VIPA System 300S CPU

CPU | 317-4NE12 | Handbuch

HB140 | CPU | 317-4NE12 | DE | 14-40

VIPA GmbH Ohmstr. 4

91074 Herzogenaurach Telefon: +49 9132 744-0 Telefax: +49 9132 744-1864

E-Mail: info@vipa.com Internet: www.vipa.com

Inhaltsverzeichnis

1	Allgemein	6
	1.1 Copyright © VIPA GmbH	6
	1.2 Über dieses Handbuch	7
	1.3 Sicherheitshinweise	8
2	Grundlagen	10
	2.1 Sicherheitshinweis für den Benutzer	
	2.2 Arbeitsweise einer CPU	
	2.2.1 Allgemein	
	2.2.2 Programme	
	2.2.3 Operanden	
	2.3 CPU 317-4NE12	
	2.4 Allgemeine Daten	15
3	Montage und Aufbaurichtlinien	18
	3.1 Übersicht	
	3.2 Einbaumaße	
	3.3 Montage SPEED-Bus	
	3.4 Montage Standard-Bus	
	3.5 Verdrahtung	
	3.6 Aufbaurichtlinien	
4	Hardwarebeschreibung	
•	4.1 Leistungsmerkmale	
	4.2 Aufbau	
	4.2.1 Allgemein	
	4.2.2 Schnittstellen	
	4.2.3 Speichermanagement	
	4.2.4 Steckplatz für Speichermedien	
	4.2.5 Batteriepufferung für Uhr und RAM	
	4.2.6 Betriebsartenschalter	
	4.2.7 LEDs.	
	4.3 Technische Daten	
5	Einsatz CPU 317-4NE12	
J	5.1 Montage	
	5.2 Anlaufverhalten	
	5.3 Adressierung	
	5.3.1 Übersicht	
	5.3.2 Adressierung	
	5.4 Hardware-Konfiguration - CPU	
	5.5 Hardware-Konfiguration - I/O-Module	
	5.6 Hardware-Konfiguration - Ethernet-PG/OP-Kanal	
	5.7 Hardware-Konfiguration - SPEED-Bus	
	5.7.1 Voraussetzung	
	5.7.2 Vorgehensweise	
	5.8 Hardware-Konfiguration - Kommunikation	
	5.9 Einstellung Standard CPU-Parameter	
	5.9.1 Parametrierung über Siemens CPU	
	5.9.2 Parameter CPU	
	5.9.3 Parameter für DP	
		00

	5.9.4 Parameter für MPI/DP	. 59
	5.10 Einstellung VIPA-spezifische CPU-Parameter	. 60
	5.10.1 Vorgehensweise	
	5.10.2 VIPA-spezifische Parameter	. 62
	5.11 Projekt transferieren	
	5.11.1 Transfer über MPI/PROFIBUS	. 65
	5.11.2 Transfer über Ethernet	
	5.11.3 Transfer über MMC	. 68
	5.12 Zugriff auf integrierte Web-Seite	. 69
	5.13 Betriebszustände	. 72
	5.13.1 Übersicht	. 72
	5.13.2 Funktionssicherheit	. 74
	5.14 Urlöschen	. 74
	5.15 Firmwareupdate	. 76
	5.16 Rücksetzen auf Werkseinstellung	. 79
	5.17 Steckplatz für Speichermedien	
	5.18 Speichererweiterung mit MCC	. 80
	5.19 Erweiterter Know-how-Schutz	
	5.20 MMC-Cmd - Autobefehle	
	5.21 VIPA-spezifische Diagnose-Einträge	
	5.22 Mit Testfunktionen Variablen steuern und beobachten	101
6	Einsatz PtP-Kommunikation	103
	6.1 Schnelleinstieg	103
	6.2 Prinzip der Datenübertragung	104
	6.3 Einsatz der RS485-Schnittstelle für PtP	104
	6.4 Parametrierung	107
	6.4.1 FC/SFC 216 - SER_CFG	107
	6.5 Kommunikation	111
	6.5.1 Übersicht	
	6.5.2 FC/SFC 217 - SER_SND	
	6.5.3 FC/SFC 218 - SER_RCV	116
	6.6 Protokolle und Prozeduren	118
	6.7 Modbus - Funktionscodes	
	6.8 Modbus - Beispiel zur Kommunikation	127
7	Einsatz PROFIBUS-Kommunikation	130
	7.1 Übersicht	130
	7.2 Schnelleinstieg	130
	7.3 Hardware-Konfiguration - CPU	131
	7.4 Einsatz als PROFIBUS-DP-Master	132
	7.5 Einsatz als PROFIBUS-DP-Slave	133
	7.6 PROFIBUS-Aufbaurichtlinien	135
	7.7 Inbetriebnahme und Anlaufverhalten	139
8	Einsatz Ethernet-Kommunikation - Produktiv	140
	8.1 Grundlagen - Industrial Ethernet in der Automatisie-	
	rung	140
	8.2 Grundlagen - ISO/OSI-Schichtenmodell	141
	8.3 Grundlagen - Begriffe	142
	8.4 Grundlagen - Protokolle	143
	8.5 Grundlagen - IP-Adresse und Subnetz	149

	8.6 Grundlagen - MAC-Adresse und TSAP	150
	8.7 Schnelleinstieg	151
	8.8 Inbetriebnahme und Urtaufe	152
	8.9 Hardware-Konfiguration - CPU	153
	8.10 Kommunikationsverbindungen projektieren	154
	8.10.1 Übersicht	154
	8.10.2 Siemens NetPro	155
	8.10.3 Verbindungstyp - S7	160
	8.10.4 Verbindungstyp - Send/Receive	162
	8.11 Offene Kommunikation projektieren	171
	8.12 NCM-Diagnose - Hilfe zur Fehlersuche	175
	8.13 Kopplung mit Fremdsystemen	177
9	WinPLC7	181
	9.1 Systemvorstellung	181
	9.2 Installation	
	9.3 Beispiel zur Projektierung	183
	9.3.1 Aufgabenstellung	
	9.3.2 Projektierung	183
	9.3.3 SPS-Programm in <i>Simulator</i> testen	190
	9.3.4 SPS-Programm in CPU übertragen und ausführen	191

Copyright © VIPA GmbH

1 Allgemein

1.1 Copyright © VIPA GmbH

All Rights Reserved

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 9132 744 -0 Fax.: +49 9132 744-1864

EMail: info@vipa.de http://www.vipa.com

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen. Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

Über dieses Handbuch

Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH. SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind einge-

tragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Markenoder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744-1204 EMail: documentation@vipa.de

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744-1150 (Hotline)

EMail: support@vipa.de

1.2 Über dieses Handbuch

Zielsetzung und Inhalt

Das Handbuch beschreibt die SPEED7 CPU 317-4NE12 aus dem System 300S von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

Produkt	BestNr.	ab Stand:	ab Stand:				
		CPU-HW	CPU-FW	DPM-FW	CP-FW		
CPU 317SN/NET	317-4NE12	02	V3.6.0	V3.1.2	V2.1.7		

Zielgruppe Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in

der Automatisierungstechnik.

Aufbau des Handbuchs Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine

abgeschlossene Thematik.

Sicherheitshinweise

Orientierung im Dokument

Als Orientierungshilfe stehen im Handbuch zur Verfügung:

- Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs
- Verweise mit Seitenangabe

Verfügbarkeit

Das Handbuch ist verfügbar in:

- gedruckter Form auf Papier
- in elektronischer Form als PDF-Datei (Adobe Acrobat Reader)

Piktogramme Signalwörter

Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:

GEFAHR!

Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.

VORSICHT!

Bei Nichtbefolgen sind Sachschäden möglich.

Zusätzliche Informationen und nützliche Tipps

1.3 Sicherheitshinweise

Bestimmungsgemäße Verwendung

Das System ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

GEFAHR!

Das Gerät ist nicht zugelassen für den Einsatz

in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

Sicherheitshinweise

VORSICHT!

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Sicherheitshinweis für den Benutzer

2 Grundlagen

2.1 Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen

VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen. Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen. Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

Verwenden Sie für den Versand immer die Originalverpackung.

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

VORSICHT!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Arbeitsweise einer CPU > Programme

2.2 Arbeitsweise einer CPU

2.2.1 Allgemein

Die CPU enthält einen Standardprozessor mit internem Programmspeicher. In Verbindung mit der integrierten SPEED7-Technologie erhalten Sie ein leistungsfähiges Gerät zur Prozessautomatisierung innerhalb der System 300S Familie. In einer CPU gibt es folgende Arbeitsweisen:

- zyklische Bearbeitung
- zeitgesteuerte Bearbeitung
- alarmgesteuerte Bearbeitung
- Bearbeitung nach Priorität

zyklische Bearbeitung

Die **zyklische** Bearbeitung stellt den Hauptanteil aller Vorgänge in der CPU. In einem endlosen Zyklus werden die gleichen Bearbeitungsfolgen wiederholt.

zeitgesteuerte Bearbeitung

Erfordern Prozesse in konstanten Zeitabschnitten Steuersignale, so können Sie neben dem zyklischen Ablauf **zeitgesteuert** bestimmte Aufgaben durchführen z.B. zeitunkritische Überwachungsfunktionen im Sekundenraster.

alarmgesteuerte Bearbeitung

Soll auf ein Prozesssignal besonders schnell reagiert werden, so ordnen Sie diesem einen **alarmgesteuerten** Bearbeitungsabschnitt zu. Ein Alarm kann in Ihrem Programm eine Bearbeitungsfolge aktivieren.

Bearbeitung nach Priorität

Die oben genannten Bearbeitungsarten werden von der CPU nach Wichtigkeitsgrad behandelt (**Priorität**). Da auf ein Zeit- oder Alarmereignis schnell reagiert werden muss, unterbricht die CPU zur Bearbeitung dieser hochprioren Ereignisse die zyklische Bearbeitung, reagiert auf diese Ereignisse und setzt danach die zyklische Bearbeitung wieder fort. Die zyklische Bearbeitung hat daher die niedrigste Priorität.

2.2.2 Programme

Das in jeder CPU vorhandene Programm unterteilt sich in:

- Systemprogramm
- Anwenderprogramm

Systemprogramm

Das Systemprogramm organisiert alle Funktionen und Abläufe der CPU, die nicht mit einer spezifischen Steuerungsaufgabe verbunden sind.

Anwenderprogramm

Hier finden Sie alle Funktionen, die zur Bearbeitung einer spezifischen Steuerungsaufgabe erforderlich sind. Schnittstellen zum Systemprogramm stellen die Operationsbausteine zur Verfügung.

Arbeitsweise einer CPU > Operanden

2.2.3 Operanden

Die CPU stellt Ihnen für das Programmieren folgende Operandenbereiche zur Verfügung:

- Prozessabbild und Peripherie
- Merker
- Zeiten und Zähler
- Datenbausteine

Prozessabbild und Peripherie

Auf das Prozessabbild der Aus- und Eingänge PAA/PAE kann Ihr Anwenderprogramm sehr schnell zugreifen. Sie haben Zugriff auf folgende Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Sie können mit Ihrem Anwenderprogramm über den Bus direkt auf Peripheriebaugruppen zugreifen. Folgende Datentypen sind möglich:

- Bytes
- Wörter
- Blöcke

Merker

Der Merkerbereich ist ein Speicherbereich, auf den Sie über Ihr Anwenderprogramm mit entsprechenden Operationen zugreifen können. Verwenden Sie den Merkerbereich für oft benötigte Arbeitsdaten.

Sie können auf folgende Datentypen zugreifen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Zeiten und Zähler

Sie können mit Ihrem Anwendungsprogramm eine Zeitzelle mit einem Wert zwischen 10ms und 9990s laden. Sobald Ihr Anwenderprogramm eine Startoperation ausführt, wird dieser Zeitwert um ein durch Sie vorgegebenes Zeitraster dekrementiert, bis Null erreicht wird.

Für den Einsatz von Zählern können Sie Zählerzellen mit einem Anfangswert laden (max. 999) und diesen hinauf- bzw. herunterzählen.

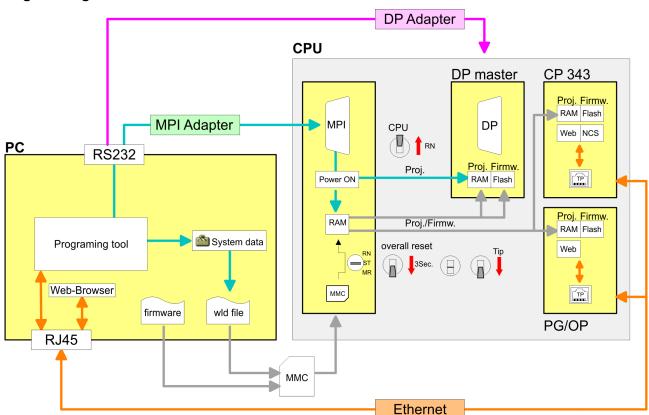
Datenbausteine

Ein Datenbaustein enthält Konstanten bzw. Variablen im Byte-, Wortoder Doppelwortformat. Mit Operanden können Sie immer auf den aktuellen Datenbaustein zugreifen.

Sie haben Zugriff auf folgende Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

CPU 317-4NE12


2.3 CPU 317-4NE12

Übersicht

Die CPU 317-4NE12 basiert auf der SPEED7-Technologie. Hierbei wird die CPU durch Coprozessoren im Bereich Programmierung und Kommunikation unterstützt und erhält somit eine Leistungssteigerung, so dass diese höchsten Anforderungen genügt.

- Programmiert wird die CPU in STEP®7 von Siemens. Hierzu können Sie den SIMATIC Manager von Siemens verwenden. Hierbei kommt der Befehlssatz der S7-400 von Siemens zum Einsatz.
- Die CPU ist mit einem parallelen SPEED-Bus ausgestattet, der die zusätzliche Anbindung von bis zu 10 Modulen aus der SPEED-Bus-Peripherie ermöglicht. Während die Standard-Peripherie-Module rechts von der CPU gesteckt werden, erfolgt die Anbindung der SPEED-Bus-Peripherie-Module über einen SPEED-Bus-Busverbinder links von der CPU.
- Module und CPUs aus dem System 300S von VIPA und Siemens können als Mischkonfiguration am Bus eingesetzt werden.
- Das Anwenderprogramm wird im batteriegepufferten RAM oder auf einem zusätzlich steckbaren MMC-Speichermodul gespeichert.
- Projektiert wird die CPU als CPU 318-2 (6ES7 318-2AJ00-0AB0/ V3.0) von Siemens.

Zugriffsmöglichkeiten

CPU 317-4NE12

Bitte verwenden Sie zur Projektierung dieser CPU von VIPA immer die CPU 318-2 (6ES7 318-2AJ00-0AB0/V3.0) von Siemens aus dem Hardware-Katalog. Zur Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Speicher

Die CPU hat einen Speicher integriert. Angaben über die Speicherkapazität finden Sie auf der Frontseite Ihrer CPU. Der Speicher gliedert sich in folgende Teile:

- Ladespeicher 8MByte
- Codespeicher (50% des Arbeitsspeichers)
- Datenspeicher (50% des Arbeitsspeichers)
- Arbeitsspeicher 2MByte
 - Sie haben die Möglichkeit den Arbeitsspeicher mittels einer MCC Speichererweiterungskarte bis zur maximal aufgedruckten Kapazität 8MByte zu erweitern.

SPEED-Bus

- Der SPEED-Bus ist ein von VIPA entwickelter 32Bit Parallel-Bus.
- Über SPEED-Bus haben Sie die Möglichkeit bis zu 10 SPEED-Bus-Module an Ihre CPU zu koppeln.
- Im Gegensatz zum "Standard"-Rückwandbus, bei dem die Module rechts von der CPU über Einzel-Busverbinder gesteckt werden, erfolgt beim SPEED-Bus die Ankopplung über eine spezielle SPEED-Bus-Schiene links von der CPU.
- Von VIPA erhalten Sie Profilschienen mit integriertem SPEED-Bus für 2, 6 oder 10 SPEED-Bus-Peripherie-Module in unterschiedlichen Längen.
- Jede SPEED-Bus-Schiene besitzt eine Steckmöglichkeit für eine externe Spannungsversorgung. Hiermit können Sie den maximalen Strom am Rückwandbus erhöhen. Nur auf "SLOT1 DCDC" können Sie entweder ein SPEED-Bus-Modul oder eine Zusatzspannungsversorgung (307-1FB70) stecken.

Integrierter PROFIBUS-DP-Master/Slave bzw. PtP-Funktionalität

Die CPU besitzt eine PROFIBUS/PtP-Schnittstelle mit fixer Pinbelegung. Nach dem Urlöschen ist diese Schnittstelle deaktiviert. Durch entsprechende Projektierung können Sie folgende Funktionalitäten für diese Schnittstelle aktivieren:

- PROFIBUS-DP-Master-Betrieb: Projektierung erfolgt über das PROFIBUS-Submodul mit "Betriebsart" Master in der Hardware-Konfiguration.
- PROFIBUS-DP-Slave-Betrieb: Projektierung erfolgt über das PROFIBUS-Submodul mit "Betriebsart" Slave in der Hardware-Konfiguration.
- PtP-Funktionalität: Projektierung erfolgt in Form eines virtuellen PROFIBUS Master-Systems unter Einbindung der VIPA SPEEDBUS.GSD.

Integrierter CP 343

Mit dem integrierten CP 343 steht Ihnen ein Kommunikations-Prozessor zur Verfügung. Dieser bietet PG/OP-Kanäle und über Siemens NetPro bzw. über Anwenderprogramm projektierbare Produktiv-Verbindungen.

Allgemeine Daten

Integrierter Ethernet-PG/OP-Kanal

Auf der CPU befindet sich eine Ethernet-Schnittstelle für PG/OP-Kommunikation. Nach der Zuweisung von IP-Adress-Parametern über Ihr Projektier-Tool können Sie über die "Zielsystem"-Funktionen den Ethernet-PG/OP-Kanal direkt ansprechen und Ihre CPU programmieren bzw. fernwarten. Sie haben auch die Möglichkeit über diese Verbindungen mit einer Visualisierungs-Software auf die CPU zuzugreifen.

Betriebssicherheit

- Anschluss über Federzugklemmen an Frontstecker
- Aderguerschnitt 0,08...2,5mm²
- Vollisolierung der Verdrahtung bei Modulwechsel
- Potenzialtrennung aller Peripherie-Module zum Rückwandbus

Aufbau/Maße

Maße Grundgehäuse:

2fach breit: (BxHxT) in mm: 80x125x120

Integriertes Netzteil

Die CPU hat ein Netzteil integriert. Das Netzteil ist mit DC 24V zu versorgen. Über die Versorgungsspannung werden neben der internen Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt. Das Netzteil ist gegen Verpolung und Überstrom geschützt.

2.4 Allgemeine Daten

Konformität und Approbation					
Konformität					
CE	2006/95/EG	Niederspannungsrichtlinie			
	2004/108/EG	EMV-Richtlinie			
Approbation					
UL	UL 508	Zulassung für USA und Kanada			
Sonstiges					
RoHS	2011/65/EU	Produkte bleifrei; Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten			

Personenschutz und Geräteschutz				
Schutzart	-	IP20		
Potenzialtrennung				
Zum Feldbus	-	Galvanisch entkoppelt		
Zur Prozessebene	-	Galvanisch entkoppelt		
Isolationsfestigkeit		-		
Isolationsspannung gegen Bezugserde				

Allgemeine Daten

Personenschutz und Geräteschutz				
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V		
Schutzmaßnahmen	-	gegen Kurzschluss		

Umgebungsbedingungen gemäß EN 61131-2					
Klimatisch					
Lagerung /Transport	EN 60068-2-14	-25+70°C			
Betrieb					
Horizontaler Einbau	EN 61131-2	0+60°C			
Vertikaler Einbau	EN 61131-2	0+60°C			
Luftfeuchtigkeit	EN 60068-2-30	RH1			
		(ohne Betauung, relative Feuchte 10 95%)			
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2			
Mechanisch					
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz			
Schock	EN 60068-2-27	15g, 11ms			

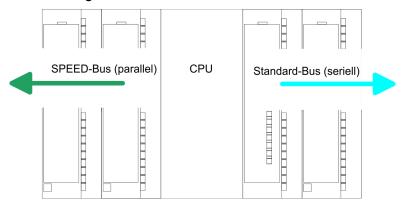
Montagebedingungen				
Einbauort	-	Im Schaltschrank		
Einbaulage	-	Horizontal und vertikal		

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	orfestigkeit EN 61000-6-2		Industriebereich
Zone B		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
	EN 6		1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3

Allgemeine Daten

EMV	Norm		Bemerkungen
		EN 61000-4-5	Surge, Installationsklasse 3 *

^{*)} Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.


Übersicht

3 Montage und Aufbaurichtlinien

3.1 Übersicht

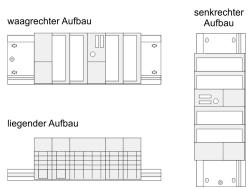
Allgemeines

Diese CPU ist mit einem parallelen SPEED-Bus ausgestattet, der die zusätzliche Anbindung von bis 10 Modulen aus der SPEED-Bus-Peripherie ermöglicht. Während die Standard-Peripherie-Module rechts von der CPU gesteckt und über Einzel-Busverbinder verbunden werden, erfolgt die Anbindung der SPEED-Bus-Peripherie-Module über eine in die Profilschiene integrierte SPEED-Bus-Steckleiste links von der CPU. Von VIPA erhalten Sie Profilschienen mit integriertem SPEED-Bus für 2, 6 oder 10 SPEED-Bus-Peripherie-Module in unterschiedlichen Längen.

Serieller Standard-Bus

Die einzelnen Module werden direkt auf eine Profilschiene montiert und über den Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder von hinten an das Modul zu stecken. Die Rückwandbusverbinder sind im Lieferumfang der Peripherie-Module enthalten.

Paralleler SPEED-Bus


Bei SPEED-Bus erfolgt die Busanbindung über eine in die Profilschiene integrierte SPEED-Bus-Steckleiste links von der CPU. Aufgrund des parallelen SPEED-Bus müssen nicht alle Steckplätze hintereinander belegt sein.

