 *CPU:* Durch Klick auf die CPU wird die Verbindungstabelle angezeigt. In der Verbindungstabelle sind alle Verbindungen aufgelistet, die für die CPU projektiert sind.
- 3 Interne Kommunikationskomponenten: Hier sind die Kommunikationskomponenten aufgeführt, die sich in Ihrer CPU befinden. Der EtherCAT-Master der CPU ist über die Komponente PN-IO zu projektieren.
- 4 *Ethernet-PG/OP-Kanal:* In der Hardware-Konfiguration ist der interne Ethernet-PG/OP-Kanal immer als externer CP zu projektieren. Dieser CP dient ausschließlich der PG/OP-Kommunikation. Produktiv-Verbindungen sind nicht möglich.

Stationen vernetzen

Stationen vernetzen NetPro bietet Ihnen die Möglichkeit die kommunizierenden Stationen zu vernetzen. Die Vernetzung können Sie über die Eigenschaften in der Hardware-Konfiguration durchführen oder grafisch unter NetPro. Gehen Sie hierzu mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Daraufhin wird Ihr CP über eine Linie mit dem gewünschten Netz verbunden

Verbindungen projektieren

	Station 1 CPU3 MPI PN/DI	/E PN-IC	CP 343-1		
-000					
		N	eue V	erbindung einfüger	

- 1. Zur Projektierung von Verbindungen blenden Sie die Verbindungsliste ein, indem Sie die entsprechende CPU anwählen. Rufen Sie über das Kontext-Menü *Neue Verbindung einfügen* auf:
 - Verbindungspartner (Station Gegenseite)
 Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Verbindungstyp einstellen können.
 - Spezifizierte Verbindungspartner Jede im Siemens SIMATIC Manager projektierte Station wird in die Liste der Verbindungspartner aufgenommen. Durch Angabe einer IP-Adresse und Subnetz-Maske sind diese Stationen eindeutig spezifiziert.
 - Unspezifizierte Verbindungspartner Hier kann sich der Verbindungspartner im aktuellen Projekt oder in einem unbekannten Projekt befinden. Verbindungs-Aufträge in ein unbekanntes Projekt sind über einen eindeutigen Verbindungs-Namen zu definieren, der für die Projekte in beiden Stationen zu verwenden ist. Aufgrund dieser Zuordnung bleibt die Verbindung selbst unspezifiziert.

- 2. Wählen Sie den Verbindungspartner und den Verbindungstyp und klicken Sie auf [OK].
 - Sofern aktiviert, öffnet sich ein Eigenschaften-Dialog der entsprechenden Verbindung als Bindeglied zu Ihrem SPS-Anwenderprogramm.

Neue Verbindung einfügen		
Verbindungspartner		
Im Projekt		
SIMATIC 300		
Projekt: Connections Sation: SIMATIC 300 Baugruppe: CPU		
Verbindung		
Typ: S7-Verbindung		
OK Übernehmen Abrechen		

3. Nachdem Sie auf diese Weise alle Verbindungen projektiert haben, können Sie Ihr Projekt "Speichern und übersetzen" und NetPro beenden.

Verbindungstypen Mit NetPro können Sie ausschließlich Siemens S7-Verbindungen projektieren.

\bigcirc

Alle Broadcast-Teilnehmer und Alle Multicast-Teilnehmer wird von dieser CPU nicht unterstützt.

- Siemens S7-Verbindung Für Siemens S7-Verbindungen sind für den Datenaustausch die FB/SFB-VIPA-Hantierungsbausteine zu verwenden, deren Gebrauch im Handbuch "Operationsliste" Ihrer CPU näher beschrieben ist.
 - Bei Siemens S7-Verbindungen werden Kommunikationsverbindungen durch eine Verbindungs-ID f
 ür jeden Kommunikationspartner spezifiziert.
 - Eine Verbindung wird durch den lokalen und fernen Verbindungsendpunkt spezifiziert.
 - Bei Siemens S7-Verbindungen müssen die verwendeten TSAPs kreuzweise übereinstimmen.

Folgende Parameter definieren einen Verbindungsendpunkt:

Station A				Station B
ferner TSAP	\rightarrow	Siemens	\rightarrow	lokaler TSAP
lokaler TSAP	←	S7-Verbindung	~	ferner TSAP
ID A				ID B

Kombinationsmöglichkeiten unter Einsatz der FB/SFB-VIPA-Hantierungsbausteine

Verbindungspartner	Verbindungsaufbau	Verbindung
spezifiziert in NetPro (im aktuellen Projekt)	aktiv/passiv	spezifiziert
unspezifiziert in NetPro (im aktuellen Projekt)	aktiv	spezifiziert
	passiv	unspezifiziert
unspezifiziert in NetPro (in unbe- kanntem Projekt)	aktiv/passiv	spezifiziert (Verbin- dungsname in einem anderen Projekt)

Nachfolgend sind alle relevanten Parameter für eine Siemens S7-Verbindung beschrieben:

Lokaler Verbindungsendpunkt:

Hier können Sie angeben, wie Ihre Verbindung aufgebaut werden soll. Da der Siemens SIMATIC Manager die Kommunikationsmöglichkeiten anhand der Endpunkte identifizieren kann, sind manche Optionen schon vorbelegt und können nicht geändert werden.

– Aktiver Verbindungsaufbau:

Für die Datenübertragung muss eine Verbindung aufgebaut sein. Durch Aktivierung der Option Aktiver Verbindungsaufbau übernimmt die lokale Station den Verbindungsaufbau. Bitte beachten Sie, dass nicht jede Station aktiv eine Verbindung aufbauen kann. In diesem Fall hat diese Aufgabe die Gegenstation zu übernehmen.

– Einseitig:

Im aktivierten Zustand sind nur einseitige Kommunikationsbausteine wie PUT und GET im Anwenderprogramm der CPU zur Nutzung dieser Verbindung möglich. Hier dient der Verbindungspartner als Server, der weder aktiv senden noch aktiv empfangen kann.

- Bausteinparameter
 - Lokale ID:

Die ID ist das Bindeglied zu Ihrem SPS-Programm. Die ID muss identisch sein mit der ID in der Aufrufschnittstelle des FB/SFB-VIPA-Hantierungsbausteins.

- [Vorgabe]:

Sobald Sie auf [Vorgabe] klicken, wird die ID auf die vom System generierte ID zurückgesetzt.

Verbindungsweg:

In diesem Teil des Dialogfensters können Sie den Verbindungsweg zwischen der lokalen Station und dem Verbindungspartner einstellen. Abhängig von der Vernetzung der Baugruppen werden Ihnen die möglichen Schnittstellen zur Kommunikation in einer Auswahlliste aufgeführt.

– [Adressdetails]:

Über diese Schaltfläche gelangen Sie in das Dialogfeld zur Anzeige und Einstellung der Adressinformationen für den lokalen bzw. den Verbindungspartner.

– TSAP:

Bei einer Siemens S7-Verbindung wird der TSAP automatisch generiert aus den Verbindungsressourcen (einseitig/zweiseitig) und Ortsangabe (Rack/Steckplatz bzw. einer systeminternen ID bei PC-Stationen).

Verbindungsressource:

Die Verbindungsressource ist Teil des TSAP der lokalen Station bzw. des Partners. Nicht jede Verbindungsressource ist für jeden Verbindungstyp verwendbar. Je nach Verbindungspartner und -Typ wird bei der Projektierung der Wertebereich eingeschränkt bzw. die Verbindungsressource fest vorgegeben. Offene Kommunikation projektieren

Siemens S7-Verbindung - Kommunikationsfunk- tionen	Bei den SPEED7-CPUs von VIPA gibt es folgende 2 Möglichkeiten für den Einsatz der Kommunikationsfunktionen:		
	Siemens S7-300-Kommunikationsfunktionen: Durch Einbindung der Funktionsbausteine FB 8 FB 15 von VIDA können Sie auf die Siemene S7 200 Kommunikationefunkti		
	VIPA konnen Sie auf die Siemens S7-300-Kommunikationsfunkti-		

 onen zugreifen.
 Siemens S7-400-Kommunikationsfunktionen: Für die Siemens S7-400-Kommunikationsfunktionen verwenden Sie die SFB 8 ... SFB 15, die im Betriebssystem der CPU integriert sind. Hierzu kopieren Sie die Schnittstellenbeschreibung der SFBs aus der Siemens Standard-Bibliothek in das Verzeichnis "Bausteine", generieren für jeden Aufruf einen Instanzen-Datenbaustein und rufen den SFB mit dem zugehörigen Instanzen-Datenbaustein auf.

Funktionsbausteine

FB/SFB	Bezeich- nung	Beschreibung
FB/SFB 12 BSEND	BSEND	Blockorientiertes Senden:
		Mit dem FB/SFB 12 BSEND können Daten an einen remoten Partner-FB/SFB vom Typ BRCV (FB/SFB 13) gesendet werden. Der zu sendende Datenbereich wird segmentiert. Jedes Segment wird einzeln an den Partner gesendet. Das letzte Segment wird vom Partner bereits bei seiner Ankunft quittiert, unabhängig vom zugehö- rigen Aufruf des FB/SFB BRCV. Aufgrund der Segmentierung können Sie mit einem Sendeauftrag bis zu 65534Byte große Daten übertragen.
FB/SFB 13	BRCV	Blockorientiertes Empfangen:
		Mit dem FB/SFB 13 BRCV können Daten von einem remoten Partner-FB/SFB vom Typ BSEND (FB/SFB 12) empfangen werden, wobei darauf zu achten ist, dass der Parameter R_ID bei beiden FB/ SFBs identisch ist. Nach jedem empfangenen Datensegment wird eine Quittung an den Partner-FB/SFB geschickt, und der Parameter LEN aktualisiert.
FB/SFB 14	GET	Remote CPU lesen:
		Mit dem FB/SFB 14 GET können Daten aus einer remoten CPU aus- gelesen werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.
FB/SFB 15	PUT	Remote CPU schreiben:
		Mit dem FB/SFB 15 PUT können Daten in eine remote CPU geschrieben werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

7.10 Offene Kommunikation projektieren

Verbindungsorientierte Protokolle	Verbindungsorientierte Protokolle bauen vor der Datenübertra- gung eine (logische) Verbindung zum Kommunikationspartner auf und bauen diese nach Abschluss der Datenübertragung ggf.
	wieder ab.
	Verbindungsorientierte Protokolle werden eingesetzt wenn es bei

Verbindungsorientierte Protokolle werden eingesetzt, wenn es bei der Datenübertragung insbesondere auf Sicherheit ankommt.

- Die richtige Reihenfolge der empfangenen Pakete ist gewährleistet.
- Über eine physikalische Leitung können in der Regel mehrere logische Verbindungen bestehen.

Bei den FBs zur Offenen Kommunikation über Industrial Ethernet werden die folgenden verbindungsorientierten Protokolle unterstützt:

- TCP native gemäß RFC 793 (Verbindungstypen 01h und 11h):
 - Bei der Datenübertragung über TCP nativ werden weder Informationen zur Länge noch über Anfang und Ende einer Nachricht übertragen.
 - Es besteht keine Möglichkeit zu erkennen, wo ein Datenstrom endet und der nächste beginnt.
 - Die Übertragung ist stream-orientiert. Aus diesem Grund sollten Sie in den FBs bei Sender und Empfänger identische Datenlängen angeben.
 - Falls die empfangene Anzahl der Daten von der parametrierten Länge abweicht, erhalten Sie entweder Daten, welche nicht die vollständigen Telegrammdaten enthalten oder mit dem Inhalt eines nachfolgenden Telegramms aufgefüllt sind. Der Empfangsbaustein kopiert so viele Bytes in den Empfangsbereich, wie Sie als Länge parametriert haben. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit dem Wert von LEN. Mit jedem weiteren Aufruf erhalten Sie damit einen weiteren Block der gesendeten Daten.
- ISO on TCP gemäß RFC 1006:
 - Bei der Datenübertragung werden Informationen zur Länge und zum Ende einer Nachricht übertragen.
 - Die Übertragung ist blockorientiert.
 - Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit der Länge der gesendeten Daten.
 - Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

Verbindungsloses Protokoll

- Bei den verbindungslosen Protokollen entfallen Verbindungsaufund Verbindungsabbau zum remoten Partner.
 - Verbindungslose Protokolle übertragen die Daten unquittiert und damit ungesichert zum remoten Partner.

Offene Kommunikation projektieren

Bei den FBs zur Offenen Kommunikation über Industrial Ethernet wird das folgende verbindungslose Protokoll unterstützt:

- UDP gemäß RFC 768 (Verbindungstyp 13h):
 - Bei Aufruf des Sendebausteins ist ein Verweis auf die Adressparameter des Empfängers (IP-Adresse und Port-Nr.) anzugeben.
 - Informationen zur Länge und zum Ende einer Nachricht werden übertragen. Analog erhalten Sie nach Abschluss des Empfangsbausteins einen Verweis auf die Adressparameter des Senders (IP-Adresse und Port-Nr.).
 - Damit sie Sende- und Empfangsbaustein nutzen können, müssen Sie zuvor sowohl auf der Sender- als auch auf der Empfängerseite einen lokalen Kommunikationszugangspunkt einrichten.
 - Bei jedem Sendauftrag können Sie den remoten Partner durch Angabe seiner IP-Adresse und seiner Port-Nr. neu referenzieren.
 - Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit der Länge der gesendeten Daten.
 - Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

Hantierungsbausteine Die nachfolgend aufgeführten UDTs und FBs dienen der "Offenen Kommunikation" mit anderen Ethernet-fähigen Kommunikationspartnern über Ihr Anwenderprogramm. Diese Bausteine sind Bestandteil des Siemens SIMATIC Manager. Sie finden diese in der "Standard Library" unter "Communication Blocks". Bitte beachten Sie, dass bei Einsatz der Bausteine für offene Kommunikation die Gegenseite nicht zwingend mit diesen Bausteinen projektiert sein muss. Diese kann mit AG_SEND/AG_RECEIVE oder mit IP_CONFIG projektiert sein.

UDTs

FB	Bezeichnung	Verbindungsorientierte Protokolle: TCP native gemäß RFC 793, ISO on TCP gemäß RFC 1006	Verbindungsloses Protokoll: UDP gemäß RFC 768
UDT 65	TCON_PAR	Datenstruktur zur Verbin- dungsparametrierung	Datenstruktur zur Parametrierung des lokalen Kommunikationszu- gangspunktes
UDT 66	TCON_ADR		Datenstruktur der Adressierungs- parameter des remoten Partners

FBs

FB	Bezeichnung	Verbindungsorientierte Protokolle: TCP native gemäß RFC 793, ISO on TCP gemäß RFC 1006	Verbindungsloses Protokoll: UDP gemäß RFC 768
FB 63	TSEND	Daten senden	
FB 64	TRCV	Daten empfangen	
FB 65	TCON	Verbindungsaufbau	Einrichtung des lokalen Kommu- nikationszugangspunktes
FB 66	TDISCON	Verbindungsabbau	Auflösung des lokalen Kommuni- kationszugangspunktes
FB 67	TUSEND		Daten senden
FB 68	TURCV		Daten empfangen

7.11 NCM-Diagnose - Hilfe zur Fehlersuche

Siemens NCM S7-Diagnose Das Siemens NCM-Diagnosetool, als Bestandteil des Siemens SIMATIC Managers, wird unterstützt. Dieses Tool liefert dynamisch Informationen zum Betriebszustand der Kommunikationsfunktionen von online geschalteten CPs.

Folgende Diagnose-Funktionen stehen Ihnen zur Verfügung:

- Betriebszustand an Ethernet ermitteln
- Im EtherCAT-Master den Diagnosepuffer auslesen
- Verbindungen diagnostizieren

NCM-Diagnose - Hilfe zur Fehlersuche

Geben Sie für den EtherCAT-Master als Zielparameter immer Baugruppenträger 0 und Steckplatz 125 an.

Auf den Folgeseiten finden Sie eine Kurzbeschreibung der NCM-Diagnose. Näheres zum Funktionsumfang und zum Einsatz des Siemens NCM-Diagnose-Tools finden Sie in der entsprechenden Online-Hilfe bzw. Dokumentation von Siemens.

NCM-Diagnose starten

Das Diagnose-Tool starten Sie über "Windows-START-Menü → SIMATIC → ... NCM S7 → Diagnose".

Aufbau

NCM-Diagnose	
 Baugruppe Industrial Ethernet Uhrzeit Betriebszustand Diagnosepuffer Werbindungen 	······
Navigationsbereich	Informationsbereich

Die Arbeitsumgebung des Diagnose-Tools hat folgenden Aufbau:

- Im "Navigationsbereich" auf der linken Seite finden Sie die hierarchisch geordneten Diagnoseobjekte. Je nach CP haben Sie eine angepasste Objektstruktur im Navigationsbereich.
- Im "Informationsbereich" auf der rechten Seite finden Sie immer das Ergebnis der von Ihnen angewählten Navigationsfunktion im Navigationsbereich.

Keine Diagnose ohne
VerbindungFür eine Diagnose ist immer eine Online-Verbindung zu dem zu diag-
nostizierenden CP erforderlich. Klicken Sie hierzu in der Symbolleiste
auf

Es öffnet sich folgendes Dialogfenster:

NCM-Diagnose - Hilfe zur Fehlersuche

NCM S7-Diagnose: Online-Pfad
Netzübergang
Zielstation
Anschluss :
Ind. Ethernet TCP/IP
Teilnehmeradresse: 172.16.129.200
Baugruppenträger/Steckplatz: 0 V / 125 V
PG/PC-Schnittstelle einstellen
OK Abrechen

Stellen Sie unter Zielstation folgende Parameter ein:

- Anschluss ...: Ind. Ethernet TCP/IP
- Teilnehmer-Adr.:
- Tragen Sie hier die IP-Adresse des CPs ein
- Baugruppenträger/Steckplatz: Geben Sie hier für den VIPA EtherCAT-Master den Baugruppenträger 0 und für Steckplatz 125 an. Stellen Sie Ihre PG/PC-Schnittstelle auf "TCP/IP -> Netzwerkkarte " ein. Mit [OK] starten Sie die Online-Diagnose.

Diagnosepuffer aus-Iesen Der EtherCAT-Master besitzt einen Diagnosepuffer. Dieser hat die Architektur eines Ringspeichers. Hier können bis zu 100 Diagnosemeldungen festgehalten werden. In der NCM-Diagnose können Sie über das Diagnoseobjekt Diagnosepuffer die Diagnosemeldungen anzeigen und auswerten. Über einen Doppelklick auf eine Diagnosemeldung hält die NCM-Diagnose weitere Informationen bereit.

Vorgehensweise bei der Diagnose Sie führen eine Diagnose aus, indem Sie ein Diagnoseobjekt im Navigationsbereich anklicken. Weitere Funktionen stehen Ihnen über das Menü und über die Symbolleiste zur Verfügung.

Für den gezielten Diagnoseeinsatz ist folgende Vorgehensweise zweckmäßig:

- **1.** Diagnose aufrufen
- **2.** Mit Dialog für Online-Verbindung öffnen, Verbindungsparameter eintragen und mit [OK] Online-Verbindung herstellen.
- **3.** Den EtherCAT-Master identifizieren und über Baugruppenzustand den aktuellen Zustand des EtherCAT-Masters ermitteln.
- Verbindungen überprüfen auf Besonderheiten wie:
 - Verbindungszustand
 - Empfangszustand
 - Sendezustand
- **5.** Über *"Diagnosepuffer"* den Diagnosepuffer des EtherCAT-Masters einsehen und entsprechend auswerten.
- **6.** Soweit erforderlich, Projektierung bzw. Programmierung ändern und Diagnose erneut starten.

Grundlagen EtherCAT > Allgemeines

8 Einsatz Ethernet-Kommunikation - EtherCAT

8.1 Grundlagen EtherCAT

8.1.1 Allgemeines

Feldbusse haben sich seit vielen Jahren in der Automatisierungstechnik etabliert. Da einerseits die Forderung nach immer höheren Geschwindigkeiten besteht, andererseits bei dieser Technologie die technischen Grenzen bereits erreicht wurden, musste nach neuen Lösungen gesucht werden.

Das aus der Bürowelt bekannte Ethernet ist mit seinen heute überall verfügbaren 100MBit/s sehr schnell. Durch die dort verwendete Art der Verkabelung und den Regeln bei den Zugriffsrechten ist dieses Ethernet nicht echtzeitfähig. Dieser Effekt wurde mit EtherCAT[®] beseitigt.

EtherCAT®	 Für EtherCAT[®] gilt: EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. EtherCAT bedeutet Ethernet for Controller and Automation Technology. Es wurde ursprünglich von der Firma Beckhoff Automation GmbH entwickelt und wird nun von der EtherCAT Technology Group (ETG) unterstützt und weiterentwickelt. Die ETG ist die weltgrößte internationale Anwender- und Herstellervereinigung für Industrial Ethernet. EtherCAT ist ein offenes Ethernet-basierendes Feldbus-System, das in der IEC genormt wird. EtherCAT erfüllt als offenes Feldbus-System das Anwenderprofil für den Bereich industrieller Echtzeitsysteme. Im Gegensatz zur klassischen Ethernet-Kommunikation erfolgt bei EtherCAT der Datenaustausch der I/O-Daten bei 100MBit/s im Volduplex-Betrieb, während das Telegramm die Koppler durch-
	 Voliduplex-Betrieb, wahrend das Telegramm die Koppler durch- läuft. Da auf diese Weise ein Telegramm in Sende- und in Emp- fangsrichtung die Daten vieler Teilnehmer erreicht, besitzt EtherCAT eine Nutzdatenrate von über 90%. Das für Prozessdaten optimierte EtherCAT-Protokoll wird direkt im Ethernet-Telegramm transportiert. Dieses wiederum kann aus mehreren Untertelegrammen bestehen, die jeweils einen Spei- cherbereich des Prozessabbilds bedienen.
Übertragungsmedium	EtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen Standard-CAT5-Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu 100m zwischen 2 Teilnehmern möglich.
	In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen. Der Einsatz von Hubs ist nicht möglich.
Kommunikationsprinzip	Bei EtherCAT sendet der Master ein Telegramm an den ersten Teil- nehmer. Dieser entnimmt aus dem laufenden Datenstrom die für ihn bestimmten Daten, fügt seine Antwortdaten in das Telegramm ein und sendet das Telegramm weiter zum nächsten Teilnehmer. Dieser verfährt auf die gleiche Weise mit dem Telegramm.

Grundlagen EtherCAT > EtherCAT Zustandsmaschine

	Ist das Telegramm beim letzten Teilnehmer angekommen, stellt dieser fest, dass kein weiterer Teilnehmer angeschlossen ist und sendet das Telegramm zurück an den Master. Hierbei wird das Tele- gramm über das andere Adernpaar durch alle Teilnehmer zum Master gesendet (Vollduplex). Durch die Steckreihenfolge und die Nutzung der Vollduplex-Technologie stellt EtherCAT einen logischen Ring dar.
EtherCAT State Machine	Über die EtherCAT State Machine wird der Zustand des EtherCAT- Kopplers gesteuert.
Objektverzeichnis (SDOs)	Im Objektverzeichnis werden alle Parameter-, Diagnose-, Prozess- oder sonstige Daten aufgeführt, die über EtherCAT gelesen oder beschrieben werden können. Über den SDO-Informations-Dienst können Sie auf das Objektverzeichnis zugreifen. Zusätzlich liegt das Objektverzeichnis in der Gerätebeschreibungsdatei ab.
Prozessdaten (PDOs)	Der EtherCAT Data Link Layer ist für die schnelle Übertragung von Prozessdaten optimiert. Hier wird festgelegt, wie die Prozessdaten des Gerätes den EtherCAT-Prozessdaten zugeordnet sind und wie die Applikation auf dem Gerät zum EtherCAT-Zyklus synchronisiert ist. Die Zuordnung der Prozessdaten (Mapping) erfolgt über die PDO- Mapping- und die SyncManager-PDO-Assign-Objekte. Diese beschreiben, welche Objekte aus dem Objektverzeichnis als Prozess- daten mit EtherCAT übertragen werden. Über die SyncManager- Communication-Objekte wird festgelegt, mit welcher Zykluszeit die zugehörigen Prozessdaten über EtherCAT übertragen werden und in welcher Form sie für die Übertragung synchronisiert werden.
Emergencies	Über Emergencies können Diagnosen, Prozessereignisse und Fehler beim Zustandswechsel der State Machine übertragen werden. Statusmeldungen dagegen, die den aktuellen Zustand des Gerätes anzeigen, sollten direkt mit den Prozessdaten übertragen werden.

8.1.2 EtherCAT Zustandsmaschine

Zustände In jedem EtherCAT-Kommunikationsteilnehmer ist eine *Zustandsmaschine* implementiert. Für jeden Zustand ist definiert, welche Kommunikationsdienste über EtherCAT aktiv sind. Die Zustandsmaschine wird vom EtherCAT-Master gesteuert.

Γ

Grundlagen EtherCAT > EtherCAT Zustandsmaschine

	Init 01h
	(IP) ↓ (PI) ↑ (IB) ↓ (BI) ↑
	Pre-Operational 02h (SI) Bootstrap 03h (optional)
	(OI) (PS)↓ (SP)↑
	(OP) Safe-Operational 04h
	(SO)↓ (OS) ↑
	Operational 08h
	 IP Starte Mailbox-Kommunikation PI Stoppe Mailbox-Kommunikation PS Starte Input Update SP Stoppe Input Update SO Starte Output Update OS Stoppe Output Update OP Stoppe Input Update, stoppe Output Update SI Stoppe Input Update, stoppe Mailbox-Kommunikation OI Stoppe Output Update, stoppe Input Update, Stoppe Mailbox-Kommunikation IB Starte Mailbox für Firmwareupdate im Bootstrap-Mode BI Neustart/Stoppe Mailbox
lnit - 01h	Nach dem Einschalten befindet sich der EtherCAT-Koppler im Zustand <i>Init</i> . Dort ist weder Mailbox- noch Prozessdatenkommunika- tion möglich. Der EtherCAT-Master initialisiert die SyncManager- Kanäle 0 und 1 für die Mailbox-Kommunikation.
Pre-Operational (Pre- Op) - 02h	Beim Übergang von <i>Init</i> nach <i>Pre-Op</i> prüft der EtherCAT-Koppler, ob die Mailbox korrekt initialisiert wurde. Im Zustand <i>Pre-Op</i> ist Mailbox- Kommunikation aber keine Prozessdaten-Kommunikation möglich. Der EtherCAT-Master initialisiert die SyncManager-Kanäle für Pro- zessdaten (ab SyncManager-Kanal 2), die FMMU-Kanäle und das PDO-Mapping bzw. das SyncManager-PDO-Assignment. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdaten- übertragung sowie modulspezifische Parameter übertragen, die von den Defaulteinstellungen abweichen.
Safe-Operational (Safe- Op) - 04h	Beim Übergang von <i>Pre-Op</i> nach <i>Safe-Op</i> prüft der EtherCAT- Koppler, ob die SyncManager-Kanäle für die Prozessdatenkommuni- kation korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Koppler aktuelle Inputdaten in die entsprechenden DP- RAM-Bereiche des EtherCAT-Koppler-Controllers. Im Zustand <i>Safe- Op</i> ist Mailbox- und Prozessdaten-Kommunikation möglich. Hierbei werden die Inputdaten zyklisch aktualisiert aber die Ausgänge sind deaktiviert.
Operational (Op) - 08h	Im Zustand <i>Op</i> kopiert der EtherCAT-Koppler die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdaten- und Mailbox-Kom- munikation möglich.