SLOT 1 für Zusatzspannungsversorgung

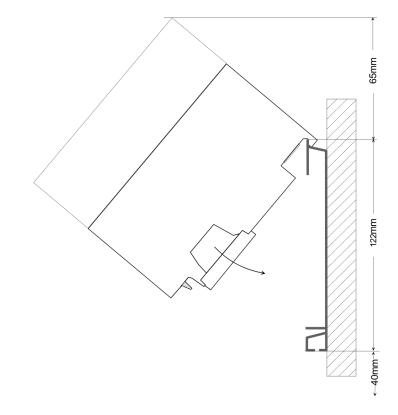
Auf Steckplatz 1 (SLOT 1 DCDC) können Sie entweder ein SPEED-Bus-Modul oder eine Zusatz-Spannungsversorgung stecken.

Montagemöglichkeiten

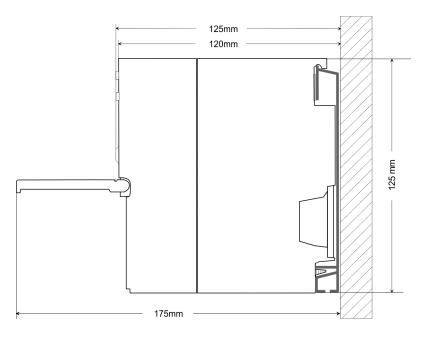
Sie haben die Möglichkeit das System 300 waagrecht, senkrecht oder liegend aufzubauen.

Einbaumaße

Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:


- waagrechter Aufbau: von 0 bis 60°C
- senkrechter Aufbau: von 0 bis 40°C
- liegender Aufbau: von 0 bis 40°C

3.2 Einbaumaße


Maße Grundgehäuse

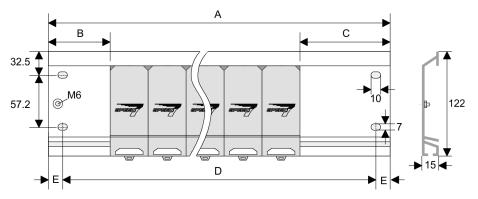
2fach breit (BxHxT) in mm: 80 x 125 x 120

Montagemaße

Maße montiert

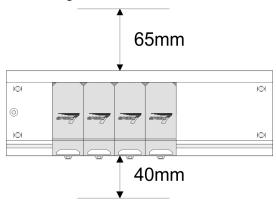
Montage SPEED-Bus

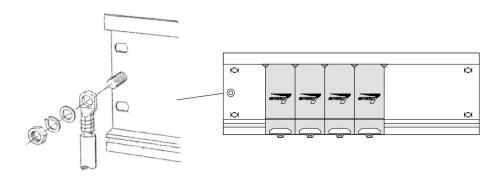
3.3 Montage SPEED-Bus


Vorkonfektionierte SPEED-Bus-Profil-Schiene Für den Einsatz von SPEED-Bus-Modulen ist eine vorkonfektionierte SPEED-Bus-Steckleiste erforderlich. Diese erhalten Sie schon montiert auf einer Profilschiene mit 2, 6 oder 10 Steckplätzen.

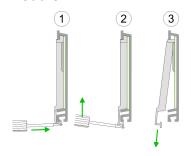
Maße

Bestell- nummer	Anzahl Module SPEED- Bus/Standard-Bus	Α	В	С	D	Ε
391-1AF10	2/6	530	100	268	510	10
391-1AF30	6/2	530	100	105	510	10
391-1AF50	10/0	530	20	20	510	10
391-1AJ10	2/15	830	22	645	800	15
391-1AJ30	6/11	830	22	480	800	15
391-1AJ50	10/7	830	22	320	800	15

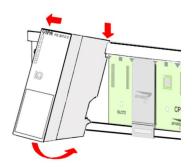

Maße in mm


Montage SPEED-Bus

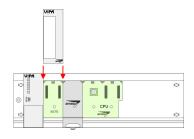
Montage der Profilschiene


Verschrauben Sie die Profilschiene mit dem Untergrund (Schraubengröße: M6) so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt. Achten Sie immer auf eine niederohmige Verbindung zwischen Profilschiene und Untergrund.

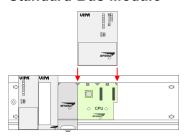
2. Verbinden Sie die Profilschiene über den Stehbolzen mit Ihrem Schutzleiter. Der Mindestquerschnitt der Leitung zum Schutzleiter beträgt hierbei 10mm².



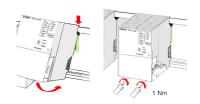
Montage SPEED-Bus-Module


1. Entfernen Sie mit einem geeigneten Schraubendreher die entsprechenden Schutzabdeckungen über den SPEED-Bus-Steckplätzen, indem Sie diese entriegeln und nach unten abziehen.

Da es sich bei SPEED-Bus um einen parallelen Bus handelt, müssen nicht alle SPEED-Bus-Steckplätze hintereinander belegt sein. Lassen Sie bei einem nicht benutzten SPEED-Bus-Steckplatz die Abdeckung gesteckt.

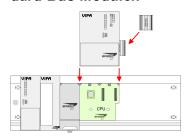

- 2. Bei Einsatz einer DC 24V-Spannungsversorgung hängen Sie diese an der gezeigten Position links vom SPEED-Bus auf der Profilschiene ein und schieben Sie diese nach links bis ca. 5mm vor den Erdungsbolzen der Profilschiene.
- 3. Schrauben Sie die Spannungsversorgung fest.

Montage SPEED-Bus

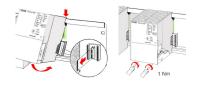


- Zur Montage von SPEED-Bus-Modulen setzen Sie diese zwischen den dreieckigen Positionierhilfen an einem mit "SLOT ..." bezeichneten Steckplatz an und klappen sie diese nach unten.
- **5.** Nur auf "SLOT1 DCDC" können Sie entweder ein SPEED-Bus-Modul oder eine Zusatzspannungsversorgung stecken.
- 6. Schrauben Sie die CPU fest.

Montage CPU ohne Standard-Bus-Module

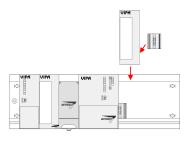


Soll die SPEED7-CPU ausschließlich am SPEED-Bus betrieben werden, setzen Sie diese wie gezeigt zwischen den beiden Positionierhilfen an dem mit "CPU SPEED7" bezeichneten Steckplatz an und klappen sie diese nach unten.



2. Schrauben Sie die CPU fest.

Montage CPU mit Standard-Bus-Modulen



Sollen auch Standard-Module gesteckt werden, nehmen Sie einen Busverbinder und stecken Sie ihn, wie gezeigt, von hinten an die CPU.

2. Setzen Sie die CPU zwischen den beiden Positionierhilfen an dem mit "CPU SPEED7" bezeichneten Steckplatz an und klappen sie diese nach unten. Schrauben Sie die CPU fest.

Montage Standard-Bus-Module

Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts neben dem Vorgänger-Modul einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

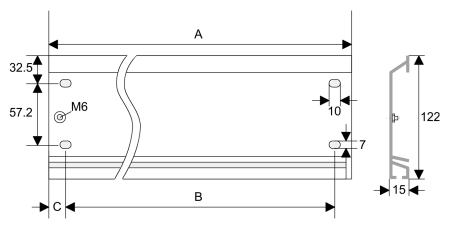
Montage Standard-Bus

VORSICHT!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden.

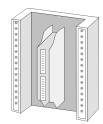
3.4 Montage Standard-Bus

Allgemein

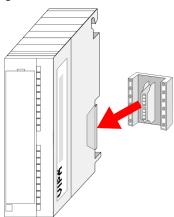

Die einzelnen Module werden direkt auf eine Profilschiene montiert und über den Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder von hinten an das Modul zu stecken. Die Rückwandbus-Verbinder sind im Lieferumfang der Peripherie-Module enthalten.

Profilschiene

Bestellnummer	Α	В	С
390-1AB60	160	140	10
390-1AE80	482	466	8,3
390-1AF30	530	500	15
390-1AJ30	830	800	15
390-9BC00*	2000	Bohrungen nur links	15


^{*)} Verpackungseinheit 10 Stück

Maße in mm



Montage Standard-Bus

Busverbinder

Für die Kommunikation der Module untereinander wird beim System 300S ein Rückwandbus-Verbinder eingesetzt. Die Rückwandbus-Verbinder sind im Lieferumfang der Peripherie-Module enthalten und werden vor der Montage von hinten an das Modul gesteckt.

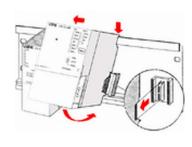
Montagemöglichkeiten

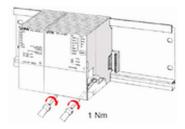
waagrechter Aufbau

liegender Aufbau

Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:

- waagrechter Aufbau: von 0 bis 60°C
- senkrechter Aufbau: von 0 bis 40°C
- liegender Aufbau: von 0 bis 40°C


Vorgehensweise


- 1. Verschrauben Sie die Profilschiene mit dem Untergrund (Schraubengröße: M6) so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt.
- 2. Achten Sie bei geerdetem Untergrund auf eine niederohmige Verbindung zwischen Profilschiene und Untergrund.
- Verbinden Sie die Profilschiene mit dem Schutzleiter. Für diesen Zweck befindet sich auf der Profilschiene ein Stehbolzen mit M6-Gewinde.
- 4. Der Mindestquerschnitt der Leitung zum Schutzleiter muss 10mm² betragen.

- 6. ▶ Schrauben sie die Spannungsversorgung fest.
- 7. Nehmen Sie einen Rückwandbus-Verbinder und stecken Sie ihn wie gezeigt von hinten an die CPU.
- 8. ▶ Hängen Sie die CPU rechts von der Spannungsversorgung ein und schieben sie diese bis an die Spannungsversorgung.

Verdrahtung

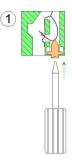
- **9.** Klappen sie die CPU nach unten und schrauben Sie die CPU wie gezeigt fest.
- 10. Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts neben dem Vorgänger-Modul einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

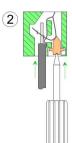
3.5 Verdrahtung



VORSICHT!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden.


Federklemmtechnik (grün)

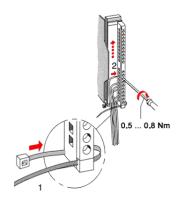

Zur Verdrahtung der Spannungsversorgung der CPU kommt eine grüne Anschlussklemmen mit Federzugklemmtechnik zum Einsatz. Die Anschlussklemme ist als Stecker ausgeführt, der im verdrahteten Zustand vorsichtig abgezogen werden kann. Hier können Sie Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen. Hierbei dürfen sowohl flexible Litzen ohne Aderendhülse, als auch starre Leiter verwendet werden.

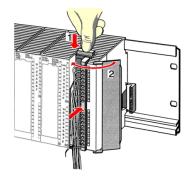
- 1 Prüfabgriff für 2mm Messspitze
- 2 Verriegelung (orange) für Schraubendreher
- 3 Runde Öffnung für Drähte

Verdrahtung

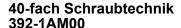
Die nebenstehende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- 2um Verdrahten drücken Sie mit einem geeigneten Schraubendreher, wie in der Abbildung gezeigt, die Verriegelung senkrecht nach innen und halten Sie den Schraubendreher in dieser Position.
- **2.** Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen.
- **3.** Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.


Frontstecker der Ein-/ Ausgabe-Module 20-fach Schraubtechnik 392-1AJ00

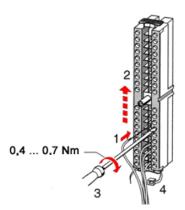

Nachfolgend ist die Verdrahtung der 2 Frontstecker-Varianten aufgezeigt.

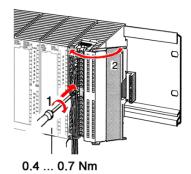
- 1. Öffnen Sie die Frontklappe Ihres Ein-/Ausgabe-Moduls.
- Bringen Sie den Frontstecker in Verdrahtungsstellung.
 Hierzu stecken Sie den Frontstecker auf das Modul, bis er einrastet. In dieser Stellung ragt der Frontstecker aus dem Modul heraus und hat noch keinen Kontakt.
- 3. Isolieren Sie Ihre Leitungen ab. Verwenden Sie ggf. Aderendhülsen.
- **4.** Fädeln Sie den beiliegenden Kabelbinder in den Frontstecker ein.
- **5.** Beginnen Sie mit der Verdrahtung von unten nach oben, wenn Sie die Leitungen nach unten aus dem Modul herausführen möchten, bzw. von oben nach unten, wenn die Leitungen nach oben herausgeführt werden sollen.
- Schrauben Sie die Anschlussschrauben der nicht verdrahteten Schraubklemmen ebenfalls fest.


Verdrahtung

7. Ziehen Sie den Kabelbinder für den Leitungsstrang fest.

- **8.** Drücken Sie die Entriegelungstaste am Frontstecker an der Moduloberseite und drücken Sie gleichzeitig den Frontstecker in das Modul, bis er einrastet.
- 9. Der Frontstecker ist nun elektrisch mit Ihrem Modul verbunden.
- 10. Schließen Sie die Frontklappe.
- Füllen Sie den Beschriftungsstreifen zur Kennzeichnung der einzelnen Kanäle aus und schieben Sie den Streifen in die Frontklappe.




- 1. Offnen Sie die Frontklappe Ihres Ein-/Ausgabe-Moduls.
- 2. Bringen Sie den Frontstecker in Verdrahtungsstellung.

 Hierzu stecken Sie den Frontstecker auf das Modul, bis er einrastet. In dieser Stellung ragt der Frontstecker aus dem Modul heraus und hat noch keinen Kontakt.
- 3. Isolieren Sie Ihre Leitungen ab. Verwenden Sie ggf. Aderendhülsen.
- Beginnen Sie mit der Verdrahtung von unten nach oben, wenn Sie die Leitungen nach unten aus dem Modul herausführen möchten, bzw. von oben nach unten, wenn die Leitungen nach oben herausgeführt werden sollen.
- **5.** Schrauben Sie die Anschlussschrauben der nicht verdrahteten Schraubklemmen ebenfalls fest.

Aufbaurichtlinien

- **6.** Legen Sie den beigefügten Kabelbinder um den Leitungsstrang und den Frontstecker herum.
- 7. Ziehen Sie den Kabelbinder für den Leitungsstrang fest.

- Schrauben Sie die Befestigungsschraube für den Frontstecker fest.
- **9.** Der Frontstecker ist nun elektrisch mit Ihrem Modul verbunden.
- **10.** Schließen Sie die Frontklappe.
- Füllen Sie den Beschriftungsstreifen zur Kennzeichnung der einzelnen Kanäle aus und schieben Sie den Streifen in die Frontklappe.

3.6 Aufbaurichtlinien

Allgemeines

Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau eines SPS-Systems. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV) sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Was bedeutet EMV?

Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren, ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.

Die Komponenten von VIPA sind für den Einsatz in Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

Mögliche Störeinwirkungen

Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden in Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Aufbaurichtlinien

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

Grundregeln zur Sicherstellung der EMV

Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen.
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Beachten Sie, dass bei Einsatz von Leuchtstofflampen sich diese negativ auf Signalleitungen auswirken können.
- Schaffen Sie ein einheitliches Bezugspotential und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit Ihrer SPS sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Aufbaurichtlinien

Schirmung von Leitungen

Elektrische, magnetische oder elektromagnetische Störfelder werden durch eine Schirmung geschwächt; man spricht hier von einer Dämpfung. Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

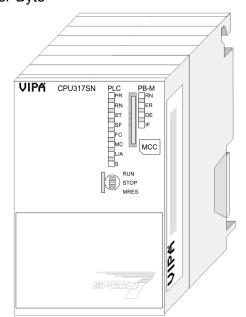
- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich. Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:
 - die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann.
 - Analogsignale (einige mV bzw. µA) übertragen werden.
 - Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen für serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergehäuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/ Schutzleiterschiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zu Ihrer SPS weiter, legen Sie ihn dort jedoch nicht erneut auf!

VORSICHT!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen.

Abhilfe: Potenzialausgleichsleitung.


Leistungsmerkmale

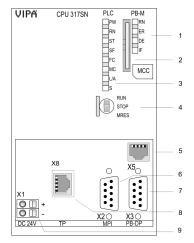
4 Hardwarebeschreibung

4.1 Leistungsmerkmale

CPU 317-4NE12

- SPEED7-Technologie und SPEED-Bus integriert
- 2MByte Arbeitsspeicher integriert (1MByte Code, 1MByte Daten)
- Speicher erweiterbar bis max. 8MByte (4MByte Code, 4MByte Daten)
- 8MByte Ladespeicher
- PROFIBUS-DP-Master integriert (DP-V0, DP-V1)
- CP 343 Kommunikationsprozessor integriert
 - ⋄ Kapitel 4.3 "Technische Daten" auf Seite 38
 - Produktiv-Verbindungen über Siemens NetPro
 - Produktiv- Verbindungen über Anwenderprogramm
 - PG/OP-Verbindungen
- RS485-Schnittstelle konfigurierbar für PROFIBUS-DP-Master bzw. PtP-Kommunikation
- Ethernet-PG/OP-Schnittstelle integriert
- MPI-Schnittstelle
- MCC-Slot für externe Speichermedien und Speichererweiterung (verriegelbar)
- Status-LEDs für Betriebszustand und Diagnose
- Echtzeituhr akkugepuffert
- E/A-Adressbereich digital/analog 8191Byte
- 2048 Zeiten
- 2048 Zähler
- 16384 Merker-Byte

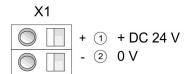
Bestelldaten

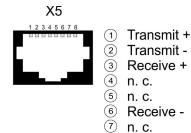

Тур	Bestellnummer	Beschreibung
317SN/NET	317-4NE12	SPEED-Bus, MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für PG/OP, PROFIBUS-DP-Master, CP 343

Aufbau > Schnittstellen

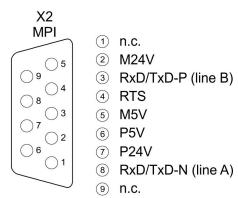
4.2 Aufbau

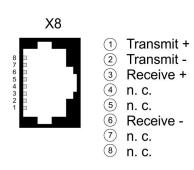
4.2.1 Allgemein

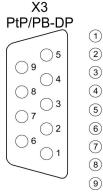

CPU 317-4NE12



- LEDs des integrierten PROFIBUS-DP-Masters
- Steckplatz für Speichermedien (verriegelbar) LEDs des CPU-Teils 2
- Betriebsarten-Schalter CPU 4
- 5 Twisted Pair Schnittstelle für Ethernet-PG/OP-Kanal
- 6 7 MPI-Schnittstelle
- PROFIBUS-DP/PtP-Schnittstelle
- 8 Twisted Pair Schnittstelle für CP 343
- Anschluss für DC 24V Spannungsversorgung


Komponenten 5 - 9 befinden sich unter der Frontklappe!


4.2.2 Schnittstellen



(8) n.c.

- 1 shield
- 2 M24V
- ③ RxD/TxD-P (line B)
- 4 RTS
- (5) M5V
- 6 P5V
- 7 P24V
- 8 RxD/TxD-N (line A)
- (9) n.c.

Aufbau > Schnittstellen

Spannungsversorgung X1

Die CPU besitzt ein eingebautes Netzteil:

- Das Netzteil ist mit DC 24V zu versorgen. Hierzu dient der DC 24V Anschluss, der sich unter der Frontklappe befindet.
- Mit der Versorgungsspannung werden neben der CPU-Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt.
- Das Netzteil ist gegen Verpolung und Überstrom geschützt.
- Die interne Elektronik ist galvanisch an die Versorgungsspannung gebunden.

MPI-Schnittstelle X2

9polige SubD-Buchse:

- Die MPI-Schnittstelle dient zur Verbindung zwischen Programmiergerät und CPU.
- Hierüber erfolgt beispielsweise die Projektierung und Programmierung.
- MPI dient zur Kommunikation zwischen mehreren CPUs oder zwischen HMIs und CPU.
- Standardmäßig ist die MPI-Adresse 2 eingestellt.

Ethernet-PG/OP-Kanal X5

8polige RJ45-Buchse:

- Die RJ45-Buchse dient als Schnittstelle zum Ethernet-PG/OP-Kanal.
- Mittels dieser Schnittstelle können Sie Ihre CPU programmieren bzw. fernwarten und auf die integrierte Web-Seite zugreifen.
- Projektierbare Verbindungen sind nicht möglich.
- Damit Sie online auf den Ethernet-PG/OP-Kanal zugreifen können, müssen Sie diesem IP-Adress-Parameter zuweisen.

PROFIBUS/PtP-Schnittstelle mit projektierbarer Funktionalität X3

9polige SubD-Buchse:

Die CPU besitzt eine PROFIBUS/PtP-Schnittstelle mit fixer Pinbelegung. Nach dem Urlöschen ist diese Schnittstelle deaktiviert. Durch entsprechende Projektierung können Sie folgende Funktionalitäten für diese Schnittstelle aktivieren:

- PROFIBUS-DP-Master-Betrieb
 - Projektierung erfolgt über das PROFIBUS-Submodul X2 (DP) der CPU mit "Betriebsart" Master in der Hardware-Konfiguration
- PROFIBUS-DP-Slave-Betrieb
 - Projektierung erfolgt über das PROFIBUS-Submodul X2 (DP) der CPU mit "Betriebsart" Slave in der Hardware-Konfiguration.
- PtP-Funktionalität
 - Mit der Funktionalität PtP ermöglicht die RS485-Schnittstelle eine serielle Punkt-zu-Punkt-Prozessankopplung zu verschiedenen Ziel- oder Quell-Systemen.
 - Unterstützt werden die Protokolle ASCII, STX/ETX, 3964R, USS und Modbus-Master (ASCII, RTU).
 - Die Aktivierung der PtP-Funktionalität erfolgt durch Einbindung der SPEEDBUS.GSD von VIPA im Hardwarekatalog. Nach der Installation können Sie die CPU in einem PROFIBUS-Master-System projektieren und hier auch die Schnittstelle auf PtP-Kommunikation umschalten.