Grundlagen EtherCAT > CoE - CANopen over Ethernet

Bootstrap - optional (Boot) - 03h Im Zustand Boot kann ein Update der EtherCAT-Koppler-Firmware vorgenommen werden. Dieser Zustand ist nur über Init zu erreichen. Im Zustand Boot ist Mailbox-Kommunikation über das Protokoll File-Access over EtherCAT (FoE) möglich, aber keine andere Mailbox-Kommunikation und keine Prozessdaten-Kommunikation.

Zustände 00h und FFh	Zusätzlich gibt es noch folgende Zustände:	
	6 6	

- 00h: Station ist physikalisch nicht vorhanden
- FFh: Station ist nicht projektiert

8.1.3 CoE - CANopen over Ethernet

CoE steht für CANopen over EtherCAT. Jeder intelligente EtherCAT-Koppler (mit Mikrocontroller) unterstützt das CoE-Interface.

Mit CANopen haben Sie eine einheitliche Anwenderschnittstelle, die einen vereinfachten Systemaufbau mit unterschiedlichsten Geräten ermöglicht. Mit CoE können Sie komfortabel auf alle Geräteparameter zugreifen und gleichzeitig Daten einlesen und ausgeben. Echtzeitdaten lesen Sie über PDOs und die Parametrierung führen Sie über SDOs aus. Weiter stehen Ihnen Emergency-Objekte zur Verfügung.

- DA Destination address
- SA Source address
- CRC Checksum

Inbetriebnahme und Anlaufverhalten> Anlaufverhalten

8.1.4 ESI-Dateien

Von VIPA erhalten Sie für den EtherCAT-Koppler ESI-Dateien. Diese Dateien befinden sich entweder auf dem beiliegenden Datenträger oder im Download-Bereich von www.vipa.com. Installieren Sie die ESI-Dateien in Ihrem Projektiertool. Nähere Hinweise zur Installation der ESI-Dateien finden Sie im Handbuch zu Ihrem Projektiertool. Zur Konfiguration in Ihrem Projektiertool befinden sich in den ESI-Dateien alle System 300S Module in Form von XML-Daten.

8.2 Inbetriebnahme und Anlaufverhalten

- 8.2.1 Montage und Inbetriebnahme
 - **1.** Bauen Sie Ihr System 300S mit Ihrer CPU auf.
 - **2.** Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
 - **3.** Binden Sie ihren EtherCAT-Master an EtherCAT an.
 - 4. Schalten Sie die Spannungsversorgung ein.

8.2.2 Anlaufverhalten

Bedingungen für den Anlauf	Nach PowerON und dem ANLA RUN geschalten. Dies bringt de Op und dieser fordert den Zust EtherCAT Slave-Stationen an. wartet die CPU, bis keine Ether SafeOp befindet. Die Wartezein "Übertragung der Parameter au gister "Anlauf" vorgeben.	AUF and Bev rCA t kör n Ba	(ink ther Op or n T SI ner augr	d. O CA bei un c ave Sie upp	B10 T-Ma den (-Sta e üb en"	0) w aste ang OB1 tion tion er d im E	vird o r in jebu auf mel en C Eige	die (den nde geru nr in CPU nsch	CPU Zus nen Ifen Zu Par nafts	virc stanc stan came sre-	ch I, Id eter
	Unter Einsatz des EtherCAT-Masters wird zwischen folgenden Anlaufverhalten unterschieden. Die Bedingungen hierzu können Sie der nachfolgenden Tabelle entnehmen:										
	 CPU geht in RUN wenn Topologie OK ist Die CPU wartet auf alle Slaves, welche zwingend vorhanden sein müssen, maximal bis die Wartezeit abgelaufen ist und geht dann in RUN. Die Topologie muss OK sein. CPU geht in RUN unabhängig von Topologie bzw. optionalen Slaves Die CPU wartet auf alle Slave, welche zwingend vorhanden sein müssen, maximal bis die Wartezeit abgelaufen ist und geht dann in RUN unabhängig von Topologie bzw. optionalen Slaves 										
	Ist der CPU-Parameter: "Anlauf bei Sollausbau ungleich Istausbau" aktiviert?	J	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	Sind alle erforderlichen Slaves pro- jektiert?	x	J	Ν	J	J	J	J	Ν	Ν	J
	Sind optionale Slaves projektiert (Hot-Connect-Gruppe)?	x	Ν	J	J	x	J	x	Ν	Ν	x
	Sind alle erforderlichen Slaves vor- handen?	x	J	N	J	х	J	х	x	x	Ν

Hardware-Konfiguration - CPU

Sind optionale Slaves vorhanden (nicht alle müssen vorhanden sein)?	x	Ν	J	J	x	J	x	x	x	x
Gibt es mindestens einen erforderli- chen Slave mit falschem Modul?	x	N	Ν	Ν	J	х	х	x	x	х
Gibt es mindestens einen optio- nalen Slave mit falschem Modul?	х	Ν	Ν	N	х	J	х	х	х	x
Ist mindestens ein nicht projek- tierter Slave vorhanden?	х	Ν	Ν	N	x	x	J	J	Ν	x
	\mathbf{V}	\mathbf{V}	\checkmark	\mathbf{V}	\mathbf{V}	\checkmark	\mathbf{V}	\mathbf{V}	\checkmark	$\mathbf{\psi}$
CPU geht in RUN wenn Topo- logie OK ist.	J									
CPU geht in RUN unabhängig von Topologie bzw. optionalen Slaves.		J	J	J	Ν	Ν	Ν	Ν	J	N
Ja: J Nein: N nicht relevant: X										

8.3 Hardware-Konfiguration - CPU

Voraussetzung

Die Konfiguration der CPU erfolgt im "Hardware-Konfigurator" von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Bitte verwenden Sie für die Projektierung den Siemens SIMATIC Manager ab V 5.5 SP2. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit "Extras → Katalog aktualisieren" den Hardware-Katalog aktualisieren.

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Die Projektierung des EtherCAT-Masters erfolgt im Siemens SIMATIC Manager in Form des virtuellen PROFINET IO Devices "EtherCAT-Netzwerk". Das "EtherCAT-Netzwerk" ist mittels GSDML im Hardware-Katalog zu installieren und kann mit dem VIPA-Tool SPEED7 EtherCAT Manager konfiguriert werden.

Folgende Voraussetzungen müssen für die Projektierung des EtherCAT-Masters erfüllt sein:

- GSDML für "EtherCAT-Netzwerk" ist installiert
- SPEED7 EtherCAT Manager für EtherCAT-Konfiguration ist installiert

IO Device EtherCAT-Netzwerk installieren Die Installation des PROFINET IO Devices "EtherCAT-Netzwerk" im Hardware-Katalog erfolgt nach folgender Vorgehensweise:

- Gehen Sie in den Service-Bereich von www.vipa.com
- Laden Sie die Datei Cx000151 Vxxx
- **3.** Extrahieren Sie die Dateien in Ihr Arbeitsverzeichnis.
- **4.** Starten Sie den Hardware-Konfigurator von Siemens.
- 5. Schließen Sie alle Projekte.

Hardware-Konfiguration - CPU

- 6. ▶ Gehen Sie auf "Extras → GSD-Dateien installieren"
- 7. Navigieren Sie in Ihr Arbeitsverzeichnis und installieren Sie die entsprechende GSDML-Datei.
 - Nach der Installation finden Sie das "EtherCAT-Netzwerk" unter "PROFINET IO → Weitere Feldgeräte → I/O
 → VIPA EtherCAT System"

SPEED7 EtherCAT Manager installieren Die Konfiguration des PROFINET IO Devices "EtherCAT-Netzwerk" erfolgt mit dem SPEED7 EtherCAT Manager von VIPA. Sie finden diesen Im Servicebereich von www.vipa.com.

Die Installation erfolgt nach folgender Vorgehensweise:

- 1. Schließen Sie den Siemens SIMATIC Manager.
- 2. Gehen Sie in den Service-Bereich von www.vipa.com
- **3.** Laden Sie den SPEED7 EtherCAT Manager und entpacken Sie diesen auf Ihren PC.
- 4. Zur Installation starten Sie die Datei EtherCATManager_v... .exe.
- **5.** Wählen Sie die Sprache für die Installation aus.
- **6.** Stimmen Sie dem Lizenzvertrag zu.
- **7.** Wählen Sie das Installationsverzeichnis und starten Sie die Installation.
- 8. Nach der Installation müssen Sie Ihren PC neu starten
 - ⇒ Der SPEED7 EtherCAT Manager ist installiert und kann jetzt über das Kontextmenü des Siemens SIMATIC Manager aufgerufen werden.

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 315-2PN/DP
X1	MPI/DP
X2	PN-IO
Х2	Port 1
Х2	Port 2
3	

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 315-2PN/DP (6ES7 315-2EH14-0AB0 V3.2).
- **4.** Über das Submodul *"X2 PN-IO"* projektieren Sie den EtherCAT-Master als virtuelles PROFINET-Netzwerk.

Konfiguration EtherCAT-Master

- **1.** Klicken Sie auf das Submodul "PN-IO" der CPU.
- 2. ▶ Wählen Sie "Kontextmenü → PROFINET IO-System einfügen".

- **3.** Legen Sie mit [Neu] ein neues Subnetz an und vergeben Sie gültige IP-Adress-Daten
- A. Navigieren Sie im Hardware-Katalog in das Verzeichnis "PROFINET IO → Weitere Feldgeräte → I/O → VIPA EtherCAT System" und binden Sie das IO Device "EtherCAT-Netzwerk" an Ihr PROFINET-System an.
- 5. Klicken Sie auf das eingefügte IO Device "EtherCAT-Netzwerk" und definieren Sie die Bereiche für Ein- und Ausgabe, indem Sie den entsprechenden "Out"- bzw. "In"-Bereich auf einen Steckplatz ziehen.

Hierbei sind folgende Regeln zu beachten:

- Ein- und Ausgabebereiche können beliebig gemischt werden.
- Sie haben jeweils maximal 4096Byte an EtherCAT-Prozessdaten f
 ür Ein- und Ausgabe.
- Daten müssen im Siemens Hardware-Konfigurator konsistent sein, d.h. die maximale Anzahl an Bytes darf unter PROFINET nicht überschritten werden. Ansonsten müssen Sie ein weiteres "EtherCAT-Netzwerk" an Ihr PROFINET-System anbinden. Im SPEED7 EtherCAT Manager werden alle Teilbereiche automatisch erkannt und zusammengefasst.

Hardware-Konfiguration - CPU

- 6. ► Wählen Sie "Station → Speichern und übersetzen"
 - ⇒ Sie können jetzt Ihr EtherCAT-System mit dem SPEED7 EtherCAT Manager projektieren.

Vor dem Aufruf des SPEED7 EtherCAT Manager müssen Sie immer Ihr Projekt mit "Station → Speichern und übersetzen" speichern.

- Klicken Sie ein eingefügtes IO Device "EtherCAT-Netzwerk" und wählen Sie "Kontextmenü → Device Tool starten → SPEED7 EtherCAT Manager".
 - Der SPEED7 EtherCAT Manager wird gestartet. Hier können Sie die Konfiguration des EtherCAT-Master-System durchführen.

Näheres zum Einsatz des *SPEED7 EtherCAT Manager* finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.

- 8. Durch Schließen des SPEED7 EtherCAT Manager wird die EtherCAT-Konfiguration in die Projektierung übernommen und der SPEED7 EtherCAT Manager geschlossen. Sie können Ihre EtherCAT-Konfiguration jederzeit im SPEED7 EtherCAT Manager wieder bearbeiten, da die Konfiguration in Ihrem Projekt gespeichert wird.
- **9.** Wechseln Sie in den Siemens SIMATIC Manager und übertragen Sie Ihr Projekt in die CPU.

Die Übertragung kann ausschließlich aus dem Siemens SIMATIC Manager erfolgen - nicht Hardware-Konfigurator! EtherCAT Diagnose> Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

8.4 EtherCAT Diagnose

Übersicht

Über folgende Wege erhalten Sie Diagnose-Informationen von Ihrem System:

- Diagnose über den SPEED7 EtherCAT Manager
- Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)
- Diagnose über Systemzustandslisten SZL
- Diagnose über OB-Startinformationen
- Diagnose über NCM-Diagnose
- Diagnose über Diagnosepuffer CPU bzw. CP
- Diagnose über die Status-LEDs

8.4.1 Diagnose über den SPEED7 EtherCAT Manager

Informationen

Der *SPEED7 EtherCAT Manager* bietet vielfältige Möglichkeiten für die Diagnose:

- Diagnose EtherCAT-Master
- Diagnose EtherCAT-Slave-Station

Näheres zum Einsatz des SPEED7 EtherCAT Manager finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.

8.4.2 Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)

Hantierungsbaustein SFB 52 RDREC

Mit dem SFB 52 RDREC (read record) können Sie aus Ihrem Anwenderprogramm z.B. im OB1 auf Diagnosedaten zugreifen. Der SFB 52 ist ein asynchron arbeitender SFB, d.h. die Bearbeitung erstreckt sich über mehrere SFB-Aufrufe.

Nähere Informationen zum Einsatz des SFB 52 finden Sie in der Online-Hilfe zu ihrem Programmier-Tool und im Handbuch "SPEED7 Operationsliste" von VIPA.