Aufbau > Steckplatz für Speichermedien

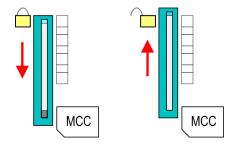
Kommunikations-Prozessor CP 343 X8

8polige RJ45-Buchse:

- Kommunikations-Prozessor CP 343 zur Anbindung an Ethernet
- Produktiv-Verbindungen über Siemens NetPro
- Produktiv-Verbindungen über Anwenderprogramm
- PG/OP-Verbindungen

Anzahl der Verbindungen ♦ Kapitel 4.3 "Technische Daten" auf Seite 38

4.2.3 Speichermanagement


Speicher

Die CPU hat einen Speicher integriert. Angaben über die Speicherkapazität finden Sie auf der Frontseite Ihrer CPU. Der Speicher gliedert sich in folgende Teile:

- Ladespeicher 8MByte
- Codespeicher (50% des Arbeitsspeichers)
- Datenspeicher (50% des Arbeitsspeichers)
- Arbeitsspeicher 2MByte
 - Sie haben die Möglichkeit den Arbeitsspeicher mittels einer MCC Speichererweiterungskarte bis zur maximal aufgedruckten Kapazität 8MByte zu erweitern.

4.2.4 Steckplatz für Speichermedien

- Über diesen Steckplatz können Sie eine MMC (**M**ulti**m**edia **C**ard) als externes Speichermedium für Programme und Firmware stecken.
- Die VIPA-Speicherkarten sind mit dem PC-Format FAT vorformatiert und können mit einem Kartenlesegerät beschrieben werden.
- Nach PowerON bzw. nach Urlöschen überprüft die CPU, ob eine Speicherkarte gesteckt ist und sich hier für die CPU gültige Daten befinden.
- Schieben Sie ihr Speichermedium in den Steckplatz, bis dieses geführt durch eine Federmechanik einrastet. Dies gewährleistet eine sichere Kontaktierung.
- Mit der Schiebemechanik können Sie durch Schieben nach unten ein gestecktes Speichermedium gegen Herausfallen sichern.
- Zum Entnehmen schieben Sie die Schiebemechanik wieder nach oben und drücken Sie das Speichermedium gegen den Federdruck nach innen, bis dieses mit einem Klick entriegelt wird.

Aufbau > Betriebsartenschalter

VORSICHT!

Sofern das Speichermedium schon durch die Federmechanik entriegelt wurde, kann dieses bei Betätigung der Schiebemechanik herausspringen!

4.2.5 Batteriepufferung für Uhr und RAM

Jede CPU 31xS besitzt einen internen Akku, der zur Sicherung des RAMs bei Stromausfall dient. Zusätzlich wird die interne Uhr über den Akku gepuffert. Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für max. 30 Tage.

VORSICHT!

Bitte schließen Sie die CPU mindestens für 24 Stunden an die Spannungsversorgung an, damit der interne Akku entsprechend geladen wird.

Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch. Der BAT-Fehler hat keinen Einfluss auf den Ladevorgang.

Den BAT-Fehler können Sie wieder löschen, wenn einmalig beim Power-Cycle zwischen dem Aus- und Einschalten der Versorgungsspannung mindestens 30sec. liegen und der Akku der CPU voll geladen ist. Ansonsten bleibt bei einem kurzen Power-Cycle der BAT-Fehler bestehen und die CPU wird urgelöscht.

4.2.6 Betriebsartenschalter

- Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen.
- Beim Übergang vom Betriebszustand STOP nach RUN durchläuft die CPU den Betriebszustand ANLAUF.
- Mit der Tasterstellung MRES (Memory Reset) fordern Sie das Urlöschen an mit anschließendem Laden von Speicherkarte, sofern dort ein Projekt hinterlegt ist.

Aufbau > LEDs

4.2.7 LEDs

LEDs CPU

Sobald die CPU intern mit 5V versorgt wird, leuchtet die grüne PW-LED (Power).

RN	ST	SF	FC	MC	Bedeutung	
(RUN)	(STOP)	(SFAIL)	(FRCE)	(MMC)		
grün —	gelb	rot	gelb	gelb		
Bootvorgang nach NetzEIN						
•	BB*	•	•	•	* Blinken mit 10Hz: Firmware wird geladen.	
•	•	•	•	•	Initialisierung: Phase 1	
•	•	•	•	0	Initialisierung: Phase 2	
•	•	•	0	0	Initialisierung: Phase 3	
0	•	•	0	0	Initialisierung: Phase 4	
Betrieb						
0	•	X	X	X	CPU befindet sich im Zustand STOP.	
BB	0	Х	Х	X	CPU befindet sich im Zustand Anlauf. Solange der OB100 durchlaufen wird, blinkt die RUN-LED, mindestens für 3s.	
•	0	0	X	X	CPU befindet sich ohne Fehler im Zustand RUN.	
X	X	•	X	X	Es liegt ein Systemfehler vor. Nähere Informationen hierzu finden Sie im Diagnosepuffer der CPU.	
X	X	X	•	X	Variablen sind geforced (fixiert).	
X	X	X	X	•	Zugriff auf Speicherkarte.	
X	BB*	0	0	0	* Blinken mit 10Hz: Konfiguration wird geladen.	
Urlöschen						
0	BB	X	X	X	Urlöschen wird angefordert.	
0	BB*	X	X	X	* Blinken mit 5Hz: Urlöschen wird durchgeführt.	
Rücksetzen auf Werkseinstellung						
•	•	0	0	0	Rücksetzen auf Werkseinstellung wird durchgeführt.	
0	•	•	•	•	Rücksetzen auf Werkseinstellung war erfolgreich.	
Firmwareupdate						
0	•	BB	BB	•	Das abwechselnde Blinken zeigt an, dass neue Firmware auf der Speicherkarte vorhanden ist.	
0	0	BB	BB	•	Das abwechselnde Blinken zeigt an, dass ein Firmwareupdate durchgeführt wird.	
0	•	•	•	•	Firmwareupdate wurde fehlerfrei durchgeführt.	

Aufbau > LEDs

R	N	ST	SF	FC	MC	Bedeutung
(RU	JN)	(STOP)	(SFAIL)	(FRCE)	(MMC)	
С)	BB*	BB*	BB*	BB*	* Blinken mit 10Hz: Fehler bei Firmwareupdate.

an: • | aus: ○ | blinkend (2Hz): BB | nicht relevant: X

LEDs Ethernet-PG/OP-Kanal L/A, S

Die grüne L/A-LED (Link/Activity) zeigt an, dass der Ethernet-PG/OP-Kanal physikalisch mit Ethernet verbunden ist. Unregelmäßiges Blinken der L/A-LED zeigt Kommunikation des Ethernet-PG/OP-Kanals über Ethernet an.

Leuchtet die grüne S-LED (Speed), so hat der Ethernet-PG/OP-Kanal eine Übertragungsgrate von 100MBit/s ansonsten 10MBit/s.

LEDs PROFIBUS/PtP-Schnittstelle X3

Abhängig von der Betriebsart geben die LEDs nach folgendem Schema Auskunft über den Betriebszustand des PROFIBUS-Teils:

Master-Betrieb

RN	ER	DE	IF	Bedeutung
(RUN)	(ERR)			
grün	rot	grün	rot	
0	0	0	0	Master hat keine Projektierung, d.h. die Schnittstelle ist deaktiviert bzw. PtP ist aktiv.
•	0	0	0	Master hat Busparameter und befindet sich im RUN ohne Slaves.
•	0	ВВ	0	Master befindet sich im "clear"-Zustand (sicherer Zustand). Die Eingänge der Slaves können gelesen werden. Die Ausgänge sind gesperrt.
•	0	•	0	Master befindet sich im "operate"-Zustand, d.h. er tauscht Daten mit den Slaves aus. Ausgänge können angesprochen werden.
•	•	•	0	CPU ist im Zustand RUN, es fehlt mindestens 1 Slave.
•	•	BB	0	CPU ist im Zustand STOP, es fehlt mindestens 1 Slave.
0	0	0	•	Initialisierungsfehler bei fehlerhafter Parametrierung.

RN	ER	DE	IF	Bedeutung	
(RUN)	(ERR)				
0	•	0	•	Wartezustand auf Start-Kommando von der CPU.	
an: ● aus: ○ blinkend (2Hz): BB					

Slave-Betrieb

RN	ER (ERR)	DE	IF	Bedeutung
(RUN)	(ERR)			
grün	rot	grün	rot	
0	0	0	0	Slave hat keine Projektierung bzw. PtP ist aktiv.
BB	0	0	0	Slave ist ohne Master.
BB*	0	BB*	0	* Abwechselndes Blinken bei Projektierungsfehler (configuration fault).
•	0	•	0	Slave tauscht Daten mit dem Master aus.
any a Laury a Liblinkand (OLHT); DD				

an: • | aus: ∘ | blinkend (2Hz): BB

Artikelnr.	317-4NE12
Bezeichnung	CPU 317SN/NET
SPEED-Bus	✓
Technische Daten Stromversorgung	
Versorgungsspannung (Nennwert)	DC 24 V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8 V
Verpolschutz	✓
Stromaufnahme (im Leerlauf)	270 mA
Stromaufnahme (Nennwert)	1,5 A
Einschaltstrom	5 A
l²t	0,5 A ² s
max. Stromabgabe am Rückwandbus	4 A
Verlustleistung	10 W
Lade- und Arbeitsspeicher	
Ladespeicher integriert	8 MB
Ladespeicher maximal	8 MB
Arbeitsspeicher integriert	2 MB
Arbeitsspeicher maximal	8 MB

Artikelnr.	317-4NE12
Speicher geteilt 50% Code / 50% Daten	✓
Memory Card Slot	MMC-Card mit max. 1 GB
Ausbau	
Baugruppenträger max.	4
Baugruppen je Baugruppenträger	8 bei mehrzeiligem, 32 bei einzeiligem Aufbau
Anzahl DP-Master integriert	1
Anzahl DP-Master über CP	4
Betreibbare Funktionsbaugruppen	8
Betreibbare Kommunikationsbaugruppen PtP	16
Betreibbare Kommunikationsbaugruppen LAN	8
Befehlsbearbeitungszeiten	
Bitoperation, min.	0,01 µs
Wortoperation, min.	0,01 μs
Festpunktarithmetik, min.	0,01 μs
Gleitpunktarithmetik, min.	0,06 µs
Zeiten/Zähler und deren Remanenz	
Anzahl S7-Zähler	2048
S7-Zähler Remanenz	einstellbar von 0 bis 2048
S7-Zähler Remanenz voreingestellt	Z0 Z7
Anzahl S7-Zeiten	2048
S7-Zeiten Remanenz	einstellbar von 0 bis 2048
S7-Zeiten Remanenz voreingestellt	keine Remanenz
Datenbereiche und Remanenz	
Anzahl Merker	16384 Byte
Merker Remanenz einstellbar	einstellbar von 0 bis 16384
Merker Remanenz voreingestellt	MB0 MB15
Anzahl Datenbausteine	8190
max. Datenbausteingröße	64 KB
Nummernband DBs	1 8190
max. Lokaldatengröße je Ablaufebene	510 Byte
max. Lokaldatengröße je Baustein	510 Byte
Bausteine	
Anzahl OBs	24
maximale OB-Größe	64 KB
Gesamtanzahl DBs, FBs, FCs	-
Anzahl FBs	8191

Artikelnr.	317-4NE12
maximale FB-Größe	64 KB
Nummernband FBs	0 8190
Anzahl FCs	8191
maximale FC-Größe	64 KB
Nummernband FCs	0 8190
maximale Schachtelungstiefe je Prioklasse	16
maximale Schachtelungstiefe zusätzlich innerhalb Fehler OB	4
Uhrzeit	
Uhr gepuffert	✓
Uhr Pufferungsdauer (min.)	6 w
Art der Pufferung	Vanadium Rechargeable Lithium Batterie
Ladezeit für 50% Pufferungsdauer	20 h
Ladezeit für 100% Pufferungsdauer	48 h
Genauigkeit (max. Abweichung je Tag)	10 s
Anzahl Betriebsstundenzähler	8
Uhrzeit Synchronisation	✓
Synchronisation über MPI	Master/Slave
Synchronisation über Ethernet (NTP)	Slave
Adressbereiche (Ein-/Ausgänge)	
Peripherieadressbereich Eingänge	8192 Byte
Peripherieadressbereich Ausgänge	8192 Byte
Prozessabbild einstellbar	✓
Prozessabbild Eingänge voreingestellt	256 Byte
Prozessabbild Ausgänge voreingestellt	256 Byte
Prozessabbild Eingänge maximal	8192 Byte
Prozessabbild Ausgänge maximal	8192 Byte
Digitale Eingänge	65536
Digitale Ausgänge	65536
Digitale Eingänge zentral	1024
Digitale Ausgänge zentral	1024
Integrierte digitale Eingänge	-
Integrierte digitale Ausgänge	-
Analoge Eingänge	4096
Analoge Ausgänge	4096
Analoge Eingänge zentral	256

Artikelnr.	317-4NE12
Analoge Ausgänge zentral	256
Integrierte analoge Eingänge	-
Integrierte analoge Ausgänge	-
Kommunikationsfunktionen	
PG/OP Kommunikation	✓
Globale Datenkommunikation	✓
Anzahl GD-Kreise max.	8
Größe GD-Pakete, max.	54 Byte
S7-Basis-Kommunikation	✓
S7-Basis-Kommunikation Nutzdaten je Auftrag	76 Byte
S7-Kommunikation	✓
S7-Kommunikation als Server	✓
S7-Kommunikation als Client	-
S7-Kommunikation Nutzdaten je Auftrag	160 Byte
Anzahl Verbindungen gesamt	32
Funktionalität Sub-D Schnittstellen	
Bezeichnung	X2
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	✓
MPI	✓
MP²I (MPI/RS232)	-
DP-Master	-
DP-Slave	-
Punkt-zu-Punkt-Kopplung	-
Bezeichnung	X3
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	✓
MPI	-
MP²I (MPI/RS232)	-
DP-Master	ja
DP-Slave	ja
Punkt-zu-Punkt-Kopplung	✓
Funktionalität MPI	

Artikelnr.	317-4NE12
Anzahl Verbindungen, max.	32
PG/OP Kommunikation	✓
Routing	✓
Globale Datenkommunikation	✓
S7-Basis-Kommunikation	✓
S7-Kommunikation	✓
S7-Kommunikation als Server	✓
S7-Kommunikation als Client	
Übertragungsgeschwindigkeit, min.	19,2 kbit/s
Übertragungsgeschwindigkeit, max.	12 Mbit/s
Funktionalität PROFIBUS Master	
PG/OP Kommunikation	✓
Routing	✓
S7-Basis-Kommunikation	✓
S7-Kommunikation	✓
S7-Kommunikation als Server	✓
S7-Kommunikation als Client	-
Aktivieren/Deaktivieren von DP-Slaves	✓
Direkter Datenaustausch (Querverkehr)	-
DPV1	✓
Übertragungsgeschwindigkeit, min.	9,6 kbit/s
Übertragungsgeschwindigkeit, max.	12 Mbit/s
Anzahl DP-Slaves, max.	124
Adressbereich Eingänge, max.	8 KB
Adressbereich Ausgänge, max.	8 KB
Nutzdaten Eingänge je Slave, max.	244 Byte
Nutzdaten Ausgänge je Slave, max.	244 Byte
Funktionalität PROFIBUS Slave	
PG/OP Kommunikation	✓
Routing	✓
S7-Kommunikation	✓
S7-Kommunikation als Server	✓
S7-Kommunikation als Client	
Direkter Datenaustausch (Querverkehr)	
DPV1	✓
Übertragungsgeschwindigkeit, min.	9,6 kbit/s

Artikelnr.	317-4NE12
Übertragungsgeschwindigkeit, max.	12 Mbit/s
Automatische Baudratesuche	-
Übergabespeicher Eingänge, max.	244 Byte
Übergabespeicher Ausgänge, max.	244 Byte
Adressbereiche, max.	32
Nutzdaten je Adressbereich, max.	32 Byte
Point-to-Point Kommunikation	
PtP-Kommunikation	✓
Schnittstelle potentialgetrennt	✓
Schnittstelle RS232	-
Schnittstelle RS422	-
Schnittstelle RS485	✓
Anschluss	9polige SubD Buchse
Übertragungsgeschwindigkeit, min.	150 bit/s
Übertragungsgeschwindigkeit, max.	115,5 kbit/s
Leitungslänge, max.	500 m
Point-to-Point Protokolle	
Protokoll ASCII	✓
Protokoll STX/ETX	✓
Protokoll 3964(R)	✓
Protokoll RK512	-
Protokoll USS Master	✓
Protokoll Modbus Master	✓
Protokoll Modbus Slave	-
Spezielle Protokolle	-
Funktionalität RJ45 Schnittstellen	
Bezeichnung	X5
Physik	Ethernet 10/100 MBit
Anschluss	RJ45
Potenzialgetrennt	✓
PG/OP Kommunikation	✓
max. Anzahl Verbindungen	4
Produktiv Verbindungen	-
Bezeichnung	X8
Physik	Ethernet 10/100 MBit

Anschluss Potenzialgetrennt	Artikelnr.	317-4NE12
PG/OP Kommunikation max. Anzahl Verbindungen Pfouktiv Verbindungen, max. Pfour Pfouktiv Nerbindungen, max. Pfour P	Anschluss	RJ45
max. Anzahl Verbindungen Froduktiv Verbindungen Ethernet Kommunikations CP Anzahl projektierbarer Verbindungen, max. Anzahl via NetPro projektierbarer Verbindungen, max. S7-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 1SO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 2 KB UDP-Verbindungen SEND und RECEIVE UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 1460 Byte Nutzdaten je uDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Potenzialgetrennt	✓
Produktiv Verbindungen Ethernet Kommunikations CP Anzahl projektierbarer Verbindungen, max. Anzahl via NetPro projektierbarer Verbindungen, max. S7-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Worbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je JSO on TCP-Verbindung, max. 1460 Byte Nutzdaten je JDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	PG/OP Kommunikation	✓
Ethernet Kommunikations CP Anzahl projektierbarer Verbindungen, max. 64 Anzahl via NetPro projektierbarer Verbindungen, max. 16 ST-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB ISO on TCP-Verbindungen SEND und RECEIVE (max. 16 Multicast Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Multicast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je native TCP-Verbindung, max. 8 KB Nutzdaten je je JOP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BXHXT) 80 mm x 125 mm x 120 mm	max. Anzahl Verbindungen	32
Anzahl projektierbarer Verbindungen, max. Anzahl via NetPro projektierbarer Verbindungen, max. S7-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND md RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Produktiv Verbindungen	✓
Anzahl via NetPro projektierbarer Verbindungen, max. S7-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND und RECEIVE UDP-Wulticast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Ethernet Kommunikations CP	
dungen, max. S7-Verbindungen BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv Nutzdaten je S7-Verbindung, max. 32 KB TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 12 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Anzahl projektierbarer Verbindungen, max.	64
Aktiv und passiv Nutzdaten je S7-Verbindung, max. TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 2 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 KB Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm		16
TCP-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je TCP-Verbindung, max. 64 KB ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je uDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. PPE Befestigung Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 8 8 mx 125 mm x 120 mm	S7-Verbindungen	BSEND, BRCV, GET, PUT, Verbindungsaufbau aktiv und passiv
Nutzdaten je TCP-Verbindung, max. SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 2 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je native TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je S7-Verbindung, max.	32 KB
ISO-Verbindungen SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO-Verbindung, max. 8 KB ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	TCP-Verbindungen	SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv
Nutzdaten je ISO-Verbindung, max. ISO on TCP Verbindungen (RFC 1006) ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je TCP-Verbindung, max.	64 KB
ISO on TCP Verbindungen (RFC 1006) SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen SEND und RECEIVE Nutzdaten je UDP-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. PPE Befestigung Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	ISO-Verbindungen	SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv
Nutzdaten je ISO on TCP-Verbindung, max. 32 KB UDP-Verbindungen Nutzdaten je UDP-Verbindung, max. 2 KB UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je ISO-Verbindung, max.	8 KB
UDP-Verbindungen Nutzdaten je UDP-Verbindung, max. UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	ISO on TCP Verbindungen (RFC 1006)	SEND, RECEIVE, FETCH PASSIV, WRITE PASSIV, Verbindungsaufbau aktiv und passiv
Nutzdaten je UDP-Verbindung, max. UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je ISO on TCP-Verbindung, max.	32 KB
UDP-Multicast-Verbindungen SEND und RECEIVE (max. 16 Multicast Kreise) UDP-Broadcast-Verbindungen SEND Ethernet Offene Kommunikation Anzahl Verbindungen, max. 8 Nutzdaten je ISO on TCP-Verbindung, max. 8 KB Nutzdaten je native TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	UDP-Verbindungen	SEND und RECEIVE
UDP-Broadcast-Verbindungen Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. PPE Befestigung Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) Residuation SEND **END **END	Nutzdaten je UDP-Verbindung, max.	2 KB
Ethernet Offene Kommunikation Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. 8 KB Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	UDP-Multicast-Verbindungen	
Anzahl Verbindungen, max. Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	UDP-Broadcast-Verbindungen	SEND
Nutzdaten je ISO on TCP-Verbindung, max. Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. Nutzdaten je UDP-Verbindung, max. 1460 Byte 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Ethernet Offene Kommunikation	
Nutzdaten je native TCP-Verbindung, max. Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Anzahl Verbindungen, max.	8
Nutzdaten je ad-hoc TCP-Verbindung, max. 1460 Byte Nutzdaten je UDP-Verbindung, max. 1472 Byte Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je ISO on TCP-Verbindung, max.	8 KB
Nutzdaten je UDP-Verbindung, max. Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je native TCP-Verbindung, max.	8 KB
Gehäuse Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je ad-hoc TCP-Verbindung, max.	1460 Byte
Material PPE Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Nutzdaten je UDP-Verbindung, max.	1472 Byte
Befestigung Profilschiene System 300 Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Gehäuse	
Mechanische Daten Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Material	PPE
Abmessungen (BxHxT) 80 mm x 125 mm x 120 mm	Befestigung	Profilschiene System 300
	Mechanische Daten	
Gewicht 440 g	Abmessungen (BxHxT)	80 mm x 125 mm x 120 mm
	Gewicht	440 g

Artikelnr.	317-4NE12
Umgebungsbedingungen	
Betriebstemperatur	0 °C bis 60 °C
Lagertemperatur	-25 °C bis 70 °C
Zertifizierungen	
Zertifizierung nach UL508	ja

Anlaufverhalten

5 Einsatz CPU 317-4NE12

5.1 Montage

Informationen zur Montage und zur Verdrahtung:

Kapitel 3 "Montage und Aufbaurichtlinien" auf Seite 18

5.2 Anlaufverhalten

Stromversorgung einschalten

Nach dem Einschalten der Stromversorgung geht die CPU in den Betriebszustand über, der am Betriebsartenschalter eingestellt ist.

Auslieferungszustand

Im Auslieferungszustand ist die CPU urgelöscht. Nach einem STOP→RUN Übergang geht die CPU ohne Programm in RUN.

Anlauf mit gültiger Projektierung in der CPU

Die CPU geht mit dem Programm, das sich im batteriegepufferten RAM befindet, in RUN.

Anlauf bei leerem Akku

- Der Akku wird direkt über die eingebaute Spannungsversorgung über eine Ladeelektronik geladen und gewährleistet eine Pufferung für min. 30 Tage. Wird dieser Zeitraum überschritten, kann es zur vollkommenen Entladung des Akkus kommen. Hierbei wird das batteriegepufferte RAM gelöscht.
- In diesem Zustand führt die CPU ein Urlöschen durch. Ist eine MMC gesteckt, werden Programmcode und Datenbausteine von der MMC in den Arbeitsspeicher der CPU übertragen. Ist keine MMC gesteckt, transferiert die CPU permanent abgelegte "protected" Bausteine, falls diese vorhanden sind, in den Arbeitsspeicher.
- Abhängig von der Stellung des Betriebsartenschalters geht die CPU in RUN, sofern der OB81 vorhanden ist, bzw. bleibt im STOP. Dieser Vorgang wird im Diagnosepuffer unter folgendem Eintrag festgehalten: "Start Urlöschen automatisch (ungepuffert NetzEIN)".

VORSICHT!

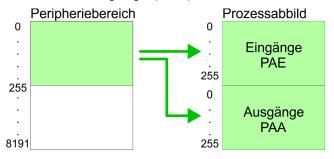
Bei leerem Akku läuft die CPU nach einem Spannungsreset mit einem BAT-Fehler an und führt ein automatisches Urlöschen der CPU durch. Den BAT-Fehler können Sie wieder löschen, wenn einmalig beim Power-Cycle zwischen dem Aus- und Einschalten der Versorgungsspannung mindestens 30sec. liegen und der Akku der CPU voll geladen ist. Ansonsten bleibt bei einem kurzen Power-Cycle der BAT-Fehler bestehen und die CPU wird urgelöscht.

Adressierung > Adressierung

5.3 Adressierung

5.3.1 Übersicht

Damit die gesteckten Peripheriemodule gezielt angesprochen werden können, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Beim Hochlauf der CPU vergibt diese steckplatzabhängig automatisch von 0 an aufsteigend Peripherieadressen für die gesteckten digitalen Ein- /Ausgabe-Module. Sofern keine Hardware-projektierung vorliegt, legt die CPU gesteckte Analog- Module bei der automatischen Adressierung auf gerade Adressen ab 256 ab. Module am SPEED-Bus werden ebenfalls bei der automatischen Adressierung berücksichtigt. Hierbei werden digitale E/As ab Adresse 128 und analoge E/As, FMs und CPs ab Adresse 2048 abgelegt.


5.3.2 Adressierung

Rückwandbus Peripherie

Bei der CPU 317-4NE12 gibt es einen Peripheriebereich (Adresse 0 ... 8191) und ein Prozessabbild der Ein- und Ausgänge (je Adresse 0 ... 255). Beim Prozessabbild werden die Signalzustände der unteren Adresse (0 ... 255) zusätzlich in einem besonderen Speicherbereich gespeichert.

Das Prozessabbild ist in zwei Teile gegliedert:

- Prozessabbild der Eingänge (PAE)
- Prozessabbild der Ausgänge (PAA)

Nach jedem Zyklusdurchlauf wird das Prozessabbild aktualisiert.

Maximale Anzahl steckbarer Module

Für die CPU 317-4NE12 können Sie bis zu 8 Peripherie-Module pro Zeile projektieren.

Für die Projektierung von Modulen, die über die Anzahl von 8 hinausgehen, können Zeilenanschaltungen verwendet werden. Hierbei setzen Sie im Siemens Hardware-Konfigurator auf Ihre 1. Profilschiene auf Steckplatz 3 die Anschaltung IM 360 aus dem Hardware-Katalog. Nun können Sie Ihr System um bis zu 3 Profilschienen ergänzen, indem Sie jede auf Steckplatz 3 mit einer IM 361 von Siemens beginnen. Unter Berücksichtigung des max. Summenstroms können bei der CPU 317-4NE12 von VIPA bis zu 32 Module in einer Zeile angeordnet werden. Hierbei ist die Montage der IM 360/361 Anschaltungen von Siemens nicht erforderlich.

Zusätzlich können Sie bis zu 10 Module am SPEED-Bus ansteuern. Hier gehen CPs und DP-Master, da diese zusätzlich virtuell am Standard-Bus zu projektieren sind, in die Summe von 32 Modulen am Standard-Bus mit ein.

Adressierung > Adressierung

Über Hardware-Konfiguration Adressen definieren

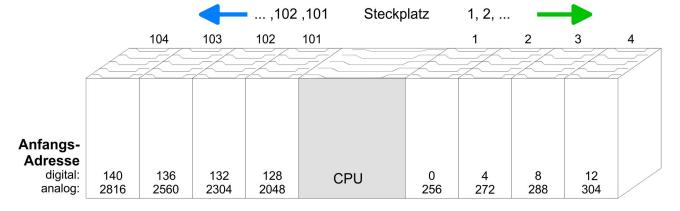
Über Lese- bzw. Schreibzugriffe auf die Peripheriebytes oder auf das Prozessabbild können Sie die Module ansprechen.

Mit einer Hardware-Konfiguration können Sie Adressen definieren. Klicken Sie hierzu auf die Eigenschaften des entsprechenden Moduls und stellen Sie die gewünschte Adresse ein.

VORSICHT!

Bitte beachten Sie, dass Sie bei Anbindungen über externe PROFIBUS-DP-Master - zur Projektierung eines SPEED-Bus-Systems erforderlich - keine Adressdoppelbelegung projektieren! Der Siemens Hardware-Konfigurator führt bei externen DP-Master-Systemen keine Adressüberprüfung durch!

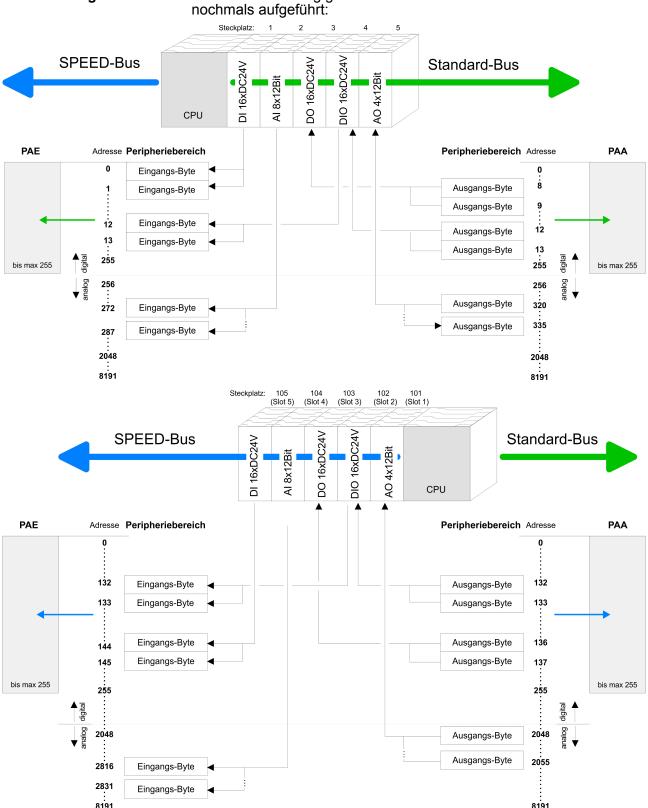
Automatische Adressierung


Falls Sie keine Hardware-Konfiguration verwenden möchten, tritt eine automatische Adressierung in Kraft. Bei der automatischen Adressierung belegen steckplatzabhängig DIOs immer 4Byte und AIOs, FMs, CPs immer 16Byte am Standard-Bus und 256Byte am SPEED-Bus. Nach folgenden Formeln wird steckplatzabhängig die Anfangsadresse ermittelt, ab der das entsprechende Modul im Adressbereich abgelegt wird:

Standard-Bus

- DIOs: Anfangsadresse = 4×(Steckplatz-1)
- AIOs, FMs, CPs: Anfangsadresse = 16×(Steckplatz-1)+256

SPEED-Bus


- DIOs: Anfangsadresse = 4×(Steckplatz-101)+128
- AIOs, FMs, CPs: Anfangsadresse = 256×(Steckplatz-101)+2048

Adressierung > Adressierung

In dem nachfolgenden Beispiel ist die Funktionsweise der automatischen Adressierung getrennt nach Standard-Bus und SPEED-Bus nochmals aufgeführt:

Hardware-Konfiguration - I/O-Module

5.4 Hardware-Konfiguration - CPU

Voraussetzung

Die Konfiguration der CPU erfolgt im "Hardware-Konfigurator" von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit "Extras → Katalog aktualisieren" den Hardware-Katalog aktualisieren.

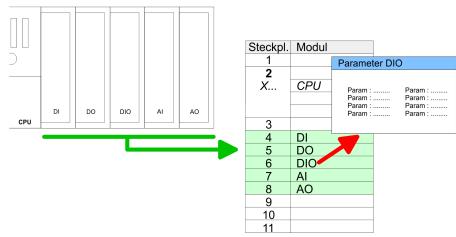
Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Bitte beachten Sie, dass diese SPEED7-CPU 4 AKKUs besitzt. Nach einer arithmetischen Operation (+I, -I, *I, /I, +D, -D, *D, /D, MOD, +R, -R, *R, /R) wird der Inhalt des AKKUs 3 und 4 in die AKKUs 2 und 3 geladen. Dies kann bei Programmen, die einen unveränderten AKKU 2 voraussetzen. zu Konflikten führen.

Nähere Informationen hierzu finden Sie im Handbuch "VIPA Operationsliste SPEED7" unter "Unterschiede zwischen SPEED7 und 300V Programmierung".

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 318-2
X2	DP
X1	MPI/DP
3	


Im Siemens SIMATIC Manager sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- **3.** Platzieren Sie auf "Slot"-Nummer 2 die CPU 318-2 (6ES7 318-2AJ00-0AB0/V3.0).
- **4.** ▶ Über das Submodul "X2 DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).

5.5 Hardware-Konfiguration - I/O-Module

Hardware-Konfiguration der Module

Binden Sie nach der Hardware-Konfiguration der CPU beginnend mit Steckplatz 4 Ihre System 300 Module auf dem Bus in der gesteckten Reihenfolge ein.

Hardware-Konfiguration - Ethernet-PG/OP-Kanal

Parametrierung

Zur Parametrierung doppelklicken Sie in Ihrer Steckplatzübersicht auf das zu parametrierende Modul. Daraufhin öffnet sich ein Dialogfenster. Hier können Sie Ihre Parametereinstellungen vornehmen. Unter Einsatz der SFCs 55, 56 und 57 können Sie zur Laufzeit Parameter ändern und an die entsprechenden Module übertragen. Hierbei sind die modulspezifischen Parameter in sogenannten "Datensätzen" abzulegen. Näheres zum Aufbau der Datensätze finden Sie in der Beschreibung zu den Modulen.

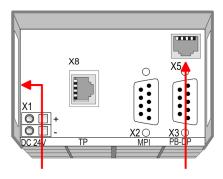
Buserweiterung mit IM 360 und IM 361

Für die Projektierung von Modulen, die über die Anzahl von 8 hinausgehen, können Zeilenanschaltungen verwendet werden. Hierbei setzen Sie im Siemens Hardware-Konfigurator auf Ihre 1. Profilschiene auf Steckplatz 3 die Anschaltung IM 360 aus dem Hardware-Katalog. Nun können Sie Ihr System um bis zu 3 Profilschienen ergänzen, indem Sie jede auf Steckplatz 3 mit einer IM 361 von Siemens beginnen. Unter Berücksichtigung des max. Summenstroms können bei VIPA-SPEED7-CPUs bis zu 32 Module in einer Zeile angeordnet werden. Hierbei ist die Montage der IM 360/361 Anschaltungen von Siemens nicht erforderlich.

5.6 Hardware-Konfiguration - Ethernet-PG/OP-Kanal

Übersicht

Die CPU 317-4NE12 hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie Ihre CPU programmieren und fernwarten. Mit dem PG/OP-Kanal haben Sie auch Zugriff auf die interne Web-Seite, auf der Sie Informationen zu Firmwarestand, angebundene Peripherie, aktuelle Zyklus-Zeiten usw. finden. Bei Erstinbetriebnahme bzw. nach dem Rücksetzen auf Werkseinstellungen besitzt der Ethernet-PG/OP-Kanal keine IP-Adresse. Damit Sie online über den Ethernet-PG/OP-Kanal auf die CPU zugreifen können, müssen Sie diesem gültige IP-Adress-Parameter über den Siemens SIMATIC Manager zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe".


Montage und Inbetriebnahme

- 1. Bauen Sie Ihr System 300S mit Ihrer CPU auf.
- 2. Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- 3. Verbinden Sie die Ethernet-Buchse des Ethernet-PG/OP-Kanals mit Ethernet.
- **4.** ▶ Schalten Sie die Spannungsversorgung ein
 - ⇒ Nach kurzer Hochlaufzeit ist der CP bereit für die Kommunikation. Er besitzt ggf. noch keine IP-Adressdaten und erfordert eine Urtaufe.

Hardware-Konfiguration - Ethernet-PG/OP-Kanal

"Urtaufe" über Zielsystemfunktionen

Die Urtaufe über die Zielsystemfunktion erfolgt nach folgender Vorgehensweise:

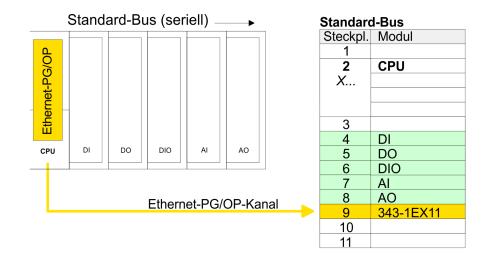
Ethernet address

PG/OP channel

- 1. Ethernet PG/OP channel
- 2. CP 343
- Ermitteln Sie die aktuelle Ethernet (MAC) Adresse Ihres Ethernet PG/OP-Kanals. Sie finden diese immer als 1. Adresse unter der Frontklappe der CPU auf einem Aufkleber auf der linken Seite.

IP-Adress-Parameter zuweisen

Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens SIMATIC Manager ab Version V 5.3 & SP3 nach folgender Vorgehensweise:


- 1. Starten Sie den Siemens SIMATIC Manager und stellen Sie über "Extras → PG/PC-Schnittstelle einstellen" auf "TCP/IP -> Netzwerkkarte" ein.
- Offnen Sie mit "Zielsystem → Ethernet-Teilnehmer bearbeiten" das gleichnamige Dialogfenster.
- Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf dem 1. Aufkleber unter der Frontklappe der CPU.
- **4.** Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.
- 5. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnetz-Maske und den Netzübergang eintragen.
- **6.** ▶ Bestätigen Sie mit [IP-Konfiguration zuweisen] Ihre Eingabe.
 - Direkt nach der Zuweisung ist der Ethernet-PG/OP-Kanal über die angegebenen IP-Adress-Daten online erreichbar. Der Wert bleibt bestehen, solange dieser nicht neu zugewiesen, mit einer Hardware-Projektierung überschrieben oder Rücksetzen auf Werkseinstellung ausgeführt wird.

IP-Adress-Parameter in Projekt übernehmen

- Öffnen Sie den Siemens Hardware-Konfigurator und projektieren Sie die Siemens CPU 318-2 (318-2AJ00-0AB00 V3.0).
- 2. Projektieren Sie die Module am Standard-Bus.
- Für den Ethernet-PG/OP-Kanal ist <u>immer</u> unterhalb der reell gesteckten Module ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu platzieren.

Hardware-Konfiguration - SPEED-Bus > Voraussetzung

- **4.** Öffnen Sie durch Doppelklick auf den CP 343-1EX11 den Eigenschaften-Dialog und geben Sie für den CP unter "Eigenschaften" die zuvor zugewiesenen IP-Adress-Daten an.
- **5.** Ordnen Sie den CP einem "Subnetz" zu. Ohne Zuordnung werden die IP-Adress-Daten nicht übernommen!
- 6. DÜbertragen Sie Ihr Projekt.

5.7 Hardware-Konfiguration - SPEED-Bus

5.7.1 Voraussetzung

Damit Sie die VIPA-spezifischen CPU-Parameter einstellen und Module am SPEED-Bus parametrieren können, ist die Installation der SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich. Nach der Installation können Sie die CPU und ihre SPEED-Bus-Module in einem PROFIBUS-Master-System projektieren.

Hardware-Konfiguration - SPEED-Bus > Voraussetzung

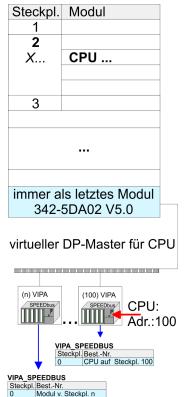
SPEEDBUS.GSD installieren

Die GSD (Geräte-Stamm-Datei) ist in folgenden Sprachversionen online verfügbar. Weitere Sprachen erhalten Sie auf Anfrage:

Name	Sprache
SPEEDBUS.GSD	deutsch (default)
SPEEDBUS.GSG	deutsch
SPEEDBUS.GSE	englisch

Die GSD-Dateien finden Sie auf www.vipa.com im "Service"-Bereich.

Die Einbindung der SPEEDBUS.GSD erfolgt nach folgender Vorgehensweise:


- 1. Gehen Sie auf www.vipa.com
- 2. ► Klicken Sie auf "Service → Download → GSD- und EDS-Files → Profibus"
- 3. Laden Sie die Datei Cx000023_Vxxx.
- **4.** Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die SPEEDBUS.GSD befindet sich im Verzeichnis VIPA System 300S.
- **5.** Starten Sie den Hardware-Konfigurator von Siemens.
- 6. Schließen Sie alle Projekte.
- 7. ▶ Gehen Sie auf "Extras → Neue GSD-Datei installieren".
- 8. Navigieren Sie in das Verzeichnis VIPA_System_300S und geben Sie **SPEEDBUS.GSD** an.
 - ⇒ Alle SPEED7-CPUs und -Module des System 300S von VIPA sind jetzt im Hardwarekatalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS enthalten.

5.7.2 Vorgehensweise

Die Einbindung der CPU 317-4NE12 und der Module am SPEED-Bus erfolgt in Form eines virtuellen PROFIBUS Master-Systems nach folgender Vorgehensweise:

- Führen Sie eine Hardware-Konfiguration für die CPU durch.

 Kapitel 5.4 "Hardware-Konfiguration CPU" auf Seite 50
- 2. Da die SPEED-Bus-Module in Form eines virtuellen PROFIBUS-Systems anzubinden sind, projektieren Sie immer als letztes Modul für den SPEED-Bus den Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen Sie diesen mit einem neuen PRO-FIBUS-Netz und schalten Sie ihn in die Betriebsart DP-Master.
- Binden Sie an dieses Mastersystem für jedes einzelne SPEED-Bus-Modul beginnend mit der CPU einen "VIPA_SPEEDBUS"-Slave an. Hierbei geben Sie über die PROFIBUS-Adresse die SPEED-Bus-Steckplatz-Nr., beginnend mit 100 für die CPU, an. Platzieren Sie auf dem Steckplatz 0 jedes Slaves das ihm zugeordnete Modul.

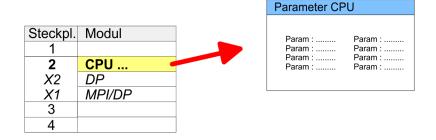
Da sich manche SPEED-Bus CPs von VIPA in der Projektierung und Parametrierung gleich verhalten wie die entsprechenden CPs von Siemens, ist für jeden CP am SPEED-Bus der entsprechende CP von Siemens am Standard-Bus zu platzieren und zu vernetzen.

Nähere Informationen zur Projektierung des entsprechenden SPEED-Bus Moduls finden Sie im zugehörigen Handbuch.

5.8 Hardware-Konfiguration - Kommunikation

Die Hardware-Konfiguration von PROFIBUS, PtP und CP 343 ist auf folgenden Seiten beschrieben:

- PROFIBUS-DP
- PtP
 - PtP:


 Kapitel 6.3 "Einsatz der RS485-Schnittstelle für PtP" auf Seite 104
- CP 343

Einstellung Standard CPU-Parameter > Parameter CPU

5.9 Einstellung Standard CPU-Parameter

5.9.1 Parametrierung über Siemens CPU

Parametrierung über Siemens CPU 318-2AJ00 Da die CPU im Hardware-Konfigurator als Siemens CPU 318-2 (CPU 318-2AJ00 V3.0) zu projektieren ist, können Sie bei der Hardware-Konfiguration unter den "Eigenschaften" der CPU 318-2 die Standard-Parameter für die VIPA-CPU einstellen. Durch Doppelklick auf die CPU 318-2 gelangen Sie in das Parametrierfenster für die CPU. Über die Register haben Sie Zugriff auf alle Standard-Parameter Ihrer CPU.