Mit dem SFB 52 haben Sie Zugriff auf folgende Daten:

- CoE-Emergency-Meldungen (Datensatz 0x4000 ... 0x4003)
- EtherCAT-spezifischen Indentifikationsdaten (Datensatz 0x1000)
- EtherCAT-Register von Slave-Stationen (Datensatz 0x3000)

EtherCAT Diagnose> Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)

8.4.2.1 Zugriff auf CoE-Emergency-Meldungen

Datensatz 0x4000 ... 0x4003 Mit dem SFB 52 RDREC (read record) können Sie mittels der Datensätze 0x4000 ... 0x4003 aus Ihrem Anwenderprogramm z.B. im OB 1 auf CoE-Emergency-Meldungen zugreifen. Der SFB 52 ist ein asynchron arbeitender SFB, d.h. die Bearbeitung erstreckt sich über mehrere SFB-Aufrufe. Ein Eintrag für die hier beschriebenen Datensätze 0x4000 ... 0x4003 besteht aus der CoE-Emergency selbst (8 Byte), und der Stations-Adresse, von der die CoE-Emergency kommt (2 Byte).

Datensatz-Struktur

Index [Byte]	Inhalt	Beschreibung
0	NumberOfEntries	Anzahl der nachfolgenden CoE-Emergency Einträge (0 n)
1		
2 + (n*12)	n * CoE-Emergency Eintrag	CoE-Emergency-Eintrag entsprechend dem angef- ragten Datensatz

CoE-Emergency Eintrag

Index [Byte]	Inhalt	Beschreibung
0	Error-Code	CoE Emergency
1		
2	Error-Register	
3	Error-Data	
4		
5		
6		
7		
8	Station Address	Adresse der Station, welche die Emergency geliefert hat.
9		
10	Reserved	
11		
EtherCAT Diagnose > Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)

Datensätze

Datensatz	Beschreibung
0x4000	Der Datensatz liefert die zuletzt aufgetretene CoE- Emergency jedes Slave (ein CoE-Emergency Eintrag pro Slave, der eine CoE-Emergency geliefert hat). Für Slaves, bei denen keine CoE-Emergencies auf- getreten sind, werden keine Einträge geliefert. Parameter: Keine, NumberOfEntries: 0.512
0x4001	Der Datensatz liefert die zuletzt aufgetretene CoE- Emergency eines bestimmten Slaves. Wird eine Slave-Id übergeben, die nicht vorhanden ist, wird ein Fehler geliefert. Wenn die Slave-ID gültig ist, aber keine CoE-Emergencies für diesen Slave vorhanden ist, ist die Anzahl der gelieferten Einträge entspre- chend 0.
	Parameter: Slave-ID (1 512),
	NumberOfEntries: 0 1
0x4002	Der Datensatz liefert die 20 letzten CoE-Emergencies des Gesamtsystems (d.h. es können mehrere Ein- träge für einen Slave geliefert werden). Gibt es insge- samt weniger als 20 Einträge, ist die Anzahl der gelieferten Einträge entsprechend kleiner. Parameter: Keine,
	NumberOfEntries: 0 20
0x4003	Der Datensatz liefert die 10 letzten CoE-Emergencies eines bestimmten Slaves. Wird eine Slave-ID über- geben, die nicht vorhanden ist, wird ein Fehler gelie- fert. Wenn die Slave-ID gültig ist, aber weniger als 10 CoE-Emergencies für diesen Slave vorhanden sind, ist die Anzahl der gelieferten Einträge entsprechend kleiner.
	Parameter: Slave-Id (1 512),
	NumberOfEntries: 0 10

EtherCAT Diagnose > Diagnose zur Laufzeit im Anwenderprogramm (OB 1, SFB 52)

Beispiel OB 1 Für den zyklischen Zugriff auf einen Datensatz der Diagnosedaten einer EtherCAT Slave-Station können Sie folgendes Beispielprogramm im OB 1 verwenden:

> UN M10.3 'Ist Lesevorgang beendet (BUSY=0) UN M10.1 'und liegt kein Auftragsanstoß 'an (REQ=0) dann M10.1 'starte Datensatz-Übertragung (REQ:=1) S L W#16#4000 'Datensatznummer (hier Datensatz 0x4000)T MW12 CALL SFB 52, DB52 'Aufruf SFB 52 mit Instanz-DB REO :=M10.1 'Anstoßmerker ID :=DW#16#0018 'Adresse des EtherCAT Slave INDEX :=MW12 MLEN :=14 'Länge Datensatz 0x4000 bei 1 Eintrag VALID :=M10.2 'Gültigkeit des Datensatz BUSY :=M10.3 'Anzeige, ob Auftrag noch läuft ERROR := M10.4 'Fehler-Bit während des Lesens STATUS :=MD14 'Fehlercodes LEN :=MW16 'Länge des gelesenen Datensatz RECORD := P#M 100.0 Byte 40 'Ziel (MB100, 40Byte) U M10.1 R M10.1 'Rücksetzen von REQ

8.4.2.2 Zugriff auf EtherCAT-spezifische Indentifikationsdaten

Datensatz 0x1000

Der Datensatz 0x1000 enthält EtherCAT-spezifische Identifikations-Daten, welche mit dem SFB 52 gelesen werden können. Die Werte für *Device Type*, *Serial Number*, *Hardware Version* und *Software Version* werden direkt über CoE von der Slave-Station abgefragt. Sollte eine Slave-Station CoE oder einen dieser Werte im Objektverzeichnis nicht unterstützen, so werden die Werte mit 0xFF aufgefüllt. Der Datensatz hat folgende Struktur:

Index	Bezeichnung	Datentyp
1	Address	Unsigned32
2	Device Name	Array of char[32]
3	Vendor ID	Unsigned32
4	Product Code	Unsigned32
5	Device Type	Unsigned32
6	Serial Number	Unsigned32
7	Revision	Unsigned32
8	Hardware Version	Array of char[8]
9	Software Version	Array of char[8]

8.4.2.3 Zugriff auf EtherCAT-Register von Slave-Stationen

Datensatz 0x3000

Mit dem Datensatz 0x3000 können Sie auf die Register einer EtherCAT Slave-Station zugreifen, indem Sie diesen mit dem SFB 52 aufrufen. Der Datensatz hat folgende Struktur: EtherCAT Diagnose > Diagnose über Systemzustandslisten - SZL

Byte	Inhalt	Register	
0	AL Status	0x0130, 0x0131	
1			
2	AL Control	0x0120, 0x0121	
3			
4	Al Status Code	0x0134, 0x0135	
5			
6	ESC DL Status	0x0110, 0x0111	
7			
8	Processing Unit Error Counter	0x030C	
9	PDI Error Counter	0x030D	
10	Link Lost Counter Port A	0x0310	
11	Link Lost Counter Port B	0x0311	
12	Link Lost Counter Port C	0x0312	
13	Link Lost Counter Port D	0x0313	
14	reserviert	-	
15	reserviert	-	

8.4.3 Diagnose über Systemzustandslisten - SZL

SZL-Teillisten

Nachfolgend sind alle SZL-Teillisten mit zugehöriger SZL-ID aufgeführt, welche vom EtherCAT-Master System unterstützt werden.

Nähere Informationen zum Einsatz der SZLs finden Sie im Handbuch "SPEED7 Operationsliste" von VIPA.

SZL-Teillisten	SZL-ID
SZL-Inhaltsverzeichnis	xy00h
Baugruppen-Identifikation	xy11h
Zustand aller LEDs	xy19h
Zustand der LEDs	xy74h
Zustandsinfo CPU	xy91h
Stationszustandsinformation (EtherCAT)	xy94h
Baugruppenzustandsinformation (EtherCAT)	xy96h
Diagnosepuffer der CPU	xyA0h
Zustand EtherCAT-Master/Slave	xyE0h

EtherCAT Diagnose > Diagnose über Status-LEDs

SZL-Teillisten	SZL-ID
Zustand EtherCAT-Bus-System	xyE1h
Status der VSC-Features der System SLIO CPU	xyFCh

8.4.4 Diagnose über OB-Startinformationen

Bei Auftreten eines Fehlers generiert das gestörte System eine Diagnosemeldung an die CPU. Daraufhin ruft die CPU den entsprechenden Diagnose-OB auf. Hierbei übergibt das CPU-Betriebssystem dem OB in den temporären Lokaldaten eine Startinformation. Durch Auswertung der Startinformation des entsprechenden OBs erhalten Sie Informationen über Fehlerursache und Fehlerort. Mit der Systemfunktion SFC 6 RD_SINFO können Sie zur Laufzeit auf diese Startinformationen eines OBs nur im OB selbst lesen können, da es sich hier um temporäre Daten handelt.

Abhängig vom Fehlertyp werden folgende OBs im Diagnosefall aufgerufen:

- OB 82 bei Fehler an einem Modul an der EtherCAT-Slave-Station (Diagnosealarm) & "Alarm-Handling in der CPU" auf Seite 154
- OB 86 Bei Ausfall bzw. Wiederkehr einer EtherCAT-Slave-Station
 "OB-Startinformationen eintragen und OB aufrufen" auf Seite 153
- OB 57 Herstellerspezifischer Alarm

Nähere Informationen zu den OBs finden Sie in der Online-Hilfe zu ihrem Programmier-Tool und im Handbuch "SPEED7 Operationsliste" von VIPA.

8.4.5 Diagnose über NCM-Diagnose

With the second seco

8.4.6 Diagnose über Diagnosepuffer CPU bzw. CP

♦ Kapitel 5.18 "VIPA-spezifische Diagnose-Einträge" auf Seite 69

8.4.7 Diagnose über Status-LEDs

LEDs EtherCAT-Schnittstelle X8

EC	МТ	BF	Bedeutung
grün	gelb	rot	
0	0	0	Master ist im Zustand INIT
BB	0	0	Master ist im Zustand Pre-Op

EC	MT	BF	Bedeutung
Р	0	0	Master ist im Zustand Safe-Op
•	0	0	Master ist im Zustand OP
Х	0	Х	Es liegt kein Maintenance-Ereignis an
Х	•	Х	Ein Maintenance-Ereignis liegt an. Näheres hierzu finden Sie in der Diagnose
Х	Х	0	Es liegt kein Fehler am EtherCAT-Bus vor
Х	Х	•	 EtherCAT-Busfehler, keine Verbindung zu Subnetz falsche Übertragungsgeschwindigkeit Vollduplexübertragung ist nicht aktiviert
Х	X	В	 Ausfall eines angeschlossenen IO-Device Mindestens ein IO-Device ist nicht ansprechbar (Topologie- Fehler) Fehlerhafte Projektierung
0	B4	B4	Fehlerhafte Projektierung: Im Diagnosepuffer wurde 0xEA64 einge- tragen. Zusätzlich leuchtet die SF-LED der CPU.
0	BB*	BB*	* Das abwechselnde Blinken mit 4Hz zeigt an, dass ein Firmwareup- date des EtherCAT-Masters durchgeführt wird.
•	•	•	Firmwareupdate des EtherCAT-Masters wurde fehlerfrei durchge- führt.

an: • | aus: \circ | blinkend (1Hz): B | blinkend (2Hz): BB | B4: blinkend (4s an, 1s aus) | pulsierend: P | flackernd: F | nicht relevant: X

LEDs L/A, S

Die grüne L/A-LED (Link/Activity) zeigt an, dass der EtherCAT-Master physikalisch mit Ethernet verbunden ist. Unregelmäßiges Blinken der L/A-LED zeigt Kommunikation des EtherCAT-Masters über Ethernet an.

Leuchtet die grüne S-LED (Speed), so hat der EtherCAT-Master eine Übertragungsgrate von 100MBit/s ansonsten mit 10MBit/s.

8.5 Alarmverhalten

8.5.1 Übersicht

Sobald ein Fehler auftritt, erkennt dies die EtherCAT-Elektronik und meldet intern einen Event (Notification) an den CP des EtherCAT-Masters. Im CP wird hieraus ein Alarm generiert, welcher in Form einer definierten Datenstruktur an die CPU weitergeleitet wird. Während des Alarmhandlings in der CPU wird daraufhin ermittelt, ob ein OB-Aufruf erfolgen soll, die Daten einer SZL zu aktualisieren oder weitere Aktionen erforderlich sind. Der EtherCAT-Master darf keinen Alarm an die CPU senden, solange er noch keine Konfiguration an die CPU gemeldet hat

8.5.2 Alarmtypen

Alarmtypen

- MANUFACTURER_SPECIFIC_ALARM_MIN (0x0020 oder 0x0021)
- PROZESS_ALARM (0x0002) OB 40
- BUS_STATE_CHANGED (0x8001) OB 86
- DIAGNOSE_ALARM_GEHEND (0x000C) OB 82
- DIAGNOSE_ALARM_KOMMEND (0x0001) OB 82
- SLAVE_STATE_CHANGED (0x8002) OB 86
- TOPOLOGY_MISMATCH (0x8004) OB 86
- TOPOLOGY_OK (0x8003) OB 86
- 8.5.2.1 MANUFACTOR_SPECIFIC_ALARM_MIN (0x0020 oder 0x0021)

Eigenschaften

Auslösendes Event

EC_NOTIFY_MBOXRCV - Mailbox-Nachricht erhalten - mit dem Typ eMbxTferType_COE_EMERGENCY

Mitgelieferte Daten

- Slave-Adresse
- CoE-Emergency

Bedingungen

- Der Error-Code der CoE-Emergency muss von einer VIPA Slave-Station stammen.
 - Der Error-Code der CoE-Emergency muss ungleich 0x0000 sein.
 - Der Error-Code der CoE-Emergency muss ungleich 0xA000 sein.
 - Der Error-Code der CoE-Emergency muss ungleich 0xA001 sein.
 - Der Error-Code der CoE-Emergency muss ungleich 0xFF00 sein.
 - Falls der Error-Code 0xFF00 ist, dann muss das 2. Byte ungleich 1 oder 2 sein.
- Der Error-Code der CoE-Emergency stammt von einer anderen Slave-Station.
 - Jede Emergency wird als OB 57 gemeldet.
- Es ist eine CoE-Emergency während einer Topologie-Änderung aufgetreten.
 - Der Error-Code der CoE-Emergency muss ungleich 0x0000 sein.
 - Der Error-Code der CoE-Emergency muss ungleich 0xA000 und 0xA001 sein.