5.9.2 Parameter CPU

Parameter, die unterstützt werden Die CPU wertet nicht alle Parameter aus, welche Sie bei der Hardware-Konfiguration einstellen können. Folgende Parameter werden zur Zeit in der CPU ausgewertet:

Allgemein

- Kurzbezeichnung: Die Kurzbezeichnung der Siemens CPU 318-2AJ00 ist CPU 318-2.
- Bestell-Nr./ Firmware: Bestellnummer und Firmware sind identisch zu den Angaben im Fenster "Hardware Katalog".
- Name: Als Name steht hier die Kurzbezeichnung der CPU. Wenn Sie den Namen ändern, erscheint dieser im Siemens SIMATIC Manager.
- Anlagenkennzeichen: Hier haben Sie die Möglichkeit für die CPU ein spezifisches Anlagenkennzeichen festzulegen. Mit dem Anlagenkennzeichen werden Teile der Anlage eindeutig nach funktionalen Gesichtspunkten gekennzeichnet. Es ist gemäß IEC 1346-1 hierarchisch aufgebaut.
- Kommentar: Hier können Sie den Einsatzzweck der Baugruppe eingeben.

Einstellung Standard CPU-Parameter > Parameter CPU

Anlauf

- Anlauf bei Sollausbau ungleich Istausbau: Wenn "Anlauf bei Sollausbau ungleich Istausbau" deaktiviert ist und mindestens eine Baugruppe nicht auf dem projektierten Steckplatz steckt, oder dort eine Baugruppe von einem anderen Typ steckt, geht die CPU nicht in RUN und verbleibt in STOP. Wenn "Anlauf bei Sollausbau ungleich Istausbau" aktiviert ist, läuft die CPU an, auch wenn Baugruppen nicht auf den projektierten Steckplätzen stecken oder dort Baugruppen eines anderen Typs stecken (z.B. bei Inbetriebnahme).
- Überwachungszeit für Fertigmeldung durch Baugruppen [100ms]: Maximale Dauer für die Fertigmeldung aller konfigurierten Baugruppen nach NetzEIN. Hierbei werden auch angebundene PROFIBUS-DP-Slaves berücksichtigt, bis diese parametriert sind. Wenn nach Ablauf dieser Zeit die Baugruppen keine Fertigmeldung an die CPU senden, ist der Istausbau ungleich dem Sollausbau.
- Überwachungszeit für Übertragung der Parameter an Baugruppen [100ms]: Maximale Dauer für die Übertragung der Parameter an die parametrierbaren Baugruppen. Wenn nach Ablauf dieser Zeit nicht alle Baugruppen parametriert sind, ist der Istausbau ungleich dem Sollausbau.

Zyklus / Taktmerker

- OB1-Prozessabbild zyklisch aktualisieren: Dieser Parameter ist nicht relevant.
- Zyklusüberwachungszeit: Hier geben Sie die Zyklusüberwachungszeit in ms ein. Wenn die Zykluszeit die Zyklusüberwachungszeit überschreitet, geht die CPU in STOP.
 - Ursachen für eine Überschreitung:
 - Kommunikationsprozesse
 - Häufung von Alarmereignissen
 - Fehler im CPU-Programm
- Mindestzykluszeit
 - Ist die Bearbeitungszeit im Hauptprogramm einschließlich der Aktualisierung des Prozessabbilds kleiner als die vorgegebene Mindestzykluszeit, so wartet die CPU den Ablauf der Mindestzykluszeit ab, bevor sie einen neuen Zyklus startet.
 - Durch Vorgabe einer Mindestzykluszeit können Sie stark schwankende Zyklusbearbeitungszeiten, die auch die Reaktionszeit ihrer Steuerung beeinflussen, ausgleichen.
 - Die Vorgabe der Mindestzykluszeit erfolgt in ms.
 - Der standardmäßige Eintrag "0" deaktiviert die Mindestzykluszeit.
- Zyklusbelastung durch Kommunikation: Dieser Parameter ist nicht relevant.
- Größe Prozessabbild der Ein-/Ausgänge: Hier können Sie die Größe des Prozessabbilds max. 2048 für die Ein-/ Ausgabe-Peripherie festlegen.
- OB85-Aufruf bei Peripheriezugriffsfehler: Sie können die voreingestellte Reaktion der CPU bei Peripheriezugriffsfehlern während der systemseitigen Aktualisierung des Prozessabbildes ändern. Die VIPA-CPU ist so voreingestellt, dass sie bei Peripheriezugriffsfehlern keinen OB 85 aufruft und auch keinen Eintrag im Diagnosepuffer erzeugt.
- Taktmerker: Aktivieren Sie dieses Kästchen, wenn Sie einen Taktmerker einsetzen und geben Sie die Nummer des Merkerbytes ein.

Einstellung Standard CPU-Parameter > Parameter CPU

Das gewählte Merkerbyte kann nicht für die Zwischenspeicherung von Daten genutzt werden.

Remanenz

- Anzahl Merkerbytes ab MB0: Die Anzahl der remanenten Merkerbytes ab Merkerbyte 0 können Sie hier angeben.
- Anzahl S7-Timer ab T0: Hier tragen Sie die Anzahl der remanenten S7-Timer ab T0 ein.
- Anzahl S7-Zähler ab Z0: Tragen Sie die Anzahl der remanenten S7-Zähler ab Z0 hier ein.
- Bereiche: Diese Parameter sind nicht relevant.

Alarme

Priorität: Hier werden die Prioritäten angezeigt, nach denen der entsprechende Alarm-OB (Prozessalarm, Verzögerungsalarm, Asynchronfehleralarm) bearbeitet wird.

Uhrzeitalarme

- Priorität: Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Uhrzeitalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.
- Aktiv: Bei aktiviertem Kästchen, wird der Uhrzeitalarm-OB bei einem Neustart automatisch gestartet.
- Ausführung: Hier wählen Sie aus, wie oft die Alarme ausgeführt werden sollen. Die Intervalle von minütlich bis jährlich beziehen sich auf die Einstellungen unter Startdatum und Uhrzeit.
- Startdatum/Uhrzeit: Hier geben Sie an, wann der Uhrzeitalarm zum ersten Mal ausgeführt werden soll.
- Teilprozessabbild: Dieser Parameter wird nicht unterstützt.

Weckalarme

- Priorität: Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende Weckalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den entsprechenden OB ab.
- Ausführung: Geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs bearbeitet werden. Startzeitpunkt ist der Betriebszustandwechsel von STOP nach RUN.
- Phasenverschiebung: Geben Sie hier eine Zeit in ms an, um welche der tatsächliche Ausführungszeitpunkt des Weckalarms verzögert werden soll. Dies ist sinnvoll, wenn mehrere Weckalarme aktiv sind. Mit der *Phasenverschiebung* können diese über den Zyklus hinweg verteilt werden.
- Teilprozessabbild: Dieser Parameter wird nicht unterstützt.

Diagnose/Uhr

- STOP-Ursache melden: Aktivieren Sie diesen Parameter, wenn die CPU bei Übergang nach STOP die STOP-Ursache an PG bzw. OP melden soll.
- Anzahl Meldungen im Diagnosepuffer: Hier wird die Anzahl der Diagnosen angezeigt, welche im Diagnosepuffer (Ringpuffer) abgelegt werden können.
- Synchronisationsart: Legen Sie hier fest, ob die Uhr andere Uhren synchronisiert oder nicht.
 - als Slave: Die Uhr wird von einer anderen Uhr synchronisiert.
 - als Master: Die Uhr synchronisiert andere Uhren als Master.
 - keine: Es findet keine Synchronisation statt.

Einstellung Standard CPU-Parameter > Parameter für MPI/DP

- Zeitintervall: Zeitintervalle, innerhalb welcher die Synchronisation erfolgen soll.
- Korrekturfaktor: Durch Vorgabe eines Korrekturfaktors in ms können Sie die Abweichung der Uhr innerhalb 24 Stunden ausgleichen. Geht Ihre Uhr innerhalb von 24 Stunden 1s nach, können Sie dies mit dem Korrekturfaktor "+1000" ms ausgleichen.

Schutz

- Schutzstufe: Hier können Sie eine von 3 Schutzstufen einstellen, um die CPU vor unbefugtem Zugriff zu schützen.
 - Schutzstufe 1 (voreingestellt):
 kein Passwort parametrierbar; keine Einschränkungen
 - Schutzstufe 2 mit Passwort:
 Kenntnis des Passworts: lesender und schreibender Zugriff
 Unkenntnis des Passworts: nur lesender Zugriff.
 - Schutzstufe 3:
 Kenntnis des Passworts: lesender und schreibender Zugriff
 Unkenntnis des Passworts: weder lesender noch schreibender
 Zugriff

5.9.3 Parameter für DP

Über Doppelklick auf das Submodul DP gelangen Sie in den Eigenschaften-Dialog des PROFIBUS-Teils.

Allgemein

- Kurzbezeichnung: Hier wird als Kurzbezeichnung "DP" für PRO-FIBUS-DP aufgeführt.
- Bestell-Nr.: Eine Bestell-Nr. wird nicht angezeigt.
- Name: Hier steht die Bezeichnung "DP". Wenn Sie die Bezeichnung ändern, erscheint die neue Bezeichnung im Siemens SIMATIC Manager.
- Schnittstelle: Hier wird die PROFIBUS-Adresse eingeblendet.
- Eigenschaften: Über diese Schaltfläche können Sie die Eigenschaften der PROFIBUS-DP-Schnittstelle einstellen.
- Kommentar: Hier können Sie den Einsatzzweck der PROFIBUS-Schnittstelle eingeben.

Adresse

- Diagnose: Geben Sie hier eine Diagnoseadresse für PROFIBUS-DP an. Über diese Adresse bekommt die CPU eine Rückmeldung im Fehlerfall.
- Betriebsart: Hier können Sie die entsprechende Betriebsart des PROFIBUS-Teils einstellen. N\u00e4heres hierzu finden Sie im Teil "Einsatz unter PROFIBUS".
- Konfiguration: Hier können Sie in der Betriebsart "DP-Slave" Ihr Slave-System konfigurieren. Näheres hierzu finden im Teil "Einsatz unter PROFIBUS".
- Uhr: Diese Parameter werden nicht unterstützt.

5.9.4 Parameter für MPI/DP

Über Doppelklick auf das Submodul MPI/DP gelangen Sie in den Eigenschaften-Dialog der MPI-Schnittstelle.

Einstellung VIPA-spezifische CPU-Parameter > Vorgehensweise

Allgemein

- Kurzbezeichnung: Hier wird als Kurzbezeichnung "MPI/DP" für die MPI-Schnittstelle aufgeführt.
- Bestell-Nr.: Hier erfolgt keine Anzeige.
- Name: Unter Name finden Sie die Bezeichnung "MPI/DP". Wenn Sie den Namen ändern, erscheint der neue Name im Siemens SIMATIC Manager.
- Typ: Bitte beachten Sie, das die VIPA CPU ausschließlich den Typ "MPI" unterstützt.
- Schnittstelle: Hier wird die MPI-Adresse eingeblendet.
- Eigenschaften: Über diese Schaltfläche können Sie die Eigenschaften der MPI-Schnittstelle einstellen.
- Kommentar: Geben Sie hier den Einsatzzweck der MPI-Schnittstelle an.

Adresse

- Diagnose: Geben Sie hier eine Diagnoseadresse für die MPI-Schnittstelle an. Über diese Adresse bekommt die CPU eine Rückmeldung im Fehlerfall.
- Betriebsart, Konfiguration, Uhr: Diese Parameter werden nicht unterstützt.

5.10 Einstellung VIPA-spezifische CPU-Parameter

5.10.1 Vorgehensweise

Übersicht

Mit Ausnahme der VIPA-spezifischen CPU-Parameter erfolgt die CPU-Parametrierung im Parameter-Dialog der Siemens CPU. Durch Einbindung der SPEEDBUS.GSD können Sie in der Hardware-Konfiguration VIPA-spezifische Parameter einstellen. Hierbei haben Sie Zugriff auf folgende Parameter:

- Funktion RS485 X3 (PtP, Synchronisation DP-Master und CPU)
- Token Watch
- Anzahl Remanenzmerker, Timer, Zähler
- Priorität OB 28, OB 29, OB 33, OB 34
- Ausführung OB 33, OB 34
- Phasenverschiebung OB 33, OB 34

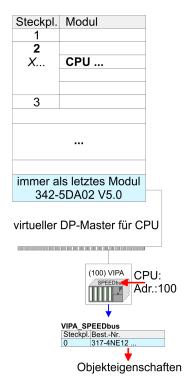
Voraussetzung

Damit Sie die VIPA-spezifischen CPU-Parameter einstellen können, ist die Installation der SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich. Nach der Installation können Sie die CPU in einem PROFIBUS-Master-System projektieren und entsprechend die Parameter anpassen.

Einstellung VIPA-spezifische CPU-Parameter > Vorgehensweise

SPEEDBUS.GSD installieren

Die GSD (Geräte-Stamm-Datei) ist in folgenden Sprachversionen online verfügbar. Weitere Sprachen erhalten Sie auf Anfrage:


Name	Sprache
SPEEDBUS.GSD	deutsch (default)
SPEEDBUS.GSG	deutsch
SPEEDBUS.GSE	englisch

Die GSD-Dateien finden Sie auf www.vipa.com im "Service"-Bereich. Die Einbindung der SPEEDBUS.GSD erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie auf www.vipa.com
- 2. ► Klicken Sie auf "Service → Download → GSD- und EDS-Files → Profibus"
- 3. Laden Sie die Datei Cx000023_Vxxx.
- **4.** Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die SPEEDBUS.GSD befindet sich im Verzeichnis VIPA_System_300S.
- **5.** Starten Sie den Hardware-Konfigurator von Siemens.
- 6. Schließen Sie alle Projekte.
- 7. ▶ Gehen Sie auf "Extras → Neue GSD-Datei installieren".
- 8. Navigieren Sie in das Verzeichnis VIPA_System_300S und geben Sie **SPEEDBUS.GSD** an.
 - ⇒ Alle SPEED7-CPUs und -Module des System 300S von VIPA sind jetzt im Hardwarekatalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS enthalten.

Einstellung VIPA-spezifische CPU-Parameter > VIPA-spezifische Parameter

Hardware-Konfiguration

Die Einbindung der CPU 317-4NE12 erfolgt in Form eines virtuellen PROFIBUS Master-Systems nach folgender Vorgehensweise:

- **1.** Führen Sie eine Hardware-Konfiguration für die CPU durch. Kapitel 5.4 "Hardware-Konfiguration - CPU" auf Seite 50
- 2. Projektieren Sie immer als letztes Modul einen Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen und parametrieren Sie diesen in der Betriebsart "DP-Master".
- Binden Sie das Slave-System "VIPA_SPEEDbus" an. Nach der Installation der SPEEDBUS.GSD finden Sie dieses im Hardware-Katalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA SPEEDBUS.
- **4.** Stellen Sie für das Slave-System die PROFIBUS-Adresse 100 ein.
- **5.** Platzieren Sie auf dem Steckplatz 0 die VIPA CPU 317-4NE12 aus dem Hardware-Katalog von VIPA_ SPEEDbus.
- **6.** Durch Doppelklick auf die eingefügte CPU 317-4NE12 gelangen Sie in den Eigenschaften-Dialog der CPU.

Die hier gezeigte Hardware-Konfiguration ist nur erforderlich, wenn Sie die VIPA-spezifischen Parameter anpassen möchten.

5.10.2 VIPA-spezifische Parameter

Im Eigenschaften-Dialog der VIPA-CPU haben Sie Zugriff auf die nachfolgend aufgeführten Parameter.

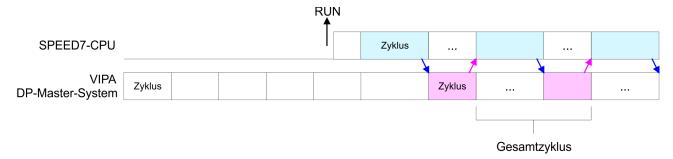
5.10.2.1 Funktion RS485 X3

Mit diesem Parameter können Sie die RS485-Schnittstelle auf PtP-Kommunikation (point to point) umschalten bzw. das Synchronisationsverhalten zwischen DP-Master-System und CPU vorgeben:

Deaktiviert	Deaktiviert die RS485-Schnittstelle.
PtP	In dieser Betriebsart wird der PROFIBUS-DP-Master deaktiviert und die RS485-Schnittstelle arbeitet als Schnittstelle für serielle Punkt-zu-Punkt-Kommunikation. Hier können Sie unter Einsatz von Protokollen seriell zwischen zwei Stationen Daten austauschen.

Einstellung VIPA-spezifische CPU-Parameter > VIPA-spezifische Parameter

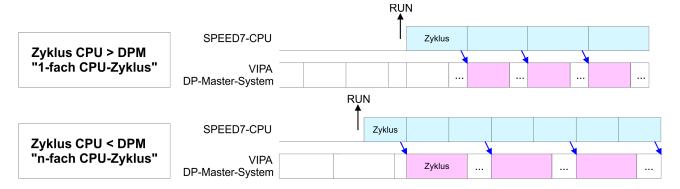
PROFIBUS-DP async	PROFIBUS-DP-Master-Betrieb asynchron zum CPU-Zyklus Die RS485-Schnittstelle ist defaultmäßig auf PROFIBUS-DP asynceingestellt. Hier laufen CPU-Zyklus und die Zyklen aller VIPA PROFIBUS-DP-Master an der CPU unabhängig voneinander.
PROFIBUS-DP syncin	Die CPU wartet auf DP-Master- Eingangsdaten.
PROFIBUS-DP syncOut	Das DP-Master-System wartet auf CPU-Ausgangsdaten.
PROFIBUS-DP syncInOut	CPU und DP-Master-System warten aufeinander und bilden damit einen Zyklus.
Default: PROFIBUS-DP async	


5.10.2.1.1 Synchronisation zwischen Master-System und CPU

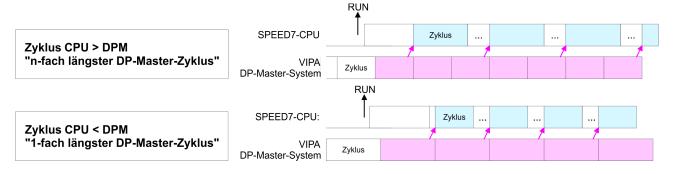
Übersicht

Normalerweise laufen die Zyklen von CPU und DP-Master unabhängig voneinander. Die Zykluszeit der CPU ist die Zeit, welche die CPU für einen OB1-Durchlauf und für das Lesen bzw. Schreiben der Ein-bzw. Ausgänge benötigt. Da die Zykluszeit eines DP-Masters unter anderem abhängig ist von der Anzahl der angebunden DP-Slaves und der Baud-Rate, entsteht bei jedem angebundenen DP-Master eine andere Zykluszeit. Aufgrund der Asynchronität von CPU und DP-Master ergeben sich für das Gesamtsystem relativ hohe Reaktionszeiten. Über eine Hardware-Konfiguration können Sie, wie oben gezeigt, das Synchronisations-Verhalten zwischen allen VIPA PROFIBUS-DP-Master an der CPU parametrieren. Die verschiedenen Modi für die Synchronisation sind nachfolgend beschrieben.

PROFIBUS-DP SyncInOut


Im PROFIBUS-DP SyncInOut warten CPU und DP-Master-System jeweils aufeinander und bilden damit einen Zyklus. Hierbei ist der Gesamtzyklus die Summe aus dem längsten DP-Master-Zyklus und CPU-Zyklus. Durch diesen Synchronisations-Modus erhalten Sie global konsistente Ein-/ Ausgabedaten, da innerhalb des Gesamtzyklus CPU und das DP-Master-System nacheinander mit den gleichen Ein- bzw. Ausgabedaten arbeiten. Gegebenenfalls müssen Sie in diesem Modus die Ansprechüberwachungszeit in den Bus-Parametern erhöhen.

Einstellung VIPA-spezifische CPU-Parameter > VIPA-spezifische Parameter


PROFIBUS-DP SyncOut

In dieser Betriebsart richtet sich der Zyklus des VIPA DP-Master-Systems nach dem CPU-Zyklus. Geht die CPU in RUN, werden die DP-Master synchronisiert. Sobald deren Zyklus durchlaufen ist, warten diese auf den nächsten Synchronisationsimpuls mit Ausgabedaten der CPU. Auf diese Weise können Sie die Reaktionszeit Ihres Systems verbessern, da Ausgangsdaten möglichst schnell an die DP-Master übergeben werden. Gegebenenfalls müssen Sie in diesem Modus die Ansprechüberwachungszeit in den Bus-Parametern erhöhen.

PROFIBUS-DP Syncin

In der Betriebsart PROFIBUS-DP SyncIn wird der CPU-Zyklus auf den Zyklus des VIPA PROFIBUS-DP-Master-Systems synchronisiert. Hierbei richtet sich der CPU-Zyklus nach dem VIPA DP-Master mit der längsten Zykluszeit. Geht die CPU in RUN, wird diese mit allen VIPA DP-Master synchronisiert. Sobald die CPU ihren Zyklus durchlaufen hat, wartet diese, bis das DP-Master-System mit dem Synchronimpuls neue Eingangsdaten liefert. Gegebenenfalls müssen Sie in diesem Modus die Zyklusüberwachungszeit der CPU erhöhen.