Alarm-Handling in der CPU

OB-Startinformationen eintragen und OB aufrufen

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0x11
FLT_ID	BYTE	0x5C
PrioLevel	BYTE	0x02
OBNr	BYTE	57

Struktur- element	Datentyp	Beschreibung
Reserved1	BYTE	0xCC
loFlag	BYTE	0x54 oder 0x55 (abhängig vom Adresstyp des alarmauslösenden Moduls)
Info1	WORD	Diagnoseadresse des Slaves
Info2	WORD	Error-Code aus CoE-Emergency
Info3	WORD	Slavestate aus CoE-Emergency
User1	WORD	AlarmPrio, AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

SZL-Daten aktualisieren

Herstellerspezifische Alarme ändern keine SZLs

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	OBNr.	РК	Dat ID 1/2	Info1	Info2	Info3
0x115C	57	0x02	0x54CC	Diagnose- adresse Slave	Alarmtyp	Error-Code CoE-Emer- gency

8.5.2.2 PROZESS_ALARM (0x0002)

Eigenschaften

Auslösendes Event

EC_NOTIFY_MBOXRCV - Mailbox-Nachricht erhalten - mit dem Typ eMbxTferType_COE_EMERGENCY

Mitgelieferte Daten

- Slave-Adresse
- CoE-Emergency

Bedingungen

- Der Error-Code der CoE-Emergency muss gleich 0xFF00 sein und die CoE-Emergency muss von einer VIPA Slave-Station stammen.
- Das 2. Byte von *MEF* muss 1 sein.

Alarm-Handling in der CPU

OB-Startinformationen eintragen und OB aufrufen

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0x11
FLT_ID	BYTE	0x41
PrioLevel	BYTE	Priorität des OB 40
OBNr	BYTE	40
Reserved1	BYTE	reserviert
loFlag	BYTE	0x54 oder 0x55 (abhängig vom Adresstyp des alarmauslösenden Moduls)
Info1	WORD	Diagnoseadresse des Slaves
Info2	WORD	Error-Code aus CoE-Emergency
Info3	WORD	Slavestate aus CoE-Emergency
User1	WORD	Alarmprio, AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

SZL-Daten aktualisieren

Prozessalarme ändern keine SZLs

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

Es erfolgt kein Diagnosepuffer-Eintrag.

8.5.2.3 BUS_STATE_CHANGED (0x8001)

Eigenschaften

Auslösendes Event

- EC_NOTIFY_STATECHANGED Bus-Status wurde geändert Mitgelieferte Daten
- Alter und neuer Status des Masters und die Anzahl der Slave-Module, welche sich nicht im Master-Status befinden.

Bedingungen

keine

Alarm-Handling in der CPU

Für den Fall dass der Master nach "Operational" & *Kapitel 8.1.2 "EtherCAT Zustandsmaschine" auf Seite 135* wechselt wird der OB86 ausgelöst. Über dessen Eventclass können Sie erkennen, ob alle projektierten Slave-Stationen den Statuswechsel durchgeführt haben. Sollten einzelne oder alle Slave-Stationen den Statuswechsel nach "Operational" nicht geschafft haben, so können Sie dies über eine SZL abfragen.

OB-Startinformationen eintragen und OB aufrufen

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0xEC bei Wiederkehr oder 0xED bei Ausfall oder sonstigen VusState- Changed
FLT_ID	BYTE	0x10 Ausfall oder Wiederkehr mit allen Slaves, 0x11 Wiederkehr mit fehlenden Slave(s), 0x20 sonstiger BusState- Changed
PrioLevel	BYTE	Priorität des OB86
OBNr	BYTE	86
Reserved1	BYTE	1, wenn Slave verfügbar, sonst 0
IoFlag	BYTE	0x54 bei Eingangsadresse in ZInfo1, 0x55 bei Ausgangsadresse
Info1	WORD	0xXXYY: XX=OldState, YY=NewState
Info2	WORD	Diagnoseadresse des Masters
Info3	WORD	Anzahl der fehlenden Slaves
User1	WORD	0xXXYY: XX=AlarmPrio, YY=AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

♦ Kapitel 8.4.4 "Diagnose über OB-Startinformationen" auf Seite 148

SZL-Daten aktualisieren

In der SZL 0x0294, 0x0694 und 0x0994 werden jeweils die entsprechenden Bits für die Slaves aktualisiert. Jeder als Alarmevent an die CPU gemeldete Zustandswechsel erzeugt einen Diagnosepuffereintrag und ist in der SZL 0xE0 auslesbar.

E/A-Peripheriestruktur aktualisieren

E/A-Status der Slaves und deren Module werden bei Wiederkehr auf EA_STATUS_BG_VORHANDEN und bei Ausfall auf EA_STATUS_BG_NICHTVORHANDEN gesetzt.

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0xEC10, 0xEC11, 0xED10 oder 0xED20 (abhängig vom Status- wechsel)	PrioLevel von OB86	86	siehe OB- Startinfo Reserved1, IOFlag	alter und neuer Status des Slaves	Diagnose Adresse Master	Anzahl der Slaves, welche vom Status des Masters abweichen

8.5.2.4 DIAGNOSE_ALARM_GEHEND (0x000C)

Eigenschaften

Auslösendes Event

EC_NOTIFY_MBOXRCV - Mailbox-Nachricht erhalten - mit dem Typ eMbxTferType_COE_EMERGENCY

Mitgelieferte Daten

- Slave-Adresse
- CoE-Emergency

Bedingungen

 Der Error-Code der CoE-Emergency muss gleich 0x0000 ("kein Fehler" bzw. "Fehler behoben") sein und die CoE-Emergency muss von einer VIPA Slave-Station stammen.

Alarm-Handling in der CPU

OB-Startinformationen eintragen und OB aufrufen

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0x38
FLT_ID	BYTE	0x42
PrioLevel	BYTE	Priorität des OB82
OBNr	BYTE	82
Reserved1	BYTE	0xC5
loFlag	BYTE	0x54
Info1	WORD	Diagnoseadresse des Slaves
Info2	WORD	Error-Code aus CoE-Emergency
Info3	WORD	Slavestate aus CoE-Emergency

Struktur- element	Datentyp	Beschreibung
User1	WORD	Alarmprio, AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

SZL-Daten aktualisieren

In der SZL 0694 und 0692 wird jeweils das entsprechende Bit für den Slave aktualisiert.

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0x3842	PrioLevel von OB 82	82	0xC554	Diagnose Adresse Slaves	EtherCAT Error-Code	Slave Status

8.5.2.5 DIAGNOSE_ALARM_Kommend (0x0001)

Eigenschaften

Auslösendes Event

EC_NOTIFY_MBOXRCV - Mailbox-Nachricht erhalten - mit dem Typ eMbxTferType_COE_EMERGENCY

Mitgelieferte Daten

- Slave-Adresse
- CoE-Emergency

Bedingungen

- Der Error-Code der CoE-Emergency muss ungleich 0x0000 sein
- Der Error-Code der CoE-Emergency muss ungleich 0xA000 und 0xA001 sein

Alarm-Handling in der CPU

OB-Startinformationen eintragen und OB aufrufen

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0x39
FLT_ID	BYTE	0x42
PrioLevel	BYTE	Priorität des OB82
OBNr	BYTE	82
Reserved1	BYTE	0xC5

Struktur- element	Datentyp	Beschreibung
loFlag	BYTE	0x54
Info1	WORD	Diagnoseadresse des Slaves
Info2	WORD	Error-Code aus CoE-Emergency
Info3	WORD	Slavestate aus CoE-Emergency
User1	WORD	AlarmPrio, AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

SZL-Daten aktualisieren

In der SZL 0694 und 0692 wird jeweils das entsprechende Bit für den Slave aktualisiert.

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0x3942	PrioLevel von OB82	82	0xC554	Diagnose Adresse Slave	EtherCAT Error-Code	Slave Status

8.5.2.6 SLAVE_STATE_CHANGED (0x8002)

Eigenschaften

Auslösendes Event

- EC_NOTIFY_SLAVE_UNEXPECTED_STATE Slave ist nicht im angeforderten Status.
- Die Applikation hat einen Slave erfolgreich in einen anderen Zustand versetzt.

Mitgelieferte Daten

aktueller neuer Status

Wenn gerade ein Master-Status-Wechsel durchgeführt wird, wird diese Meldung **nicht** zur CPU gesendet, da das Gesamtergebnis für fehlerhafte Slaves des Status-Wechsels im Event BUS_STATE_CHANGED übermittelt wird.

Alarm-Handling in der CPU

Der jeweils neue Slave-Status wird auf Seiten der CPU für jeden Slave gespeichert.

Struktur- element	Datentyp	Beschreibung
EventClass	BYTE	0xEC bei Wiederkehr oder 0xED bei Ausfall oder sonstigen VusState- Changed
FLT_ID	BYTE	0x12 Ausfall oder Wiederkehr, 0x22 sonstiger BusStateChanged
PrioLevel	BYTE	Priorität des OB 86
OBNr	BYTE	86
Reserved1	BYTE	1, wenn Slave verfügbar, sonst 0
loFlag	BYTE	0x54 bei Eingangsadresse in ZInfo1, 0x55 bei Ausgangsadresse
Info1	WORD	0xXXYY: XX=OldState, YY=NewState
Info2	WORD	Diagnoseadresse des Slaves
Info3	WORD	AL Status Code
User1	WORD	0xXXYY: XX=AlarmPrio, YY=AlarmRef
User2	WORD	EtherCAT-Slave-Adresse

OB-Startinformationen eintragen und OB aufrufen

SZL-Daten aktualisieren

In der SZL 0x0294, 0x0694 und 0x0994 werden jeweils die entsprechenden Bits für die Slaves aktualisiert. Jeder als Alarmevent an die CPU gemeldete Zustandswechsel erzeugt einen Diagnosepuffereintrag und ist in der SZL 0xE0 auslesbar.

E/A-Peripheriestruktur aktualisieren

E/A-Status der Slaves und deren Module werden bei Wiederkehr auf EA_STATUS_BG_VORHANDEN und bei Ausfall auf EA_STATUS_BG_NICHTVORHANDEN gesetzt.

Zwischenspeichern des Alarms

Snapshot zum Zeitpunkt des Alarmevents - kann über SFB 54 ausgewertet werden.

Diagnosepuffer schreiben

Eventld:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0xEC10, 0xEC11, 0xED10 oder 0xED20 (abhängig vom Status- wechsel)	PrioLevel von OB 86	86	siehe OB- Startinfo Reserved1, IOFlag	alter und neuer Status des Slaves	Diagnose Adresse Master	Anzahl der Slaves, welche vom Status des Masters abweichen

8.5.2.7 TOPOLOGY_MISMATCH (0x8004)

Info1

Info2

Info3

User1

User2

	``	/				
Eigenschaften	Auslösendes	Event				
	 Alarm wird ausgelöst, wenn die Topology OK war und das Event EC_NOTIFY_SB_MISMATCH auftritt. Der Alarm wird nur bei einer vorhandenen Konfiguration ausgelöst. 					
	Mitgelieferte D	Daten				
	keine					
	Bedingungen					
	keine					
Alarm-Handling in der	OB-Startinformationen eintragen und OB aufrufen					
CFU	Struktur- element	Datentyp	Beschreibung			
	EventClass	BYTE	0xED			
	FLT_ID	BYTE	0x30			
	PrioLevel	BYTE	Priorität des OB 86			
	OBNr	BYTE	86			
	Reserved1	BYTE	0			

WORD

WORD

WORD

WORD

WORD

0

0

0

0

Diagnoseadresse des Masters

SZL Daten aktualisieren

In der SZL xy94 wird eine Soll/Ist-Differenz eingetragen.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0xED30	PrioLevel von OB 86	86	0x0000	0	Diagnose Adresse Master	0

8.5.2.8 TOPOLOGY_OK (0x8003)

Eigenschaften

Auslösendes Event

 Alarm wird ausgelöst, wenn die Topology OK war und das Event EC_NOTIFY_SB_STATUS mit pScanBusStatus->dwResultCode = 0 auftritt. Der Alarm wird nur bei einer vorhandenen Konfiguration ausgelöst.

Mitgelieferte Daten

keine

Bedingungen

keine

Alarm-Handling in der

OB-Startinformationen eintragen und OB aufrufen

CPU

Datentyp	Beschreibung
BYTE	0xED
BYTE	0x30
BYTE	Priorität des OB 86
BYTE	86
BYTE	0
BYTE	0
WORD	0
WORD	Diagnoseadresse des Masters
WORD	0
WORD	0
WORD	0
	Datentyp BYTE BYTE BYTE BYTE BYTE WORD WORD WORD WORD WORD

Systemeigenschaften

SZL Daten aktualisieren

In der SZL xy94 wird eine Soll/Ist-Differenz eingetragen.