5.10.2.2 Token Watch

Über die Vorgaben der PROFIBUS-Bus-Parameter bei der Hardware-Konfiguration ergibt sich eine Token-Zeit für den PROFIBUS. Die Token-Zeit definiert die Zeitdauer, bis das Token wieder beim DP-Master ist. Per Default wird diese Zeit überwacht. Starke Störungen auf dem Bus können aber aufgrund dieser Überwachung zu einem Reboot des DP-Master führen. Hier können Sie mit dem Parameter Token Watch die Überwachung der Token-Zeit aus- bzw. einschalten. Default: Ein

Projekt transferieren > Transfer über MPI/PROFIBUS

5.10.2.3 Anzahl Remanenz- Merker

Geben Sie hier die Anzahl der Merker-Bytes an. Durch Eingabe von 0 wird der Wert übernommen, welchen Sie in den Parametern der Siemens CPU unter Remanenz > Anzahl Merker-Bytes ab MB0 angegeben haben. Ansonsten wird der hier angegebene Wert (1 ... 8192) übernommen. Default: 0

5.10.2.4 Phasenverschiebung und Ausführung von OB 33 und OB 34

Die CPU stellt Ihnen zusätzliche Weckalarm-OBs zur Verfügung, welche die zyklische Programmbearbeitung in bestimmten Abständen unterbrechen. Startzeitpunkt des Zeittaktes ist der Betriebszustandswechsel von STOP nach RUN. Um zu verhindern, dass die Weckalarme verschiedener Weckalarm-OBs zum gleichen Zeitpunkt eine Startaufforderung erhalten und dadurch möglicherweise ein Zeitfehler (Zykluszeitüberschreitung) entsteht, haben Sie die Möglichkeit, eine Phasenverschiebung bzw. eine Ausführzeit vorzugeben.

- Die Phasenverschiebung (0 ... 60000ms) sorgt dafür, dass die Bearbeitung eines Weckalarms nach Ablauf des Zeittaktes um einen bestimmten Zeitraum verschoben wird. Default: 0
- Mit der Ausführung (1 ... 60000ms) geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs zu bearbeiten sind. Default: OB 33: 500ms, OB 34: 200ms

5.10.2.5 Priorität von OB 28, OB 29, OB 33 und OB 34

Die Priorität legt die Reihenfolge der Unterbrechung des entsprechenden Alarm-OBs fest. Hierbei werden folgende Prioritäten unterstützt: 0 (Alarm-OB ist deaktiviert), 2, 3, 4, 9, 12, 16, 17, 24. Default: 24

5.11 Projekt transferieren

Übersicht

Sie haben folgende Möglichkeiten für den Projekt-Transfer in die CPU:

- Transfer über MPI/PROFIBUS
- Transfer über Ethernet
- Transfer über MMC

5.11.1 Transfer über MPI/PROFIBUS

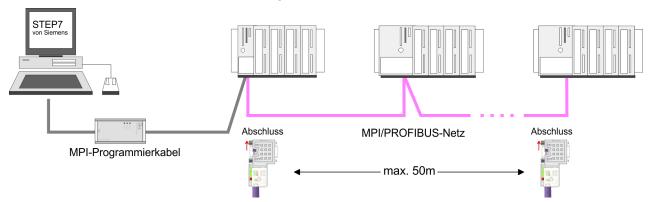
Allgemein

Für den Transfer über MPI/PROFIBUS besitzt die CPU folgende Schnittstelle:

- X2: MPI-Schnittstelle
- X3: PROFIBUS-Schnittstelle

Projekt transferieren > Transfer über MPI/PROFIBUS

Netz-Struktur


Der Aufbau eines MPI-Netzes gleicht elektrisch dem Aufbau eines PROFIBUS-Netzes. Das heißt, es gelten dieselben Regeln und Sie verwenden für beide Netze die gleichen Komponenten zum Aufbau. Die einzelnen Teilnehmer werden über Busanschlussstecker und PROFIBUS-Kabel verbunden. Bitte beachten Sie hierbei für die CPU 317-4NE12, dass die Gesamtausdehnung des MPI-Netzes 50m nicht überschreitet. Defaultmäßig wird das MPI-Netz mit 187,5kBaud betrieben. VIPA-CPUs werden mit der MPI-Adresse 2 ausgeliefert.

MPI-Programmierkabel

Die MPI-Programmierkabel erhalten Sie in verschiedenen Varianten von VIPA. Die Kabel bieten einen RS232- bzw. USB-Anschluss für den PC und einen busfähigen RS485-Anschluss für die CPU. Aufgrund des RS485-Anschlusses dürfen Sie die MPI-Programmierkabel direkt auf einen an der RS485-Buchse schon gesteckten Stecker aufstecken. Jeder Busteilnehmer identifiziert sich mit einer eindeutigen Adresse am Bus, wobei die Adresse 0 für Programmiergeräte reserviert ist.

Abschlusswiderstand

Eine Leitung muss mit ihrem Wellenwiderstand abgeschlossen werden. Hierzu schalten Sie den Abschlusswiderstand am ersten und am letzten Teilnehmer eines Netzes oder eines Segments zu. Achten Sie darauf, dass die Teilnehmer, an denen der Abschlusswiderstand zugeschaltet ist, immer mit Spannung versorgt sind. Ansonsten kann es zu Störungen auf dem Bus kommen.

Vorgehensweise Transfer über MPI-Schnittstelle

- 1. Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPI-Buchse Ihrer CPU.
- 2. Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- 3. ▶ Wählen Sie im Menü "Extras → PG/PC-Schnittstelle einstellen".
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- 5. Stellen Sie im Register MPI die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige *Adresse* an.
- **6.** Wechseln Sie in das Register *Lokaler Anschluss*.
- **7.** Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Baud ein.
- Mit "Zielsystem → Laden in Baugruppe" können Sie Ihr Projekt über MPI in die CPU übertragen und mit "Zielsystem → RAM nach ROM kopieren" auf einer MMC sichern, falls diese gesteckt ist.

Projekt transferieren > Transfer über Ethernet

Vorgehensweise Transfer über PRO-FIBUS-Schnittstelle

- 1. Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der PB-DP-Buchse X3 Ihrer CPU.
- **2.** Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- 3. ▶ Wählen Sie im Menü "Extras → PG/PC-Schnittstelle einstellen".
- Wählen Sie in der Auswahlliste "PC Adapter (PROFIBUS)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- 5. Stellen Sie im Register PROFIBUS die Übertragungsparameter Ihres PROFIBUS-Netzes ein und geben Sie eine gültige *PROFIBUS-Adresse* an. Die *PROFIBUS-Adresse* muss zuvor über ein Projekt Ihrem DP-Master zugewiesen sein.
- 6. ▶ Wechseln Sie in das Register Lokaler Anschluss.
- **7.** Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Baud ein.
- Mit "Zielsystem → Laden in Baugruppe" können Sie Ihr Projekt über PROFIBUS in die CPU übertragen und mit "Zielsystem → RAM nach ROM kopieren" auf einer Speicherkarte sichern, falls diese gesteckt ist.

Der PROFIBUS-Transfer kann über einen DP-Master erfolgen, sofern dieser zuvor als DP-Master projektiert und diesem eine PROFIBUS-Adresse zugeteilt wurde.

Im Slave-Betrieb müssen Sie bei der Auswahl der Slave-Betriebsart zusätzlich die Option "Test, Inbetriebnahme, Routing" aktivieren.

5.11.2 Transfer über Ethernet

Die CPU besitzt für den Transfer über Ethernet folgende Schnittstellen:

- X5: Ethernet-PG/OP-Kanal
- X8: CP 343 Kommunikationsprozessor

Initialisierung

Damit Sie auf die Ethernet-Schnittstelle online zugreifen können, müssen Sie dieser durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen.

"IP-Adress-Parameter zuweisen" auf Seite 52

Transfer

- **1.** Für den Transfer verbinden Sie, wenn nicht schon geschehen, die entsprechende Ethernet-Buchse mit Ihrem Ethernet.
- 2. Söffnen Sie Ihr Projekt im Siemens SIMATIC Manager.
- 3. Stellen Sie über "Extras → PG/PC-Schnittstelle" den Zugriffsweg "TCP/IP → Netzwerkkarte " ein.

Projekt transferieren > Transfer über MMC

- 4. Gehen Sie auf "Zielsystem → Laden in Baugruppe" es öffnet sich das Dialogfenster "Zielbaugruppe auswählen". Wählen Sie die Zielbaugruppe aus und geben Sie als Teilnehmeradresse die IP-Adress-Parameter des entsprechenden Ethernet-Schnittstelle an. Sofern keine neue Hardware-Konfiguration in die CPU übertragen wird, wird die hier angegebene Ethernet-Verbindung dauerhaft als Transferkanal im Projekt gespeichert.
- 5. Starten Sie mit [OK] den Transfer.

Systembedingt kann es zu einer Meldung kommen, dass sich die projektierte von der Zielbaugruppe unterscheidet. Quittieren Sie diese Meldung mit [OK].

→ Ihr Projekt wird übertragen und kann nach der Übertragung in der CPU ausgeführt werden.

5.11.3 Transfer über MMC

Die MMC (**Mem**ory **C**ard) dient als externes Speichermedium. Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer MMC befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis befindet und einen der folgenden Dateinamen hat:

- S7PROG.WLD
- AUTOLOAD.WLD

Mit "Datei → Memory-Card-Datei → Neu" können Sie im Siemens SIMATIC Manager eine WLD-Datei erzeugen. Danach kopieren Sie aus dem Baustein-Ordner Ihres Projekts alle Bausteine und die Systemdaten in die WLD-Datei.

Transfer MMC → CPU

Das Übertragen des Anwenderprogramms von der MMC in die CPU erfolgt je nach Dateiname nach Urlöschen oder nach PowerON.

- S7PROG.WLD wird nach Urlöschen von der MMC gelesen.
- AUTOLOAD.WLD wird nach NetzEIN von der MMC gelesen.

Das Blinken der MC-LED der CPU kennzeichnet den Übertragungsvorgang. Bitte beachten Sie, dass Ihr Anwenderspeicher ausreichend Speicherplatz für Ihr Anwenderprogramm bietet, ansonsten wird Ihr Anwenderprogramm unvollständig geladen und die SF-LED leuchtet.

Transfer CPU → MMC

Bei einer in der CPU gesteckten MMC wird durch einen Schreibbefehl der Inhalt des batteriegepufferten RAMs als S7PROG.WLD auf die MMC übertragen.

Den Schreibbefehl starten Sie aus dem Siemens SIMATIC Manager auf Bausteinebene über "Zielsystem → RAM nach ROM kopieren". Während des Schreibvorgangs blinkt die MC-LED. Erlischt die LED, ist der Schreibvorgang beendet.

Soll dieses Projekt automatisch nach einem NetzEIN von der MMC geladen werden, so müssen Sie dieses auf der MMC in *AUTO-LOAD.WLD* umbenennen.

Zugriff auf integrierte Web-Seite

Kontrolle des Transfervorgangs

Nach einem MMC-Zugriff erfolgt ein Diagnose-Eintrag der CPU. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf "Zielsystem → Baugruppenzustand". Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster.

Nähere Informationen zu den Ereignis-IDs $\mbox{\ensuremath{,}}$ "Übersicht der Ereignis-IDs" Tabelle auf Seite 86.

5.12 Zugriff auf integrierte Web-Seite

Zugriff auf Web-Seite

Über die IP-Adresse des Ethernet-PG/OP-Kanals steht Ihnen eine Web-Seite zur Verfügung, die Sie mit einem Internet-Browser aufrufen können. Auf der Web-Seite finden Sie Informationen zu Firmwarestand, aktuelle Zyklus-Zeiten usw. Mit dem MMC-Cmd WEBPAGE wird der aktuelle Inhalt der Web-Seite auf MMC gespeichert.

**Exapitel 5.20 "MMC-Cmd - Autobefehle" auf Seite 83

Voraussetzung

Es wird vorausgesetzt, dass zwischen dem PC mit Internet-Browser und der CPU 317-4NE12 eine Verbindung über den PG/OP-Kanal besteht. Dies können Sie testen über Ping auf die IP-Adresse des Ethernet-PG/OP-Kanals.

Web-Seite

Der Zugriff auf die Web-Seite erfolgt über die IP-Adresse des Ethernet-PG/OP-Kanals. Die Web-Seite dient ausschließlich der Informationsausgabe. Die angezeigten Werte können nicht geändert werden.

CPU mit Ethernet-PG/OP

Slot 100	
VIPA 317-4NE12 V Px000068.pkg,	BestNr., Firmware-Vers.,
SERIALNUMBER 05439	Package, Serien-Nr.
SUPPORTDATA:	Angaben für den Support
PRODUCT V3420, HARDWARE V0114, 5679H-V20, HX000027.110, Bx000227 V6420, Ax000086 V1200, Ax000056 V0220, fx000007.wld V1140, FlashFileSystem: V102	
Memorysizes(Bytes): LoadMem:LoadMem: 2113536, WorkMemCode: 1048576, WorkMemData: 1048576	Angaben zum Speicherausbau Ladespeicher, Arbeitsspeicher (Code/Daten)
OnBoardEthernet: MacAddress: 0020D50144C1, IP-Address: 172.20.120.62, SubnetMask: 255.255.255.0, Gateway: 172.20.120.62	Ethernet-PG/OP: Adressan- gaben
Cpu state: Run	CPU-Statusangabe

Zugriff auf integrierte Web-Seite

Slot 100	
FunctionRS485 X2/COM1: MPI FunctionRS485 X3/COM2: DPM-async	 Betriebsart RS485 MPI: MPI-Betrieb DPM: DP-Master-Betrieb oder PtP: Punkt zu Punkt-Betrieb
Cycletime [microseconds] : min=0 cur=770 ave=750 max=878	CPU-Zykluszeit: min = minimale cur = aktuelle max = maximale
MCC-Trial-Time: 70:23	Verbleibende Zeit in hh:mm bis bei gezogener MCC der Erwei- terungsspeicher wieder deakti- viert wird.
ArmLoad [percent] : cur=67, max=70	Angaben für den Support
PowerCycleHxRetries: 29, 0, 0, 0, 0	
AutoCompress activated	

Slot 201	CPU-Komponente: DP-Master
VIPA 342-1DA70 V3.3.0 Px000062.pkg	Name, Firmware-Version, Package
SUPPORTDATA: PRODUCT V3300, BB000218 V5300, AB000068 V4170, ModuleType CB2C0010	Angaben für den Support
Cycletime [microseconds] : min=65535000 cur=0 ave=0 max=0 cnt=0	CPU-Zykluszeit: min = minimale cur = aktuelle max = maximale

Slot 206	CPU-Komponente: CP 343
V2.2.7 Px000058.pkg,	Angaben für den Support
SUPPORTDATA:	
Bb000165 V2270, AB000060 V0320, PRODUCT V2270, Hx000003 V1300	
ModuleType ACDB0000	
Address Input 10241039	
Address Output 10241039	

Zugriff auf integrierte Web-Seite

SPEED-BUS

Slot 101	Modul am SPEED-Bus
VIPA 321-1BH70 V1.0.1 Px000029.pkg	BestNr., Firmware-Version, Package
SUPPORTDATA:	Angaben für den Support
BB000189 V1010, AB000076 V1010	
PRODUCT V1010, Hx000013 V1000	
ModuleType 1FC20001	
Address Input 128131	

Slot 102	Modul am SPEED-Bus
VIPA 322-1BH70 V1.0.1 Px000030.pkg	BestNr., Firmware-Version, Package
SUPPORTDATA:	Angaben für den Support
BB000190 V1010, AB000077 V1000	
PRODUCT V1010, Hx000014 V1000	
ModuleType AFD00001	
Address Input 132135	

...

Standard Bus

Standard Bus	Module am Standard-Bus
BaudRate Read Mode1, BaudRate Write Mode1	Angaben für den Support
Line 1: ModuleType 94F9:IM36x	IM-Anschaltung falls vor- handen
Rack 0 /Slot 4	Rack-Nr. / Steckplatz
ModuleType:9FC3: Digital Input 32 Baseaddress Input 0	Typkennung des Moduls Projektierte Basisadresse ggf. Firmware-Nr. und Package
Rack 0 /Slot 5	Rack-Nr. / Steckplatz
Line 2: ModuleType A4FE:IM36x	IM-Anschaltung falls vor- handen
Rack 1 /Slot 4	
ModuleType:9FC3: Digital Input 32 Baseaddress Input 0	Typkennung des Moduls Projektierte Basisadresse ggf. Firmware-Nr. und Package
Rack 1 /Slot 5	Rack-Nr. / Steckplatz

Betriebszustände > Übersicht

5.13 Betriebszustände

5.13.1 Übersicht

Die CPU kennt 4 Betriebszustände:

- Betriebszustand STOP
- Betriebszustand ANLAUF
- Betriebszustand RUN
- Betriebszustand HALT

In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organisationsbaustein als Anwenderschnittstelle aufgerufen.

Betriebszustand STOP

- Das Anwenderprogramm wird nicht bearbeitet.
- Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten.
- Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt.
- RUN-LED aus
- STOP-LED an

Betriebszustand ANLAUF

- Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Der Ablauf des OBs wird zeitlich nicht überwacht. Im Anlauf-OB können weitere Bausteine aufgerufen werden.
- Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsausgabesperre ist aktiv.
- RUN-LED

blinkt, solange der OB 100 bearbeitet wird und für mindestens 3s, auch wenn der Anlauf kürzer ist oder die CPU aufgrund eines Fehler in STOP geht. Dies zeigt den Anlauf an.

STOP-LED aus

Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebszustand RUN über.

Betriebszustand RUN

- Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können.
- Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert.
- Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle Ausgänge sind freigegeben.
- RUN-LED an
- STOP-LED aus

Betriebszustand HALT

Die CPU bietet Ihnen die Möglichkeit bis zu 3 Haltepunkte zur Programmdiagnose einzusetzen. Das Setzen und Löschen von Haltepunkten erfolgt in Ihrer Programmierumgebung. Sobald ein Haltepunkt erreicht ist, können Sie schrittweise Ihre Befehlszeilen abarbeiten.

Betriebszustände > Übersicht

Voraussetzung

Für die Verwendung von Haltepunkten müssen folgende Voraussetzungen erfüllt sein:

- Das Testen im Einzelschrittmodus ist in AWL möglich, ggf. über "Ansicht → AWL" Ansicht in AWL ändern
- Der Baustein muss online geöffnet und darf nicht geschützt sein.

Vorgehensweise zur Arbeit mit Haltepunkten

- 1. ▶ Blenden Sie über "Ansicht → Haltepunktleiste" diese ein.
- 2. Setzen Sie Ihren Cursor auf die Anweisungszeile, in der ein Haltepunkt gesetzt werden soll.
- 3. ▶ Setzen Sie den Haltepunkt mit "Test → Haltepunkt setzen".
 - ⇒ Die Anweisungszeile wird mit einem Kreisring markiert.
- **4.** Zur Aktivierung des Haltepunkts gehen Sie auf "Test → Haltepunkt" aktiv.
 - ⇒ Der Kreisring wird zu einer Kreisfläche.
- 5. Bringen Sie Ihre CPU in RUN.
 - Wenn Ihr Programm auf den Haltepunkt trifft, geht Ihre CPU in den Zustand HALT über, der Haltepunkt wird mit einem Pfeil markiert und die Registerinhalte werden eingeblendet.
- 6. Nun können Sie mit "Test → Nächste Anweisung ausführen" schrittweise Ihren Programmcode durchfahren oder über "Test → Fortsetzen" Ihre Programmausführung bis zum nächsten Haltepunkt fortsetzen.
- 7. Mit "Test → (Alle) Haltepunkte löschen" können Sie (alle) Haltepunkte wieder löschen.

Verhalten im Betriebszustand HALT

- RUN-LED blinkt und die STOP-LED leuchtet.
- Die Bearbeitung des Codes ist angehalten. Alle Ablaufebenen werden nicht weiterbearbeitet.
- Alle Zeiten werden eingefroren.
- Echtzeituhr läuft weiter.
- Ausgänge werden abgeschaltet (BASP ist aktiv).
- Projektierte CP-Verbindungen bleiben bestehen.

Der Einsatz von Haltepunkten ist immer möglich. Eine Umschaltung in die Betriebsart Testbetrieb ist nicht erforderlich.

Sobald Sie mehr als 2 Haltepunkte gesetzt haben, ist eine Einzelschrittbearbeitung nicht mehr möglich.

Urlöschen

5.13.2 Funktionssicherheit

Die CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms) und eine parametrierbare Zykluszeitüberwachung (parametrierbar min. 1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU durchführen und diese in einen definierten STOP-Zustand versetzen. Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende Systemeigenschaften:

Ereignis	betrifft	Effekt
$RUN \to STOP$	allgemein	BASP (Befehls-Ausgabe-Sperre) wird gesetzt.
	zentrale digitale Ausgänge	Die Ausgänge werden abgeschaltet.
	zentrale analoge Aus- gänge	Die Ausgänge werden abgeschaltet. ■ Spannungsausgänge geben 0V aus ■ Stromausgänge 020mA geben 0mA aus ■ Stromausgänge 420mA geben 4mA aus Falls parametriert können auch Ersatzwerte ausgegeben werden.
	dezentrale Ausgänge	Verhalten wie bei zentralen digitalen/analogen Ausgängen
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Station zyklisch gelesen und die aktuellen Werte zur Verfügung gestellt.
STOP → RUN bzw. NetzEin	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der Aufruf des OB 100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen \rightarrow PAE lesen \rightarrow OB 1.
	dezentrale Eingänge	Die Eingänge werden von der dezentralen Station einmalig gelesen und die aktuellen Werte zur Verfügung gestellt.
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen \rightarrow OB 1 \rightarrow PAA schreiben.
PAE: Prozessabbild der Eingänge, PAA: Prozessabbild der Ausgänge		

5.14 Urlöschen

Übersicht

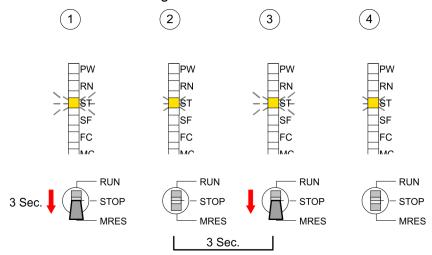
Beim Urlöschen wird der komplette Anwenderspeicher gelöscht. Ihre Daten auf der Memory Card bleiben erhalten. Sofern Sie Ihrem CP 343 IP-Adress-Daten zugewiesen haben, bleiben diese nach dem Urlöschen bis zum erneuten PowerON erhalten.