Diagnosepuffer schreiben

EventId:= Eventclass, StartEvent	PrioLevel	OBNr.	Reserved1, IOFlag	Info1	Info2	Info3
0xED30	PrioLevel von OB 86	86	0x0000	0	Diagnose Adresse Master	0

8.6 Systemeigenschaften

Allgemeines	Die Systemeigenschaften des EtherCAT-Masters sind nicht als Ein- schränkungen zu sehen bzw. einem Fehlverhalten gleichzustellen, vielmehr sind gewisse Funktionalitäten nicht zu erreichen, oder aus Sicht des Gesamtsystems gewollt.
Verhalten bei Topo- logie-Änderungen	Werden Topologie-Änderungen am EtherCAT-Bus durchgeführt, kann es zu Buszykluszeit-Überschreitungen kommen. Topologie- Änderungen sollten nicht im Zustand <i>Op</i> bzw. <i>SafeOp</i> durchgeführt werden, ggf. müssen Sie mittels <i>SPEED7 EtherCAT Manager</i> oder SDO-Zugriff den Status des EtherCAT-Masters manuell anpassen. Buszykluszeit-Überschreitungen können Sie mit dem OB 86 unter Einsatz des SFB 54 ermitteln. Nähere Informationen zum Einsatz des SFB 54 finden Sie in der im Handbuch "SPEED7 Operationsliste" von VIPA.
Konfiguration von mehr als 128 EtherCAT Slave- Stationen	Ab einer Konfiguration von mehr als 128 EtherCAT Slave-Stationen können die EtherCAT-Zustände nicht mehr korrekt aktualisiert werden, sobald eine Konfiguration auf die Baugruppe geladen wird. Hierbei zeigt die EC-LED des EtherCAT-Masters den Zustand <i>PreOp</i> an, obwohl sich dieser im <i>SafeOP</i> befindet. Auch die CPU bekommt den Zustand <i>PreOp</i> geliefert.
	Ursache : Die CP-Applikation kann die große Anzahl an Stack-Notifi- cations nicht mehr bearbeiten, da bei jedem Statuswechsel von jeder Slave-Station eine Notification gesendet wird.
	Abhilfe: Indem Sie einen STOP/RUN-Übergang bei der CPU durch- führen, wechselt das gesamte EtherCAT-System in den Zustand <i>OP</i> .
Kompensation der Lei- tungslänge (Continuous propagation compensa- tion)	Der EtherCAT-Master unterstützt diese Funktion aktuell nicht.
Verteilte Uhren (Distri- buted Clocks)	Der EtherCAT-Master unterstützt <i>Distributed Clocks</i> nur bei Buszy- kluszeiten bis 4ms. Bei größeren Buszykluszeiten wird <i>Distributed</i> <i>Clocks</i> nicht unterstützt.

Zugriff auf das Objektverzeichnis> Übersicht

SM Watchdog Sofern Sie lange Zykluszeiten (> 100ms) verwenden, sollten Sie im SPEED7 EtherCAT Manager immer den "SM Watchdog" ebenfalls entsprechend erhöhen oder ausschalten. Ansonsten wechselt Ihre Slave-Station nach Ablauf der "SM Watchdog" -Zeit in Safe-Op und löst den OB 86 aus. Von jetzt ab können Sie diesen Slave nur noch manuell in Op setzen! Ohne Anpassung der "SM Watchdog"-Zeit bekommen Sie bei Einsatz der EtherCAT Slave-Stationen von VIPA bei Zykluszeiten > 100ms immer die Fehlermeldung AIStatusCode 0x1B. Hierbei belässt die CPU die Slave-Station im aktuellen Status, d.h. dieser wird beim Polling ignoriert. Den Status können Sie aber mittels SDO-Zugriff bzw. mit dem SPEED7 EtherCAT Manager ändern.

Da Slave- und Modulparameter mittels SDO-Zugriff bzw. SDO-Init-Kommando übertragen werden, bleibt die Parametrierung solange bestehen, bis ein Power-Cycle durchgeführt wird oder neue Parameter für die gleichen SDO-Objekte übertragen werden.

Beim Urlöschen werden Slave- und Modul-Parameter nicht zurückgesetzt!

8.	7	F	irı	mν	var	eu	pd	ate
v :						~~		MLV .

- **EtherCAT-Slave-Station** Firmwareupdate über den SPEED7 EtherCAT Manager. Näheres hierzu finden Sie im zugehörigen Handbuch bzw. in der Onlinehilfe.
- 8.8 Zugriff auf das Objektverzeichnis

8.8.1 Übersicht

Bausteine

Mit folgenden Bausteinen haben Sie zur Laufzeit Zugriff auf das Objektverzeichnis von EtherCAT-Slave-Stationen und EtherCAT-Master:

- FB 52 Read SDO Lesezugriff auf Objektverzeichnis
- FB 53 Write SDO Schreibzugriff auf Objektverzeichnis

Hierbei handelt es sich um VIPA-spezifische Bausteine. Näheres zum Einsatz dieser Bausteine finden Sie im Handbuch "Operationsliste".

Bitte beachten Sie beim Zugriff auf das Objektverzeichnis, dass abhängig von Ihrem Master-System, die Byte-Reihenfolge gedreht sein kann! Zugriff auf das Objektverzeichnis> FB 52 - Read SDO - Lesezugriff auf Objektverzeichnis

8.8.2 FB 52 - Read SDO - Lesezugriff auf Objektverzeichnis

Beschreibung Mit diesem Baustein können Sie auf das Objektverzeichnis von EtherCAT-Slave-Stationen und EtherCAT-Master lesend zugreifen. Hierbei handelt es sich um einen asynchron arbeitenden Baustein, d.h. die Bearbeitung erstreckt sich über mehrere Baustein-Aufrufe. Sie starten den SDO-Auftrag, indem Sie den FB 52 mit REQ = 1 aufrufen. Über den Ausgangsparameter BUSY und den Ausgangsparameter RETVAL wird der Zustand des Auftrags angezeigt. Die Datensatzübertragung ist abgeschlossen, wenn der Ausgangsparameter BUSY den Wert FALSE angenommen hat. Die Fehlerbehandlung erfolgt über die Parameter ERROR, ERROR_ID und RETVAL.

Parameter

Parameter	Deklara- tion	Datentyp	Beschreibung
REQ	IN	BOOL	REQ = 1:
			Aktiviert den SDO-Zugriff bei steigender Flanke.
ID	IN	WORD	Logische Basisadresse der EtherCAT-Slave-Sta- tion bzw. des Masters in der Hardwarekonfigura- tion.
			werden (Bsp. für Adresse 5: ID:=DW#16#8005). Bei einer Mischbaugruppe ist die kleinere der beiden Adressen anzugeben.
INDEX	IN	WORD	Index des Objekts für den SDO-Zugriff.
SUBINDEX	IN	BYTE	Subindex des Objekts für den SDO-Zugriff.
COMPL_ACCESS	IN	BOOL	Mit diesem Parameter wird bestimmt, ob nur ein einzelner Subindex oder das gesamte Objekt gelesen werden soll.
MLEN	IN	INT	Maximale Länge der zu lesenden Daten.
VALID	OUT	BOOL	Gibt an, ob ein neuer Datensatz empfangen wurde und gültig ist.
BUSY	OUT	BOOL	Dieser Parameter gibt den Bearbeitungsstatus des SDO-Zugriffs an. BUSY = 1: SDO-Zugriff ist noch in Bearbeitung
ERROR	OUT	BOOL	<i>ERROR</i> = 1: Beim Lesevorgang trat ein Fehler auf.
RETVAL	OUT	INT	Rückgabewert (0 = OK)
ERROR_ID	OUT	DWORD	Busspezifischer Fehlercode. Ist während der Bearbeitung des SDO-Zugriffs ein Fehler aufge- treten, so ist in diesem Parameter der SDO- Abort-Fehlercode (EtherCAT-Fehlercode) ange- geben.
LEN	OUT	INT	Länge der gelesenen Daten.
RECORD	INOUT	ANY	Bereich für die gelesenen Daten.

Zugriff auf das Objektverzeichnis> FB 52 - Read SDO - Lesezugriff auf Objektverzeichnis

Besonderheiten bei COMPL_ACCESS (Com-	Bei Aktivierung des Parameters COMPL_ACCESS ist folgendes zu beachten:
pleteAccess)	 Bei COMPL_ACCESS = true darf der SUBINDEX nur 0 oder 1 betragen! Ansonsten bekommen Sie eine Fehlermeldung. Bei COMPL_ACCESS = true werden für SUBINDEX 0 2Byte ausgelesen, da SUBINDEX 1 einen Offset von 2Byte besitzt.
RETVAL (Rückgabe- wert)	Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als Rückgabewert möglich.

RETVAL	Description
0x80A5	Fehler beim Lesen eines SDO vom Master-System.
	Einen Fehlercode finden Sie in ERROR_ID.
0x80A6	Fehler beim Lesen eines SDO von einer EtherCAT-Slave-Station.
	Einen Fehlercode finden Sie in ERROR_ID.
0x80D2	Fehler beim Lesen eines SDO aufgrund falscher Aufruf-Parameter.
	Einen Fehlercode finden Sie in ERROR_ID.

ERROR_ID

Wenn der Parameter *RETVAL* den Wert 0x80A5 oder 0x80A6 hat finden Sie in *ERROR_ID* die entsprechende Fehlermeldung. Ansonsten ist *ERROR_ID* 0.

Internal error

0x00000000	No error
0x98110001	Feature not supported
0x98110002	Invalid Index
0x98110003	Invalid Offset
0x98110005	Invalid Size
0x98110006	Invalid Data
0x98110007	Not ready
0x98110008	Busy
0x9811000A	No Memory left
0x9811000B	Invalid Parameter
0x9811000C	Not Found
0x9811000E	Invalid state
0x98110010	Timeout
0x98110011	Open Failed
0x98110012	Send Failed
0x98110014	Invalid Command

Zugriff auf das Objektverzeichnis> FB 52 - Read SDO - Lesezugriff auf Objektverzeichnis

0x98110015	Unknown Mailbox Protocol Command
0x98110016	Access Denied
0x98110024	Slave error

Value	Text	Possible errror cause
0x98110040	SDO: Toggle bit not alternated	CoE abort code 0x05030000 of slave
0x98110041	SDO protocol timed out	CoE abort code 0x05040000 of slave
0x98110042	SDO: Client/server command specifier not valid or unknown	CoE abort code 0x05040001 of slave
0x98110043	SDO: Invalid block size (block mode only)	CoE abort code 0x05040002 of slave
0x98110044	SDO: Invalid sequence number (block mode only)	CoE abort code 0x05040003 of slave
0x98110045	SDO: CRC error (block mode only)	CoE abort code 0x05040004 of slave
0x98110046	SDO: Out of memory	CoE abort code 0x05040005 of slave
0x98110047	SDO: Unsupported access to an object	CoE abort code 0x06010000 of slave
0x98110048	SDO: Attempt to read a write only object	CoE abort code 0x06010001 of slave
0x98110049	SDO: Attempt to write a read only object	CoE abort code 0x06010002 of slave
0x9811004A	SDO: Object does not exist in the object dictionary	CoE abort code 0x06020000 of slave
0x9811004B	SDO: Object cannot be mapped to the PDO	CoE abort code 0x06040041 of slave
0x9811004C	SDO: The number and length of the objects to be mapped would exceed PDO length	CoE abort code 0x06040042 of slave
0x9811004D	SDO: General parameter incompatibility reason	CoE abort code 0x06040043 of slave
0x9811004E	SDO: General internal incompatibility in the device	CoE abort code 0x06040047 of slave
0x9811004F	SDO: Access failed due to an hardware error	CoE abort code 0x06060000 of slave
0x98110050	SDO: Data type does not match, length of service parameter does not match	CoE abort code 0x06070010 of slave
0x98110051	SDO: Data type does not match, length of service parameter too high	CoE abort code 0x06070012 of slave
0x98110052	SDO: Data type does not match, length of service parameter too low	CoE abort code 0x06070013 of slave
0x98110053	SDO: Sub-index does not exist	CoE abort code 0x06090011 of slave
0x98110054	SDO: Value range of parameter exceeded (only for write access)	CoE abort code 0x06090030 of slave
0x98110055	SDO: Value of parameter written too high	CoE abort code 0x06090031 of slave
0x98110056	SDO: Value of parameter written too low	CoE abort code 0x06090032 of slave
0x98110057	SDO: Maximum value is less than minimum value	CoE abort code 0x06090036 of slave
0x98110058	SDO: General error	CoE abort code 0x08000000 of slave
0x98110059	SDO: Data cannot be transferred or stored to the application	CoE abort code 0x08000020 of slave
0x9811005A	SDO: Data cannot be transferred or stored to the appli- cation because of local control	CoE abort code 0x08000021 of slave

Zugriff auf das Objektverzeichnis> FB 53 - Write SDO - Schreibzugriff auf Objektverzeichnis

Value	Text	Possible errror cause
0x9811005B	SDO: Data cannot be transferred or stored to the appli- cation because of the present device state	CoE abort code 0x08000022 of slave
0x9811005C	SDO: Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error)	CoE abort code 0x08000023 of slave
0x9811005D	SDO: Unknown code	Unknown CoE abort code of slave
0x9811010E	Command not executed	Slave is not present at the bus

8.8.3 FB 53 - Write SDO - Schreibzugriff auf Objektverzeichnis

Beschreibung Mit diesem Baustein können Sie auf das Objektverzeichnis von EtherCAT-Slave-Stationen und EtherCAT-Master schreibend zugreifen. Hierbei handelt es sich um einen asynchron arbeitenden Baustein, d.h. die Bearbeitung erstreckt sich über mehrere Baustein-Aufrufe. Sie starten den SDO-Auftrag, indem Sie den FB 53 mit *REQ* = 1 aufrufen. Über den Ausgangsparameter *BUSY* und den Ausgangsparameter *RETVAL* wird der Zustand des Auftrags angezeigt. Die Datensatzübertragung ist abgeschlossen, wenn der Ausgangsparameter *BUSY* den Wert FALSE angenommen hat. Die Fehlerbehandlung erfolgt über die Parameter *ERROR*, *ERROR_ID* und *RETVAL*.

Parameter	Deklara- tion	Datentyp	Beschreibung
REQ	IN	BOOL	REQ = 1: Aktiviert den SDO-Zugriff bei steigender Flanke.
ID	IN	WORD	Logische Basisadresse der EtherCAT-Slave-Sta- tion bzw. des Masters in der Hardwarekonfigura- tion.
			Bei einer Ausgabebaugruppe muss Bit 15 gesetzt werden (Bsp. für Adresse 5: ID:=DW#16#8005). Bei einer Mischbaugruppe ist die kleinere der beiden Adressen anzugeben.
INDEX	IN	WORD	Index des Objekts für den SDO-Zugriff.
SUBINDEX	IN	BYTE	Subindex des Objekts für den SDO-Zugriff.
COMPL_ACCESS	IN	BOOL	Mit diesem Parameter wird bestimmt, ob nur ein einzelner Subindex oder das gesamte Objekt geschrieben werden soll.
LEN	IN	INT	Maximale Länge der zu schreibenden Daten.
DONE	OUT	BOOL	Gibt an, ob ein neuer Datensatz übertragen wurde.
BUSY	OUT	BOOL	Dieser Parameter gibt den Bearbeitungsstatus des SDO-Zugriffs an.
			<i>BUSY</i> = 1: SDO-Zugriff ist noch in Bearbeitung.

Parameter

Zugriff auf das Objektverzeichnis> FB 53 - Write SDO - Schreibzugriff auf Objektverzeichnis

Parameter	Deklara- tion	Datentyp	Beschreibung
ERROR	OUT	BOOL	<i>ERROR</i> = 1: Beim Schreibvorgang trat ein Fehler auf.
RETVAL	OUT	INT	Rückgabewert (0 = OK)
ERROR_ID	OUT	DWORD	Busspezifischer Fehlercode. Ist während der Bearbeitung des SDO-Zugriffs ein Fehler aufge- treten, so ist in diesem Parameter der SDO- Abort-Fehlercode (EtherCAT-Fehlercode) ange- geben.
LEN	OUT	INT	Länge der zu schreibenden Daten.
RECORD	INOUT	ANY	Bereich für die zu schreibenden Daten.

Besonderheiten bei COMPL_ACCESS (Com-	Bei Aktivierung des Parameters COMPL_ACCESS ist folgendes zu beachten:
pleteAccess)	 Bei COMPL_ACCESS = true darf der SUBINDEX nur 0 oder 1 betragen! Ansonsten bekommen Sie eine Fehlermeldung. Bei COMPL_ACCESS = true werden für SUBINDEX 0 2Byte geschrieben, da SUBINDEX 1 einen Offset von 2Byte besitzt.
	Zee Steller av des bien er fre führten merstuden er fierbare. Deblemende

Zusätzlich zu den hier aufgeführten modulspezifischen Fehlercodes sind auch noch die allgemeingültigen Fehlercodes für FC/SFCs als **RETVAL** (Rückgabe-Rückgabewert möglich.

RETVAL	Description
0x80A5	Fehler beim Schreiben eines SDO vom Master- System.
	Einen Fehlercode finden Sie in ERROR_ID.
0x80A6	Fehler beim Schreiben eines SDO von einer EtherCAT-Slave-Station.
	Einen Fehlercode finden Sie in ERROR_ID.
0x80D2	Fehler beim Schreiben eines SDO aufgrund falscher Aufruf-Parameter.
	Einen Fehlercode finden Sie in ERROR_ID.

Wenn der Parameter *RETVAL* den Wert 0x80A5 oder 0x80A6 hat finden Sie in *ERROR_ID* die entsprechende Fehlermeldung. ERROR_ID Ansonsten ist *ERROR*_*ID* 0.

Internal error

0x00000000	No error
0x98110001	Feature not supported
0x98110002	Invalid Index
0x98110003	Invalid Offset

wert)

Zugriff auf das Objektverzeichnis> FB 53 - Write SDO - Schreibzugriff auf Objektverzeichnis

0x98110005	Invalid Size
0x98110006	Invalid Data
0x98110007	Not ready
0x98110008	Busy
0x9811000A	No Memory left
0x9811000B	Invalid Parameter
0x9811000C	Not Found
0x9811000E	Invalid state
0x98110010	Timeout
0x98110011	Open Failed
0x98110012	Send Failed
0x98110014	Invalid Command
0x98110015	Unknown Mailbox Protocol Command
0x98110016	Access Denied
0x98110024	Slave error

Value	Text	Possible errror cause
0x98110040	SDO: Toggle bit not alternated	CoE abort code 0x05030000 of slave
0x98110041	SDO protocol timed out	CoE abort code 0x05040000 of slave
0x98110042	SDO: Client/server command specifier not valid or unknown	CoE abort code 0x05040001 of slave
0x98110043	SDO: Invalid block size (block mode only)	CoE abort code 0x05040002 of slave
0x98110044	SDO: Invalid sequence number (block mode only)	CoE abort code 0x05040003 of slave
0x98110045	SDO: CRC error (block mode only)	CoE abort code 0x05040004 of slave
0x98110046	SDO: Out of memory	CoE abort code 0x05040005 of slave
0x98110047	SDO: Unsupported access to an object	CoE abort code 0x06010000 of slave
0x98110048	SDO: Attempt to read a write only object	CoE abort code 0x06010001 of slave
0x98110049	SDO: Attempt to write a read only object	CoE abort code 0x06010002 of slave
0x9811004A	SDO: Object does not exist in the object dictionary	CoE abort code 0x06020000 of slave
0x9811004B	SDO: Object cannot be mapped to the PDO	CoE abort code 0x06040041 of slave
0x9811004C	SDO: The number and length of the objects to be mapped would exceed PDO length	CoE abort code 0x06040042 of slave
0x9811004D	SDO: General parameter incompatibility reason	CoE abort code 0x06040043 of slave
0x9811004E	SDO: General internal incompatibility in the device	CoE abort code 0x06040047 of slave
0x9811004F	SDO: Access failed due to an hardware error	CoE abort code 0x06060000 of slave
0x98110050	SDO: Data type does not match, length of service parameter does not match	CoE abort code 0x06070010 of slave

Objekt-Verzeichnis> Objektübersicht

Value	Text	Possible errror cause
0x98110051	SDO: Data type does not match, length of service parameter too high	CoE abort code 0x06070012 of slave
0x98110052	SDO: Data type does not match, length of service parameter too low	CoE abort code 0x06070013 of slave
0x98110053	SDO: Sub-index does not exist	CoE abort code 0x06090011 of slave
0x98110054	SDO: Value range of parameter exceeded (only for write access)	CoE abort code 0x06090030 of slave
0x98110055	SDO: Value of parameter written too high	CoE abort code 0x06090031 of slave
0x98110056	SDO: Value of parameter written too low	CoE abort code 0x06090032 of slave
0x98110057	SDO: Maximum value is less than minimum value	CoE abort code 0x06090036 of slave
0x98110058	SDO: General error	CoE abort code 0x08000000 of slave
0x98110059	SDO: Data cannot be transferred or stored to the application	CoE abort code 0x08000020 of slave
0x9811005A	SDO: Data cannot be transferred or stored to the appli- cation because of local control	CoE abort code 0x08000021 of slave
0x9811005B	SDO: Data cannot be transferred or stored to the appli- cation because of the present device state	CoE abort code 0x08000022 of slave
0x9811005C	SDO: Object dictionary dynamic generation fails or no object dictionary is present (e.g. object dictionary is generated from file and generation fails because of an file error)	CoE abort code 0x08000023 of slave
0x9811005D	SDO: Unknown code	Unknown CoE abort code of slave
0x9811010E	Command not executed	Slave is not present at the bus

8.9 Objekt-Verzeichnis

8.9.1 Objektübersicht

Index	Object Dictionary Area
0x0000 0x0FFF	Data Type Area Objects
0x1000 0x1FFF	CoE Communication Area Objects
0x2000 0x20FF	Generic Master Area Objects
0x2100 0x21FF	Distributed Clocks Objects
0x3000 0x3FFF	Slave Configuration / Information Objects
0x4000 0x7FFF	Reserved Area
0x8000 0x8FFF	CoE Slave Configuration Objects
0x9000 0x9FFF	CoE Slave Information Objects
0xA000 0xAFFF	CoE Slave Diagnosis Data Objects
0xB000 0xEFFF	Reserved Area
0xF000 0xFFFF	CoE Device Area Objects

Objekt-Verzeichnis> CoE Communication Area Objects: 0x1000-0x1FFF

8.9.2 CoE Communication Area Objects: 0x1000-0x1FFF

Index	Object Type	Name	Туре
0x1000	VAR	Device Type	Unsigned32
0x1001	VAR	Error Register	Unsigned8
0x1008	VAR	Manufacturer Device Name String	VisibleString
0x1009	VAR	Manufacturer Hardware Version String	VisibleString
0x100A	VAR	Manufacturer Software Version String	VisibleString
0x1018	RECORD	Identity Object	Identity (0x23)
0x10F3	RECORD	History Object	History (0x26)

8.9.2.1 Device Type 0x1000

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Device Type	Unsigned32	ro	0x00001389	0x00001389 means MDP

8.9.2.2 Device Name 0x1008

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Device name	Visible string	ro	VIPA 31x	Name of the EtherCAT device

8.9.2.3 Hardware Version 0x1009

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Hard- ware version	Visible string	ro	"V MM.mm.ss.bb"" MM = Major Version mm = Minor Version ss = Service Pack bb = Build e.g. "V 01.05.02.02"	Hardware version of the EtherCAT device

Objekt-Verzeichnis> CoE Communication Area Objects: 0x1000-0x1FFF

8.9.2.4 Software Version 0x100A

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Software version	Visible string	ro	"V MM.mm.ss.bb"" MM = Maior Version	Software version of the EtherCAT device
				mm = Minor Version	
				ss = Service Pack	
				bb = Build	
				e.g. "V 01.05.02.02"	

8.9.2.5 Identity Object 0x1018

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Number of Entries	Unsigned8	ro	0x04 (default)	
0x01	Vendor ID	Unsigned32	ro	0x0000022B (default)	Vendor ID of the EtherCAT device
0x02	Product Code	Unsigned32	ro	0x00001636 (default)	Product Code of the EtherCAT device
0x03	Revision Number	Unsigned32	ro	0x00000000 (default)	Revision Number (EtherCAT master soft- ware version)
0x04	Serial Number	Unsigned32	ro	0x00000000 (default)	Serial Number of the EtherCAT device

8.9.2.6 History Object 0x10F3

Sub- index	Name	Туре	Access	Value	Meaning
0	Number of Ent- ries	Unsigned8	ro		
1	Maximum number of Diag messages	Unsigned8	ro		
2	Subindex of newest Diag message	Unsigned8	ro		
3	Subindex of newest ack- nowledged Diag message	Unsigned8	r/w		
4	New Diag mes- sages available	BOOL32	ro		

Objekt-Verzeichnis> CoE Communication Area Objects: 0x1000-0x1FFF

Sub- index	Name	Туре	Access	Value	Meaning
5	Flags (UINT16, r/w)	Unsigned1 6	r/w	0	Bit 0 = 1: Enable Emergency sending (default = 0) Bit 1 = 1: Disable Storing Info Messages (default = 0) Bit 2 = 1: Disable Storing Warning Messages (default = 0) Bit 3 = 1: Disable Storing Error Messages (default = 0) Bit 415: reserved for future use
6 255			ro		

8.9.2.6.1 Diagnosis Messages Object 0x10F3: 6-255

Byte- Offset	Name	Туре	Access	Value	Meaning
0	Diag-	Unsigned32	ro		Bit 011: free use
	Number				Bit 1215 = 14: to be comp. with Emergency Error
					Bit 1631 = 0: reserved
					Bit 1631 = 0xFFFE: free use
					Bit 1631 = 0xFFFF: reserved
4	Flags	Unsigned16	ro		Bit 03: Diag type (0 = Info, 1 = warning, 2 = error)
					Bit 415: reserved
6	Text ID	Unsigned16	ro		0 = no Text ID
					1-65535 = Reference to a Text ID with formatted string
8	Time Stamp in ns (from DC)	Unsigned64	ro		
16	Flags para- meter 1	Unsigned16	ro		
18	Parameter 1	several	ro		

Byte- Offset	Name	Туре	Access	Value	Meaning
Ν	Flags para- meter n	Unsigned16	ro		
N+2	Parameter n	several	ro		

8.9.3 Generic Master Objects: 0x2000-0x20FF

Index	Object Type	Name	Туре
0x2000	VAR	Master State Change Command Register	Unsigned32
0x2001	VAR	Master State Summary	Unsigned32
0x2002	RECORD	Bus Diagnosis Object	BusDiagnostic (0x40)
0x2005	RECORD	MAC Address	MACAddress (0x41)
0x2010	VAR	Debug Register	Unsigned48
0x2020	RECORD	Master Init. Parameters	MasterInitParm (0x42)

8.9.3.1 Master State Change Command Register 0x2000

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Master State	Unsigned32	r/w	0 = invalid 1 = init 2 = pre-operational 3 = bootstrap mode 4 = safe operational 8 = operational	

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Master	Unsigned32	ro		Bit 0: = 1 Master OK
	State				Bit 13: reserved
					Bit 47: Master State
					Bit 8: Slaves in requested State
					Bit 9: Master in requested State
					Bit 10: Bus Scan Match
					Bit 11: reserved
					Bit 12: DC is enabled
					Bit 13: DC In-Sync
					Bit 14: DC Busy
					Bit 15: Reserved
					Bit 16: Link Up Bit
					1731: reserved

8.9.3.2 Master State Summary 0x2001

Master ist Ok wenn Topologie Ok (Mismatch wenn nicht projektierter Slave vorhanden). Master muss in *Op* sein, Slaves müssen im *Op* sein und *Distributed Clocks* muss *insync* sein sofern aktiv.