Sie haben 2 Möglichkeiten zum Urlöschen:

- Urlöschen über Betriebsartenschalter
- Urlöschen über Konfigurations-Software wie z.B. Siemens SIMATIC Manager

Urlöschen

Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr in Ihrer CPU befindet.


Urlöschen über Betriebsartenschalter

Voraussetzung

- Ihre CPU muss sich im STOP-Zustand befinden. Stellen Sie hierzu den CPU-Betriebsartenschalter auf "STOP".
 - ⇒ Die STOP-LED leuchtet.

Urlöschen

- **1.** Bringen Sie den Betriebsartenschalter in Stellung MRES und halten Sie ihn ca. 3 Sekunden.
 - ⇒ Die STOP-LED geht von Blinken über in Dauerlicht.
- **2.** Bringen Sie den Betriebsartenschalter in Stellung STOP und innerhalb von 3 Sekunden kurz in MRES dann wieder auf STOP.
 - ⇒ Die STOP-LED blinkt (Urlösch-Vorgang).
- Das Urlöschen ist abgeschlossen, wenn die STOP-LED in Dauerlicht übergeht.
 - ⇒ Die STOP-LED leuchtet. Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

Urlöschen über Siemens SIMATIC Manager

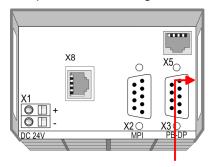
- Voraussetzung: Ihre CPU muss sich im STOP-Zustand befinden. Mit dem Menübefehl "Zielsystem → Betriebszustand" bringen Sie Ihre CPU in STOP.
- Urlöschen: Über den Menübefehl "Zielsystem → Urlöschen" fordern Sie das Urlöschen an. In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten. Während des Urlöschvorgangs blinkt die STOP-LED. Geht die STOP-LED in Dauerlicht über, ist der Urlöschvorgang abgeschlossen.

Firmwareupdate

Automatisch nachladen

Falls nach dem Urlöschen auf der MMC ein Projekt S7PROG.WLD vorhanden ist, versucht die CPU dieses von der MMC neu zu laden. → Die MC-LED leuchtet. Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.

Rücksetzen auf Werkseinstellung


Das Rücksetzen auf Werkseinstellung löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand. Bitte beachten Sie, dass hierbei auch die MPI-Adresse defaultmäßig auf 2 zurückgestellt wird!

Kapitel 5.16 "Rücksetzen auf Werkseinstellung" auf Seite 79

5.15 Firmwareupdate

Übersicht

- Sie haben die Möglichkeit unter Einsatz einer MMC für die CPU und ihre Komponenten ein Firmwareupdate durchzuführen. Hierzu muss sich in der CPU beim Hochlauf eine entsprechend vorbereitete MMC befinden.
- Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede update-fähige Komponente und jeden Hardware-Ausgabestand ein pkg-Dateiname reserviert, der mit "px" beginnt und sich in einer 6-stelligen Ziffer unterscheidet. Bei jedem updatefähigen Modul finden Sie den pkg-Dateinamen unter der Frontklappe auf einem Aufkleber auf der rechten Seite des Moduls.
- Nach NetzEIN und CPU-STOP prüft die CPU, ob eine *.pkg-Datei auf der MMC vorhanden ist. Wenn sich diese Firmware-Version von der zu überschreibenden Firmware-Version unterscheidet, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updateanforderung installieren.

Firmware package and Version

Aktuelle Firmware auf www.vipa.com

Die aktuellsten Firmwarestände finden Sie auf www.vipa.com im Service-Bereich. Beispielsweise sind für den Firmwareupdate der CPU 317-4NE12 und Ihrer Komponenten für den Ausgabestand 1 folgende Dateien erforderlich:

- 317-4NE12, Ausgabestand 1: Px000068.pkg
- PROFIBUS DP-Master: Px000062.pkg
- Ethernet-CP 343: Px000058.pkg

Firmwareupdate

VORSICHT!

Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist. Setzen Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung!

Bitte beachten Sie auch, dass sich die zu überschreibende Firmware-Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.

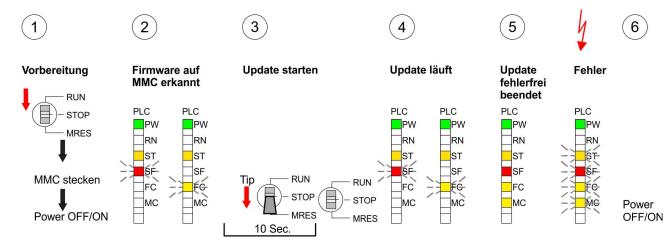
Firmwarestand des SPEED7-Systems über Web-Seite ausgeben

Firmware laden und auf MMC übertragen

- Gehen Sie auf www.vipa.com
- Klicken Sie auf "Service → Download → Firmware".
- Navigieren Sie über "System 300S → CPU" zu Ihrer CPU und laden Sie die zip-Datei auf Ihren PC.
- Entpacken Sie die zip-Datei und kopieren Sie die extrahierten pkg-Dateien auf Ihre MMC.

VORSICHT!

Beim Firmwareupdate wird automatisch ein Urlöschen durchgeführt. Sollte sich Ihr Programm nur im Ladespeicher der CPU befinden, so wird es hierbei gelöscht! Sichern Sie Ihr Programm, bevor Sie ein Firmwareupdate durchführen! Auch sollten Sie nach dem Firmwareupdate ein "Rücksetzen auf Werkseinstellung" durchführen.


**Skapitel 5.16 "Rücksetzen auf Werkseinstellung" auf Seite 79

Firmware von MMC in CPU übertragen

- 1. Bringen Sie den Betriebsartenschalter Ihrer CPU in Stellung STOP. Schalten Sie die Spannungsversorgung aus. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsversorgung ein.
- 2. Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der LEDs SF und FC an, dass auf der MMC mindestens eine aktuellere Firmware-Datei gefunden wurde.
- 3. Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den Betriebsartenschalter kurz nach MRES tippen und dann den Schalter in der STOP-Position belassen.

Firmwareupdate

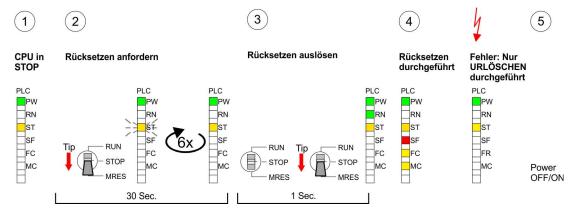
- **4.** Während des Update-Vorgangs blinken die LEDs SF und FC abwechselnd und die MC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
- Das Update ist fehlerfrei beendet, wenn die LEDs PW, ST, SF, FC und MC leuchten. Blinken diese schnell, ist ein Fehler aufgetreten.
- Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FC. Fahren Sie mit Punkt 3 fort.
 - ⇒ Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen. Führen Sie jetzt wie nachfolgend beschrieben ein Rücksetzen auf Werkseinstellungen durch. Danach ist die CPU wieder einsatzbereit.

Rücksetzen auf Werkseinstellung

5.16 Rücksetzen auf Werkseinstellung

Vorgehensweise

Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand.


Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 und die IP-Adresse des Ethernet-PG/OP-Kanals auf 0.0.0.0 zurückgestellt wird!

Sie können auch das Rücksetzen auf Werkseinstellung mit dem MMC-Cmd FACTORY_RESET ausführen.

Kapitel 5.20 "MMC-Cmd - Autobefehle" auf Seite 83

- **1.** Bringen Sie die CPU in STOP.
- Drücken Sie den Betriebsartenschalter für ca. 30 Sekunden nach unten in Stellung MRES. Hierbei blinkt die STOP-LED. Nach ein paar Sekunden leuchtet die STOP-LED. Die STOP-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die STOP-LED leuchtet.
- Nach dem 6. Mal Leuchten der STOP-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken. Jetzt leuchtet die grüne RUN-LED einmal auf. Das bedeutet, dass das RAM vollständig gelöscht ist.
- Zur Bestätigung des Rücksetzvorgangs leuchten die LEDs PW, ST, SF, FC und MC. Leuchtet diese nicht, wurde nur Urlöschen ausgeführt und das Rücksetzen auf Werkseinstellung ist fehlgeschlagen. In diesem Fall können Sie den Vorgang wiederholen. Das Rücksetzen auf Werkseinstellung wird nur dann ausgeführt, wenn die STOP-LED genau 6 Mal geleuchtet hat.
- Am Ende des Rücksetzvorgangs leuchten die LEDs PW, ST, SF, FC und MC. Danach ist die Spannungsversorgung aus- und wieder einzuschalten.

Die nachfolgende Abbildung soll die Vorgehensweise verdeutlichen:

Bitte führen Sie nach einem Firmwareupdate der CPU immer ein Rücksetzen auf Werkseinstellung durch.

Speichererweiterung mit MCC

5.17 Steckplatz für Speichermedien

Übersicht

Auf der Frontseite der CPU befindet sich ein Steckplatz für Speichermedien. Über diesen Steckplatz können Sie eine Multimedia Card (MMC) als externes Speichermedium für Programme und Firmware stecken. Mittels vorgegebener Dateinamen können Sie die CPU veranlassen automatisch ein Projekt zu laden bzw. eine Kommandodatei auszuführen.

Zugriff auf das Speichermedium

Zu folgenden Zeitpunkten erfolgt ein Zugriff auf ein Speichermedium:

Nach Urlöschen

- Die CPU prüft, ob ein Projekt mit dem Namen S7PROG.WLD vorhanden ist. Wenn ja, wird dieses automatisch geladen.
- Die CPU prüft, ob ein Projekt mit dem Namen PROTECT.WLD mit geschützten Bausteinen vorhanden ist. Wenn ja, wird dieses automatisch geladen. Diese Bausteine verbleiben in der CPU bis zum Rücksetzen der CPU auf Werkseinstellungen oder Laden einer "leeren" PROTECT.WLD.
- Die CPU prüft, ob eine MCC-Speichererweiterung gesteckt ist. Falls ja, erfolgt die Freigabe der Speichererweiterung, ansonsten wird eine zuvor aktivierte Speichererweiterung deaktiviert.

Nach NetzEIN

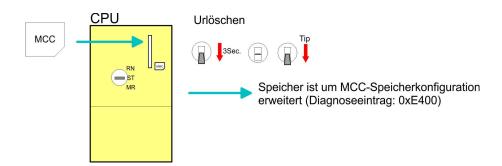
- Die CPU prüft, ob ein Projekt mit dem Namen AUTO-LOAD.WLD vorhanden ist. Wenn ja, wird Urlöschen durchgeführt und das Projekt automatisch geladen.
- Die CPU prüft, ob eine Kommandodatei mit dem Namen VIPA_CMD.MMC vorhanden ist. Wenn ja, wird die Kommandodatei geladen und die enthaltenen Befehle werden ausgeführt.
- Nach NetzEIN und CPU-STOP prüft die CPU, ob eine *.pkg-Datei (Firmware-Datei) vorhanden ist. Wenn ja, zeigt die CPU dies über LED-Blinken an und sie können die Firmware über eine Updateanforderung installieren.

Einmalig im Zustand STOP

 Wird eine Speicherkarte mit einer Kommandodatei mit dem Namen VIPA_CMD.MMC gesteckt, so wird die Kommandodatei geladen und die enthaltenen Befehle werden ausgeführt.

5.18 Speichererweiterung mit MCC

Übersicht



Bei der CPU haben Sie die Möglichkeit den Arbeitsspeicher zu erweitern. Hierzu ist bei VIPA eine MCC Speichererweiterungskarte verfügbar. Bei der MCC handelt es sich um eine speziell vorbereitete MMC (Multimedia Card). Durch Stecken der MCC im MCC-Slot und anschließendem Urlöschen wird die entsprechende Speichererweiterung freigeschaltet. Es kann immer nur eine Speichererweiterung aktiviert sein. Auf der MCC befindet sich die Datei memory.key. Diese Datei darf weder bearbeitet noch gelöscht werden. Sie können die MCC auch als "normale" MMC zur Speicherung Ihrer Projekte verwenden.

Vorgehensweise

Zur Erweiterung des Speichers stecken Sie die MCC in den mit "MCC" bezeichneten Kartenslot der CPU und führen Sie Urlöschen durch.

Erweiterter Know-how-Schutz

Sollte die Speichererweiterung auf der MCC den maximal erweiterbaren Speicherbereich der CPU überschreiten, wird automatisch der maximal mögliche Speicher der CPU verwendet. Den aktuellen Speicherausbau können Sie über die integrierte Web-Seite oder mit dem Siemens SIMATIC Manager über den Baugruppenzustand unter "Speicher" ermitteln.

VORSICHT!

Bitte beachten Sie, dass, sobald Sie eine Speichererweiterung auf Ihrer CPU durchgeführt haben, die MCC gesteckt bleiben muss. Ansonsten geht die CPU nach 72 Stunden in STOP. Auch kann die MCC <u>nicht</u> gegen eine MCC mit gleicher Speicherkonfiguration getauscht werden.

Verhalten

Wurde die MCC-Speicherkonfiguration übernommen, finden Sie den Diagnoseeintrag 0xE400 im Diagnosepuffer der CPU.

Nach Ziehen der MCC erfolgt der Eintrag 0xE401 im Diagnosepuffer, die SF-LED leuchtet und nach 72 Stunden geht die CPU in STOP. Hier ist ein Anlauf erst wieder möglich nach Stecken der MCC oder nach Urlöschen.

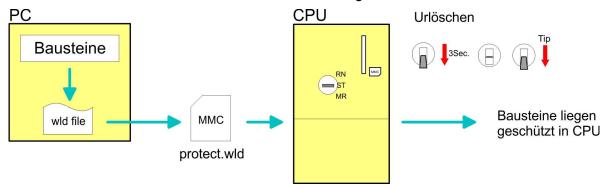
Die verbleibende Zeit nach dem Ziehen der MCC können Sie jederzeit über den Parameter MCC-Trial-Time auf der Web-Seite ermitteln.

Nach erneutem Stecken der MCC erlischt die SF-LED und 0xE400 wird im Diagnosepuffer eingetragen. Sie können jederzeit die Speicherkonfiguration Ihrer CPU auf den ursprünglichen Zustand wieder zurücksetzen, indem Sie Urlöschen ohne MCC ausführen.

5.19 Erweiterter Know-how-Schutz

Übersicht

Neben dem "Standard" Know-how-Schutz besitzen die SPEED7-CPUs von VIPA einen "erweiterten" Know-how-Schutz, der einen sicheren Baustein-Schutz vor Zugriff Dritter bietet.

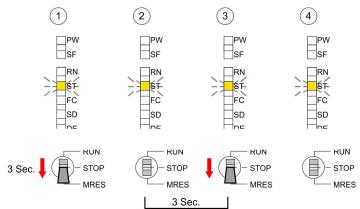

Standard-Schutz

Beim Standard-Schutz von Siemens werden auch geschützte Bausteine in das PG übertragen, aber deren Inhalt nicht dargestellt. Durch entsprechende Manipulation ist der Know-how-Schutz aber nicht sichergestellt.

Erweiterter Know-how-Schutz

Erweiterter Schutz

Mit dem von VIPA entwickelten "erweiterten" Know-how-Schutz besteht aber die Möglichkeit Bausteine permanent in der CPU zu speichern. Beim "erweiterten" Schutz übertragen Sie die zu schützenden Bausteine in eine WLD-Datei mit Namen protect.wld. Durch Stecken der MMC und anschließendem Urlöschen werden die in protect.wld gespeicherten Bausteine permanent in der CPU abgelegt. Geschützt werden können OBs, FBs und FCs. Beim Zurücklesen von geschützten Bausteinen in Ihr PG werden ausschließlich die Baustein-Header geladen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht ausgelesen werden.



Bausteine mit protect.wld schützen

Erzeugen Sie in Ihrem Projektiertool mit "Datei → Memory Card Datei → Neu" eine WLD-Datei und benennen Sie diese um in "protect.wld". Übertragen Sie die zu schützenden Bausteine in die Datei, indem Sie diese mit der Maus aus Ihrem Projekt in das Dateifenster von protect.wld ziehen.

protect.wld mit Urlöschen in CPU übertragen

Übertragen Sie die Datei protect.wld auf eine MMC-Speicherkarte, stecken Sie die MMC in Ihre CPU und führen Sie nach folgender Vorgehensweise Urlöschen durch:

Mit Urlöschen werden die in protect.wld enthaltenen Bausteine, permanent vor Zugriffen Dritter geschützt, in der CPU abgelegt.

Schutzverhalten

Geschützte Bausteine werden durch eine neue protect.wld überschrieben. Mit einem PG können Dritte auf geschützte Bausteine zugreifen, hierbei wird aber ausschließlich der Baustein-Header in das PG übertragen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht ausgelesen werden.

MMC-Cmd - Autobefehle

Geschützte Bausteine überschreiben bzw. löschen

Sie haben jederzeit die Möglichkeit geschützte Bausteine durch gleichnamige Bausteine im RAM der CPU zu überschreiben. Diese Änderung bleibt bis zum nächsten Urlöschen erhalten. Geschützte Bausteine können nur dann vom PG dauerhaft überschrieben werden, wenn diese zuvor aus der protect.wld gelöscht wurden. Durch Übertragen einer leeren protect.wld von der MMC können Sie in der CPU alle geschützten Bausteine löschen.

Einsatz von geschützten Bausteinen

Da beim Auslesen eines "protected" Bausteins aus der CPU die Symbol-Bezeichnungen fehlen, ist es ratsam dem Endanwender die "Bausteinhüllen" zur Verfügung zu stellen. Erstellen Sie hierzu aus allen geschützten Bausteinen ein Projekt. Löschen Sie aus diesen Bausteinen alle Netzwerke, so dass diese ausschließlich die Variablen-Definitionen in der entsprechenden Symbolik beinhalten.

5.20 MMC-Cmd - Autobefehle

Übersicht

Eine *Kommando*-Datei auf einer MMC wird unter folgenden Bedingungen automatisch ausgeführt:

- CPU befindet sich in STOP und MMC wird gesteckt
- Bei jedem Einschaltvorgang (NetzEIN)

Kommando-Datei

Bei der Kommando-Datei handelt es sich um eine Text-Datei mit einer Befehlsabfolge, die unter dem Namen vipa_cmd.mmc im Root-Verzeichnis der MMC abzulegen ist. Die Datei muss mit dem 1. Befehl CMD_START beginnen, gefolgt von den gewünschten Befehlen (kein anderer Text) und ist immer mit dem letzten Befehl CMD_END abzuschließen.

Texte wie beispielsweise Kommentare nach dem letzten Befehl *CMD_END* sind zulässig, da diese ignoriert werden. Sobald eine Kommandodatei erkannt und ausgeführt wird, werden die Aktionen in der Datei Logfile.txt auf der MMC gespeichert. Zusätzlich finden Sie für jeden ausgeführten Befehl einen Diagnoseeintrag im Diagnosepuffer.

Befehle

Bitte beachten Sie, dass Sie immer Ihre Befehlsabfolge mit *CMD_START* beginnen und mit *CMD_END* beenden.

Kommando	Beschreibung	Diagnoseeintrag
CMD_START	In der ersten Zeile muss CMD_START stehen.	0xE801
	Fehlt CMD_START erfolgt ein Diagnoseeintrag	0xE8FE
WAIT1SECOND	Wartet ca. 1 Sekunde.	0xE803
WEBPAGE	Speichert die Web-Seite der CPU als Datei "webpage.htm" auf der MMC.	0xE804
LOAD_PROJECT	Ruft die Funktion "Urlöschen mit Nachladen von der MMC" auf. Durch Angabe einer wld-Datei nach dem Kommando, wird diese wld-Datei nachgeladen, ansonsten wird die Datei "s7prog.wld" geladen.	0xE805

MMC-Cmd - Autobefehle

Kommando	Beschreibung	Diagnoseeintrag
SAVE_PROJECT	Speichert das Anwenderprojekt (Bausteine und Hardware-Konfiguration) auf der MMC als "s7prog.wld".Falls bereits eine Datei mit dem Namen "s7prog.wld" existiert, wird diese in "s7prog.old" umbenannt. Sollte Ihre CPU durch ein Passwort geschützt sein, so müssen Sie dies als Parameter mitliefern. Ansonsten wird kein Projekt geschrieben. Beispiel: SAVE_PROJECT passwort	0xE806
FACTORY_RESET	Führt "Rücksetzen auf Werkseinstellung" durch.	0xE807
DIAGBUF	Speichert den Diagnosepuffer der CPU als Datei "diagbuff.txt" auf der MMC.	0xE80B
SET_NETWORK	Mit diesem Kommando können Sie die IP-Parameter für den Ethernet-PG/OP-Kanal einstellen. Die IP-Parameter sind in der Reihenfolge IP-Adresse, Subnetz-Maske und Gateway jeweils getrennt durch ein Komma im Format von x.x.x.x einzugeben. Wird kein Gateway verwendet, tragen Sie die IP-Adresse als Gateway ein.	0xE80E
CMD_END	In der letzten Zeile muss CMD_END stehen.	0xE802

Beispiele

Nachfolgend ist der Aufbau einer Kommando-Datei an Beispielen gezeigt. Den jeweiligen Diagnoseeintrag finden Sie in Klammern gesetzt.

Beispiel 1

CMD_START	Kennzeichnet den Start der Befehlsliste (0xE801)
LOAD_PROJECT proj.wld	Urlöschen und Nachladen von "proj.wld" (0xE805)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WEBPAGE	Web-Seite als "webpage.htm" speichern (0xE804)
DIAGBUF	Diagnosepuffer der CPU als "diagbuff.txt" speichern (0xE80B)
CMD_END	Kennzeichnet das Ende der Befehlsliste (0xE802)
beliebiger Text	Texte nach dem CMD_END werden nicht mehr ausgewertet.