Parameter Flags Bit 1215	Parameter Flags Bit 011	Type of Data	Data
0	CoE DataType e.g. 0x0007 = UINT32	Data Type	Data defined through CoE DataType
1	Length in Byte	Byte Array	Byte stream byData[Size]
2	Length in Byte	ASCII-String	String szString[Length] (not '\0' terminated)
3	Length in Byte	Unicode String	String wszString[Length/2] (not L'\0' terminated)
4	0	Text Id	Text Id (Word)

8.9.3.3 Bus Diagnosis Object 0x2002

Subindex	Description	Туре	Access
0x00	Number of Entries	Unsigned8	ro
0x01	Reserved	Unsigned16	ro

Subindex	Description	Туре	Access
0x02	Configuration Checksum CRC32	Unsigned32	ro
0x03	Number of found Slave	Unsigned32	ro
0x04	Number of found DC Slave	Unsigned32	ro
0x05	Number of Slaves in Configuration	Unsigned32	ro
0x06	Number of Mailbox Slaves in Configuration	Unsigned32	ro
0x07	Counter: TX frames	Unsigned32	ro
0x08	Counter: RX frames	Unsigned32	ro
0x09	Counter: Lost frames	Unsigned32	ro
0x10	Counter: Cyclic frames	Unsigned32	ro
0x11	Counter: Cyclic datagrams	Unsigned32	ro
0x12	Counter: Acyclic frames	Unsigned32	ro
0x13	Counter: Acyclic datagrams	Unsigned32	ro
0x14	Clear Counters by writing 1 to bit(s) Bit 0: Clear all Counters Bit 1: Clear Tx Frame Counter (Idx 7) Bit 2: Clear Rx Frame Counter (Idx 8) Bit 3: Clear Lost Frame Counter (Idx 9) Bit 4: Clear Cyclic Frame Counter (Idx 10) Bit 5: Clear Cyclic Datagram Counter (Idx 11) Bit 6: Clear Acyclic Frame Counter (Idx 12) Bit 7: Clear Acyclic DataGram Counter (Idx 13) Bit 831: Reserved	Unsigned32	r/w

8.9.3.4 MAC Address 0x2005

Subindex	Description	Туре	Access
0x00	Number of Entries	Unsigned8	ro
0x01	Hardware	Unsigned48	ro
0x02	Red Hardware	Unsigned48	ro
0x03	Configuration Source	Unsigned48	ro
0x04	Configuration Destination	Unsigned48	

8.9.3.5 Debug Register 0x2010

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Debug Register	Unsigned38	r/w	Upper 16Bit: 0: activate LinkError Messages 115: reserved Lower 32Bit: Definition of parameter dwStateChangeDebug in struc- ture EC_T_MASTER_CONFIG	

8.9.3.6 Master Init Parameters 0x2020

Sub- index	Description	Туре	Access
00	Number of Entries	Unsigned8	ro
01	EC_T_INITMASTERPARMS.dwVersion Application	Unsigned32	ro
02	dwVersion Master	Unsigned32	ro
03	EC_T_MASTER_CONFIG.nSlaveMultiplier	Unsigned32	ro
04	EC_T_MASTER_CONFIG.dwEcatCmdTimeout in millisec	Unsigned32	ro
05	EC_T_MASTER_CONFIG.dwEcatCmdMaxRetries	Unsigned32	ro
06	EC_T_MASTER_CONFIG.dwCycTimeout in millisec	Unsigned32	ro
07	EC_T_MASTER_CONFIG.dwEoeTimeout in millisec	Unsigned32	ro
08	EC_T_MASTER_CONFIG.dwFoeBusyTimeout in millisec	Unsigned32	ro
09	EC_T_MASTER_CONFIG.dwMaxQueuedEthFrames	Unsigned32	ro
10	EC_T_MASTER_CONFIG.dwMaxSlaveCmdPerFrame	Unsigned32	ro
11	EC_T_MASTER_CONFIG.dwMaxQueuedCoeSlaves	Unsigned32	ro
12	EC_T_MASTER_CONFIG.dwMaxQueuedCoeCmds	Unsigned32	ro
13	EC_T_MASTER_CONFIG.dwStateChangeDebug	Unsigned32	ro
14	EC_T_LINK_DEV_PARAM.szDriverIdent	VisibleString	ro
15	EC_T_LINK_DEV_PARAM.bPollingModeActive	Bool32	ro
16	EC_T_LINK_DEV_PARAM.bAllocSendFrameActive	Bool32	ro

8.9.4 Distributed Clocks Objects: 0x2100-0x21FF

Index	Object Type	Name	Туре
0x2100	VAR	DC Slave Sync Deviation Limit	Unsigned32
0x2101	VAR	DC Current Deviation	Signed32
0x2102	VAR	DC Reserved	Unsigned32
0x2103	VAR	DC Reserved	Unsigned32

8.9.4.1 Distributed Clocks Slave Sync Deviation Limit 0x2100

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Master State	Unsigned32	ro	dwDevLimit	

8.9.4.2 Distributed Clocks Current Deviation 0x2101

Sub- index	Name	Туре	Access	Value	Meaning
0x00	Master State	Unsigned32	ro	dwDeviation	

8.9.4.3 Reserviert: 0x2102 / 0x2103

Dieser Wert ist reserviert.

8.9.5 Slave specific objects

Slave Configuration / Information Objects: 0x3000-0x3FFF

Index	Object Type	Name	Туре
0x3000 	RECORD	Slave Configuration and Infor- mation Objects	SlaveCfgInfo (0x43)
0x3FFF			

CoE Slave Configuration Objects: 0x8000-0x8FFF

Index	Object Type	Name	Туре
0x8000 0x8FFF	RECORD	One index entry for each confi- gured slave (from ESI)	SlaveCfg (0x45)

CoE Slave Information Objects: 0x9000-0x9FFF

Index	Object Type	Name	Туре
0x9000 	RECORD	One index entry for each con- nected BUS-slave (updated during BUS scan)	SlaveInfo (0x46)
0x9FFF			

CoE Slave Diagnosis Data Objects: 0xA000-0xAFFF

Index	Object Type	Name	Туре
0xA000 	RECORD	One subindex entry for each connected BUS-slave (cyclic updated)	SlaveDiag (0x47)
0xAFFF		. ,	

8.9.5.1 Slave Configuration and Information Object 0x3000-0x3FFF

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Entry Valid	Bool32	ro
2	Vendorld (Bus)	Unsigned32	ro
3	ProductCode (Bus)	Unsigned32	ro
4	Revision No (Bus)	Unsigned32	ro
5	Serial No (Bus)	Unsigned32	ro
6	Device Name (Config)	Visible_String[80]	ro
7	Auto Increment Address (Bus)	Unsigned16	ro
8	Physical Address (Bus)	Unsigned16	ro
9	Config Physical Address (Config)	Unsigned16	ro
10	Alias Address (Bus)	Unsigned16	ro

Subindex	Description	Туре	Access
11	PortState (Bus)	Unsigned16	ro
12	DC Support (Bus)	Bool32	ro
13	DC Support 64Bit (Bus)	Bool32	ro
14	Mailbox Support (Config)	Bool32	ro
15	Requested State (slave instance)	Unsigned32	r/w
16	Current State (slave instance)	Unsigned32	ro
17	Error Flag Set (slave instance)	Bool32	ro
18	Enable Linkmessages (slave instance)	Bool32	r/w
19	Error code (slave instance)	Unsigned32	ro
20	Sync Pulse active (Config, slave instance)	Bool32	ro
21	DC Sync 0 Period (Config, slave instance)	Unsigned32	ro
22	DC Sync 1 Period (Config, slave instance)	Unsigned32	ro
23	SB Error Code (Bus Topology)	Unsigned32	ro
24	RX Error Counter Port 0 (Bus)	Unsigned16	ro
25	RX Error Counter Port 1 (Bus)	Unsigned16	ro
26	RX Error Counter Port 2 (Bus)	Unsigned16	ro
27	RX Error Counter Port 3 (Bus)	Unsigned16	ro
28	Forwarded RX Error Counter Port 0 (Bus)	Unsigned8	ro
29	Forwarded RX Error Counter Port 1 (Bus)	Unsigned8	ro
30	Forwarded RX Error Counter Port 2 (Bus)	Unsigned8	ro
31	Forwarded RX Error Counter Port 3 (Bus)	Unsigned8	ro
32	EtherCAT Processing Unit Error Counter (Bus)	Unsigned8	ro
33	PDI Error Counter (Bus)	Unsigned8	ro
34	Reserved	Unsigned16	ro
35	Lost Link Counter Port 0 (Bus)	Unsigned8	ro
36	Lost Link Counter Port 1 (Bus)	Unsigned8	ro
37	Lost Link Counter Port 2 (Bus)	Unsigned8	ro
38	Lost Link Counter Port 3 (Bus)	Unsigned8	ro
39	FMMU's supported (Bus)	Unsigned8	ro

Subindex	Description	Туре	Access
40	Sync Managers supported (Bus)	Unsigned8	ro
41	RAM Size in kByte (Bus)	Unsigned8	ro
42	Port Descriptor (Bus)	Unsigned8	ro
43	ECS Type (Config)	Unsigned8	ro
44	Slave is optional (Config)	Bool32	ro
45	Slave is present (Bus)	Bool32	ro
46	Hot connect group ID	Unsigned32	ro

8.9.5.2 CoE Slave Configuration Objects: 0x8000-0x8FFF

Object Type: RECORD, Manufacturer Specific Identity 0x45 Die Konfigurationsdaten enthalten Informationen über die EtherCAT-Slaves.

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address	Unsigned16	ro
2	Туре	Visible_String[64]	ro
3	Name	Visible_String[64]	ro
4	Device Type	Unsigned32	ro
5	Vendor ID	Unsigned32	ro
6	Product Code	Unsigned32	ro
7	Revision Number	Unsigned32	ro
8	Version Number	Unsigned32	ro
33	Mailbox Out Size (if mailbox slave)	Unsigned16	ro
34	Mailbox In Size (if mailbox slave)	Unsigned16	ro

8.9.5.3 CoE Slave Information Objects: 0x9000-0x9FFF

Informationen über die angeschlossenen EtherCAT-Slaves erhalten sie über die Informationsdaten. Sie werden verfügbar, wenn der Scan Befehl ausgeführt wurde.

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address of the Nth EtherCAT slave found	Unsigned16	ro
-			
5	found	Unsigned32	ro
	(entry 0x1018: 01 of the EtherCAT slave)		
6	Product Code of the Nth EtherCAT slave found	Unsigned32	ro
	(entry 0x1018: 02 of the EtherCAT slave)		
7	Revision Number of the first EtherCAT slave found	Unsigned32	ro
	(entry 0x1018: 03 of the EtherCAT slave)		
8	Version Number of the first EtherCAT slave found	Unsigned32	ro
	(entry 0x1018: 04 of the EtherCAT slave)		
32	DL Status (Register 0x110-0x111) of the Nth EtherCAT slave found.	Unsigned16	ro

8.9.5.4 CoE Slave Diagnosis Data Objects: 0xA000-0xAFFF

Object Type: RECORD, Manufacturer Specific Identity 0x47

Die Diagnosedaten beinhalten die Status- und die Diagnoseinformationen der EtherCAT-Slaves oder der Verbindungen der EtherCAT-Slaves.

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	AL Status (Register 0x130-0x131) of the Nth EtherCAT slave configured.	Unsigned16	ro
2	AL Control (Register 0x120-0x121) of the Nth EtherCAT slave configured.	Unsigned16	r/w
8.9.6 CoE Device Area Objects: 0xF000-0xFFFF

Index	Object Type	Name	Туре
0xF000	RECORD	Modular Device Profile	DeviceProfile (0x48)
0xF002	RECORD	Detect Modules Command	DetectCmd (0x49)
0xF020 0xF02F	RECORD	Configured Address List	ConfAddrList (0x50)
0xF040 0xF04F	RECORD	Detected Address List	ConnAddrList (0x51)

8.9.6.1 Modular Device Profile Object 0xF000

Object Type: RECORD, Manufacturer Specific Identity 0x48

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Index distance between two modules. This value is always read as 1.	Unsigned16	ro
2	Maximum number of EtherCAT slaves connected to the EtherCAT bus. This value is read as 512.	Unsigned16	ro
3	Available entries in objects 0x8xxx (number of configured slaves).	Unsigned32	ro
4	Available entries in objects 0x9xxx (number of connected slaves).	Unsigned32	ro

8.9.6.2 Configured Address List Object 0xF020-0xF02F

Object Type: RECORD, Manufacturer Specific Identity 0x50

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address of the first EtherCAT slave configured.	Unsigned16	ro
2	Fixed Station Address of the second EtherCAT slave configured.	Unsigned16	ro
			ro
255	Fixed Station Address of the 255. EtherCAT slave configured.	Unsigned16	ro

Einsatz Ethernet-Kommunikation - EtherCAT

Objekt-Verzeichnis> CoE Device Area Objects: 0xF000-0xFFFF

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address of the 256. EtherCAT slave configured.	Unsigned16	ro

8.9.6.3 Detected Address List Object 0xF040-0xF04F

Object Type: RECORD, Manufacturer Specific Identity 0x51

Subindex	Description	Туре	Access
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address of the first EtherCAT slave detected.	Unsigned16	ro
2	Fixed Station Address of the second EtherCAT slave detected.	Unsigned16	ro
			ro
255	Fixed Station Address of the 255. EtherCAT slave detected.	Unsigned16	ro
0	Number of Entries	Unsigned8	ro
1	Fixed Station Address of the 256. EtherCAT slave detected.	Unsigned16	ro