Beispiel 2

CMD_START	Kennzeichnet den Start der Befehlsliste (0xE801)
LOAD_PROJECT proj2.wld	Urlöschen und Nachladen von "proj2.wld" (0xE805)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
SET_NETWORK 172.16.129.210,255.255.224.0 ,172.16.129.210	IP-Parameter(0xE80E)
WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)

WAIT1SECOND	Wartet ca. 1 Sekunde (0xE803)
WEBPAGE	Web-Seite als "webpage.htm" speichern (0xE804)
DIAGBUF	Diagnosepuffer der CPU als "diagbuff.txt" speichern (0xE80B)
CMD_END	Kennzeichnet das Ende der Befehlsliste (0xE802)
beliebiger Text	Texte nach dem CMD_END werden nicht mehr ausgewertet.

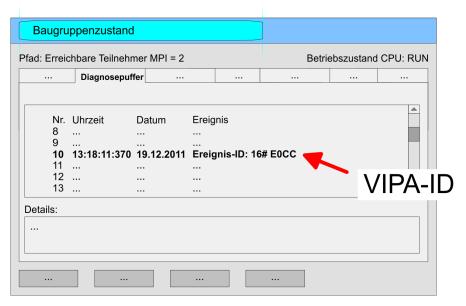
Die Parameter IP-Adresse, Subnetz-Maske und Gateway erhalten Sie von Ihrem Systemadministrator.

Wird kein Gateway verwendet, tragen Sie die IP-Adresse als Gateway ein.

5.21 VIPA-spezifische Diagnose-Einträge

Einträge im Diagnosepuffer

Sie haben die Möglichkeit im Siemens SIMATIC Manager den Diagnosepuffer der CPU auszulesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Einträge, welche ausschließlich in Form einer Ereignis-ID angezeigt werden.


Mit dem CMD DIAGBUF wird der aktuelle Inhalt des Diagnosepuffers auf die Speicherkarte gespeichert.

Die CPUs von VIPA unterstützen alle Register des Baugruppenzustands. Eine nähere Beschreibung der einzelnen Register finden Sie in der Online-Hilfe Ihres Siemens SIMATIC Managers.

Anzeige der Diagnoseeinträge

Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATIC Manager auf "Zielsystem → Baugruppenzustand". Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster:

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Übersicht der Ereignis-IDs

Ereignis-ID	Bedeutung
0x115C	Herstellerspezifischer Alarm (OB 57) bei EtherCAT OB: OB-Nummer (57) ZInfo1: Logische Adresse des Slaves, der den Alarm ausgelöst hat ZInfo2: Alarmtyp ZInfo3: Reserviert
0xE003	Fehler beim Zugriff auf Peripherie Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz
0xE004	Mehrfach-Parametrierung einer Peripherieadresse Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz
0xE005	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE006	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE007	Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich
0xE008	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE009	Fehler beim Zugriff auf Standard-Rückwandbus
0xE010	Nicht definierte Baugruppe am Rückwandbus erkannt Zinfo2: Steckplatz Zinfo3: Typkennung
0xE011	Masterprojektierung auf Slave-CPU nicht möglich oder fehlerhafte Slave-Konfiguration

Ereignis-ID	Bedeutung
0xE012	Fehler bei Parametrierung
0xE013	Fehler bei Schieberegisterzugriff auf Standardbus-Digitalmodule
0xE014	Fehler bei Check_Sys
0xE015	Fehler beim Zugriff auf Master
	Zinfo2: Steckplatz des Masters (32=Kachelmaster)
0xE016	Maximale Blockgröße bei Mastertransfer überschritten
	Zinfo1: Peripherie-Adresse
	Zinfo2: Steckplatz
0xE017	Fehler beim Zugriff auf integrierten Slave
0xE018	Fehler beim Mappen der Master-Peripherie
0xE019	Fehler bei Erkennung des Standard Rückwandbus Systems
0xE01A	Fehler bei Erkennung der Betriebsart (8 / 9 Bit)
0xE01B	Fehler - Maximale Anzahl steckbarer Baugruppen überschritten
0xE020	Fehler - Alarminformationen undefiniert
0xE030	Fehler vom Standard-Bus
0xE033	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE0B0	SPEED7 kann nicht mehr gestoppt werden
	(Evtl. undefinierter BCD-Wert bei Timer)
0xE0C0	Nicht genug Speicherplatz im Arbeitsspeicher für Codebaustein (Baustein zu groß)
0xE0CB	Fehler bei SZL-Zugriff
	Zinfo1: 4=SZL falsch, 5=SubSZL falsch, 6=Index falsch
	Zinfo2: SZL-ID
	Zinfo3: Index

Ereignis-ID	Bedeutung
0xE0CC	Kommunikationsfehler MPI / Seriell
	Zinfo1: Code
	1: Falsche Priorität
	2: Pufferüberlauf
	3: Telegrammformatfehler
	4: Falsche SZL-Anforderung (SZL-ID ungültig)
	5: Falsche SZL-Anforderung (SZL-SubID ungültig)
	6: Falsche SZL-Anforderung (SZL-Index ungültig)
	7: Falsche Wert
	8: Falscher RetVal
	9: Falscher SAP
	10: Falscher Verbindungstyp11: Falsche Sequenznummer
	12: Fehlerhafte Bausteinnummer im Telegramm
	13: Fehlerhafter Bausteintyp im Telegramm
	14: Inaktive Funktion
	15: Fehlerhafte Größe im Telegramm
	20: Fehler beim Schreiben auf die Speicherkarte
	90: Fehlerhafte Puffergröße
	98: Unbekannter Fehler
	99: Interner Fehler
0xE0CD	Fehler bei DP-V1 Auftragsverwaltung
0xE0CE	Fehler: Timeout beim Senden der i-Slave Diagnose
0xE0CF	Timeout beim Laden einer neuen HW-Konfiguration (Timeout-Zeit: 39 Sekunden)
0xE100	Speicherkarten-Zugriffsfehler
0xE101	Speicherkarten-Fehler Filesystem
0xE102	Speicherkarten-Fehler FAT
0xE104	Speicherkarten-Fehler beim Speichern
0xE200	Speicherkarte schreiben beendet (Copy Ram2Rom)
0xE210	Speicherkarte Lesen beendet (Nachladen nach Urlöschen)
0xE21E	Speicherkarte Lesen: Fehler beim Nachladen (nach Urlöschen), Datei "Protect.wld" zu groß
0xE21F	Speicherkarte Lesen: Fehler beim Nachladen (nach Urlöschen), Lesefehler, Speicher voll
0xE300	Internes Flash Schreiben beendet (Copy Ram2Rom)
0xE310	Internes Flash Lesen beendet (Nachladen nach Batterieausfall)

Ereignis-ID	Bedeutung
0xE311	Internes Flash fx0000yy.wld Datei zu groß, Laden fehlerhaft
0xE400	Speicherkarte mit der Option Speichererweiterung wurde gesteckt.
0xE401	Speicherkarte mit der Option Speichererweiterung wurde gezogen.
0xE402	Die PROFIBUS-DP-Master-Funktionalität ist nicht aktiviert. Die Schnittstelle ist weiter als MPI-Schnittstelle aktiv.
0xE403	Die PROFIBUS-DP-Slave-Funktionalität ist nicht aktiviert. Die Schnittstelle ist weiter als MPI-Schnittstelle aktiv.
0xE500	Speicherverwaltung: Baustein ohne zugehörigen Eintrag in der BstListe gelöscht
	Zinfo2: BlockTyp
	Zinfo3: BlockNr
0xE604	Mehrfach-Parametrierung einer Peripherieadresse für Ethernet-PG/OP- Kanal
	Zinfo1: Peripherie-Adresse
	Zinfo3:
	0: Peripherie-Adresse ist Eingang, 1: Peripherie-Adresse ist Ausgang
0xE701	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE703	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE720	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE721	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xE801	CMD - Autobefehl: CMD_START erkannt und erfolgreich ausgeführt
0xE802	CMD - Autobefehl: CMD_END erkannt und erfolgreich ausgeführt
0xE803	CMD - Autobefehl: WAIT1SECOND erkannt und erfolgreich ausgeführt
0xE804	CMD - Autobefehl: WEBPAGE erkannt und erfolgreich ausgeführt
0xE805	CMD - Autobefehl: LOAD_PROJECT erkannt und erfolgreich ausgeführt
0xE806	CMD - Autobefehl: SAVE_ PROJECT erkannt und erfolgreich ausgeführt
0xE807	CMD - Autobefehl: FACTORY_RESET erkannt und erfolgreich ausgeführt
0xE80B	CMD - Autobefehl: DIAGBUF erkannt und erfolgreich ausgeführt
0xE80E	CMD - Autobefehl: SET_NETWORK erkannt und erfolgreich ausgeführt
0xE8FB	CMD - Autobefehl: Fehler: Initialisierung des Ethernet-PG/OP-Kanals mittels SET_NETWORK fehlerhaft.
0xE8FC	CMD - Autobefehl: Fehler: In SET_NETWORK wurden nicht alle IP-Parameter angegeben.
0xE8FE	CMD - Autobefehl: Fehler: CMD_START nicht gefunden

Ereignis-ID	Bedeutung
0xE8FF	CMD - Autobefehl: Fehler: Fehler beim Lesen des CMD-Files (Speicherkarten-Fehler)
0xE901	Checksummen-Fehler
0xEA00	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA01	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA02	SBUS: Interner Fehler (intern gestecktes Submodul nicht erkannt) Zinfo1: Interner Steckplatz
0xEA03	SBUS: Kommunikationsfehler CPU - PROFINET-IO-Controller Zinfo1: Steckplatz Zinfo2: Status (0: OK, 1: ERROR, 2: BUSSY, 3: TIMEOUT, 4: LOCKED, 5: UNKNOWN)
0xEA04	SBUS: Mehrfach-Parametrierung einer Peripherieadresse Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite
0xEA05	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA07	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA08	SBUS: Parametrierte Eingangsdatenbreite ungleich der gesteckten Eingangsdatenbreite Zinfo1: Parametrierte Eingangsdatenbreite Zinfo2: Steckplatz Zinfo3: Eingangsdatenbreite der gesteckten Baugruppe
0xEA09	SBUS: Parametrierte Ausgangsdatenbreite ungleich der gesteckten Ausgangsdatenbreite Zinfo1: Parametrierte Ausgangsdatenbreite Zinfo2: Steckplatz Zinfo3: Ausgangsdatenbreite der gesteckten Baugruppe
0xEA10	SBUS: Eingangs-Peripherieadresse außerhalb des Peripheriebereiches Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite
0xEA11	SBUS: Ausgangs-Peripherieadresse außerhalb des Peripheriebereiches Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite

Ereignis-ID	Bedeutung
0xEA12	SBUS: Fehler beim Datensatz schreiben Zinfo1: Steckplatz Zinfo2: Datensatznummer Zinfo3: Datensatzlänge
0xEA14	SBUS: Mehrfach-Parametrierung einer Peripherieadresse (Diagnoseadresse) Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz Zinfo3: Datenbreite
0xEA15	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA18	SBUS: Fehler beim Mappen der Masterperipherie Zinfo2: Steckplatz des Masters
0xEA19	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA20	Fehler - RS485-Schnittstelle ist nicht auf PROFIBUS-DP-Master eingestellt aber es ist ein PROFIBUS-DP-Master projektiert.
0xEA21	Fehler - Projektierung RS485-Schnittstelle X2/X3: PROFIBUS-DP-Master ist projektiert aber nicht vorhanden Zinfo2: Schnittstelle x
0xEA22	Fehler - RS485-Schnittstelle X2 - Wert ist außerhalb der Grenzen Zinfo: Projektierter Wert von X2
0xEA23	Fehler - RS485-Schnittstelle X3 - Wert ist außerhalb der Grenzen Zinfo: Projektierter Wert von X3
0xEA24	Fehler - Projektierung RS485-Schnittstelle X2/X3: Schnittstelle/Protokoll ist nicht vorhanden, die Defaulteinstellungen werden verwendet. Zinfo2: Projektierter Wert für X2 Zinfo3: Projektierter Wert für X3
0xEA30	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA40	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA41	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA50	Fehler - PROFINET-Konfiguration Zinfo1: User-Slot des PROFINET-IO-Controllers Zinfo2: IO-Device-Nr. Zinfo3: IO-Device Slot
0xEA51	Fehler - Kein PROFINET-IO-Controller auf dem projektierten Slot erkannt Zinfo1: User-Slot des PROFINET-IO-Controllers Zinfo2: Erkannte Typkennung auf dem projektierten Slot

Ereignis-ID	Bedeutung
0xEA53	Fehler - PROFINET-Konfiguration - Es sind zu viele PROFINET-IO-Devices projektiert
	Zinfo1 : Anzahl der projektierten Devices
	Zinfo2 : Steckplatz
	Zinfo3 : Maximal mögliche Anzahl Devices
0xEA54	Fehler - PROFINET-IO-Controller meldet Mehrfachparametrierung einer Peripherieadresse
	Zinfo1: Peripherieadresse
	Zinfo2: User-Slot des PROFINET-IO-Controllers
	Zinfo3: Datenbreite
0xEA61 0xEA63	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA64	PROFINET/EtherCAT-CP
	Konfigurationsfehler Zinfo1:
	Bit 0: Zu viele Devices
	Bit 1: Zu viele Devices pro Millisekunde
	Bit 2: Zu viele Eingangsbytes pro Millisekunde
	Bit 3: Zu viele Ausgangsbytes pro Millisekunde
	Bit 4: Zu viele Eingangsbytes pro Device
	Bit 5: Zu viele Ausgangsbytes pro Device
	Bit 6: Zu viele Produktiv-Verbindungen
	Bit 7: Zu viele Eingangsbytes im Prozessabbild
	Bit 8: Zu viele Ausgangsbytes im Prozessabbild
	Bit 9: Konfiguration nicht verfügbar
	Bit 10: Konfiguration ungültig
	Bit 11: Zykluszeit zu klein
	Bit 12: Aktualisierungszeit zu groß
	Bit 13: Ungültige Devicenummer
	Bit 14: CPU ist als I-Device konfiguriert
	Bit 15: IP Adresse auf anderem Weg beziehen, wird für die IP-Adresse des Controllers nicht unterstützt
0xEA65	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA66	PROFINET-IO-Controller
	Fehler im Kommunikationsstack
	PK: Rackslot
	OBNr: StackError.Service
	Datld: StackError.DeviceRef
	ZInfo1: StackError.Error.Code
	ZInfo2: StackError.Error.Detail
	ZInfo3: StackError.Error.AdditionalDetail
	<< 8 + StackError.Error.AreaCode

Ereignis-ID	Bedeutung
0xEA67	Fehler - PROFINET-IO-Controller - Datensatz lesen PK: Fehlertyp 0: DATA_RECORD_ERROR_LOCAL 1: DATA_RECORD_ERROR_STACK 2: DATA_RECORD_ERROR_REMOTE OBNr: PROFINET-IO-Controller slot Datld: Device-Nr ZInfo1: Datensatznummer ZInfo2: Datensatzhandle ZInfo3: Interner Fehlercode für Service-Zwecke
0xEA68	Fehler - PROFINET-IO-Controller - Datensatz schreiben PK: Fehlertyp 0: DATA_RECORD_ERROR_LOCAL 1: DATA_RECORD_ERROR_STACK 2: DATA_RECORD_ERROR_REMOTE OBNr: PROFINET-IO-Controller slot Datld: Device-Nr ZInfo1: Datensatznummer ZInfo2: Datensatzhandle ZInfo3: Interner Fehlercode für Service-Zwecke
0xEA69	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEA6A	PROFINET-IO-Controller Service-Fehler im Kommunikationsstack PK: Rackslot OBNr: ServiceIdentifier Datld: 0 ZInfo1: ServiceError.Code ZInfo2: ServiceError.Detail ZInfo3: ServiceError.AdditionalDetail
0xEA6B	PROFINET-IO-Controller Vendor ID mismatch PK: Rackslot OBNr: PLC-Mode DatId: 0 ZInfo1: Device ID ZInfo2: - ZInfo3: -

Ereignis-ID	Bedeutung
0xEA6C	PROFINET-IO-Controller Device ID mismatch PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: - ZInfo3: -
0xEA6D	PROFINET-IO-Controller No empty name PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: - ZInfo3: -
0xEA6E	PROFINET-IO-Controller RPC response missing PK: Rackslot OBNr: PLC-Mode Datld: 0 ZInfo1: Device ID ZInfo2: - ZInfo3: -
0xEA6F	PROFINET-IO-Controller PN module mismatch PK: Rackslot OBNr: PLC-Mode DatId: 0 ZInfo1: Device ID ZInfo2: - ZInfo3: -
0xEA97	Speicherfehler SBUS-Service Kanal ZInfo3 = Slot
0xEA98	Timeout beim Warten, dass ein SBUS-Modul (Server) rebootet hat
0xEA99	Fehler beim File-Lesen über SBUS

Ereignis-ID	Bedeutung
0xEAA0	Emac Error ist aufgetreten
	OBNr: Aktueller PLC-Mode
	ZInfo1: Diagnoseadresse des Masters / Controllers
	ZInfo2:
	0: Kein Rx Queue ist voll
	1: Kein Sendepuffer verfügbar
	2: Sendestrom ist abgerissen; senden fehlgeschlagen
	3: Wiederholungsversuche ausgeschöpft
	4: Kein Empfangspuffer in Emac DMA verfügbar
	5: Emac DMA Transfer abgebrochen
	6: Queue Overflow
	7: Nicht erwartetes Packet empfangen
	ZInfo3: Anzahl der aufgetretenen Fehler
0xEAB0	Ungültiger Link-Mode
	OBNr: Aktueller PLC-Mode
	ZInfo1: Diagnoseadresse des Masters/Controllers
	Zinfo2: Aktueller LinkMode
	0x01: 10MBit Full-Duplex
	0x02: 100MBit Half-Duplex
	0x03: 100Mbit Full-Duplex
	0x05: 10Mbit Half-Duplex
0 5000	0xFF: Link Mode nicht definiert
0xEB03	SLIO Fehler beim IO-Mapping
0xEB10	SLIO Fehler: Busfehler
	Zinfo1: Fehlerart
	0x82: ErrorAlarm
0xEB20	SLIO Fehler: Alarminformationen undefiniert
0xEB21	SLIO Fehler bei Zugriff auf Konfigurationsdaten

Ereignis-ID	Bedeutung
0xEC03	EtherCAT: Konfigurationsfehler ZInfo1: Errorcode 1: NUMBER_OF_SLAVES_NOT_SUPPORTED 2: SYSTEM_IO_NR_INVALID 3: INDEX_FROM_SLOT_ERROR 4: MASTER_CONFIG_INVALID 5: MASTER_TYPE_ERROR 6: SLAVE_DIAG_ADDR_INVALID 7: SLAVE_ADDR_INVALID 8: SLAVE_MODULE_IO_CONFIG_INVALID 9: LOG_ADDR_ALREADY_IN_USE 10: NULL_PTR_CHECK_ERROR 11: IO_MAPPING_ERROR 12: ERROR
0xEC04	EtherCAT: Mehrfach-Parametrierung einer Peripherieadresse Zinfo1: Peripherie-Adresse Zinfo2: Steckplatz
0xEC10	EtherCAT: Wiederkehr Bus mit allen Slaves OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC10 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master (> 0)

Ereignis-ID	Bedeutung
0xEC11	EtherCAT: Wiederkehr Bus mit fehlenden Slaves OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC11 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master (> 0)
0xEC12	EtherCAT: Wiederkehr Slave OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC12 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AlStatusCode
0xEC30	EtherCAT: Topologie OK OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xEC30 ZInfo2: Diagnoseadresse des Masters
0xEC50	EtherCAT: DC nicht in Sync ZInfo1: Diagnoseadresse des Masters
0xED10	EtherCAT: Ausfall Bus OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED10 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master

Ereignis-ID	Bedeutung
0xED12	EtherCAT: Ausfall Slave OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED12 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AlStatusCode
0xED20	EtherCAT: Bus-Statuswechsel, der keinen OB86 hervorruft OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED20 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse des Masters ZInfo3: Anzahl der Station, die nicht im selben State sind, wie der Master
0xED21	EtherCAT: fehlerhafter Bus-Statuswechsel OB: 0x00 PK: 0x00 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX = current state, YY = expected state) ZInfo2: Diagnoseadresse des Masters ZInfo3: ErrorCode: 0x0008: Busy 0x000B: Unzulässige Parameter 0x000E: Unzulässiger Status 0x0010: Zeitüberschreitung

Ereignis-ID	Bedeutung
0xED22	EtherCAT: Slave-Statuswechsel, der keinen OB86 hervorruft OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED22 DatID: 0xXXYY: XX=0x54 bei Eingangsadresse in ZInfo1, XX=0x55 bei Ausgangsadresse. YY=0x00 Station nicht verfügbar, YY=0x01 Station verfügbar (Prozessdaten) ZInfo1: 0xXXYY (XX=OldState, YY=NewState) ZInfo2: Diagnoseadresse der Station ZInfo3: AlStatusCode
0xED30	EtherCAT: Topolgy Mismatch OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED30 ZInfo2: Diagnoseadresse des Masters
0xED31	EtherCAT: Alarm Queue Overflow OB-StartInfo (Lokaldaten) StartEvent und Eventclass: 0xED31 ZInfo2: Diagnoseadresse des Masters
0xED40 0xED4F	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xED50	EtherCAT: DC in Sync ZInfo1: Diagnoseadresse des Masters
0xED60	EtherCAT: Diagnosepuffer CP: Slave-Statuswechsel PK: 0 OB: PLC-Mode DatID 1/2: 0 ZInfo1: 0x00YY: YY: Neuer EtherCAT-Status des Slaves ZInfo2: EtherCAT-Stationsadresse Zinfo3: AlStatusCode (EtherCAT-spezifischer Fehlercode)

Ereignis-ID	Bedeutung
0xED61	EtherCAT: Diagnosepuffer CP: CoE-Emergency PK: EtherCAT-Stationsadresse (Low-Byte) OB: EtherCAT-Stationsadresse (High-Byte) DatID 1/2: Error-Code ZInfo1: 0xYYZZ: YY: Error-Register ZZ: MEF Byte 1 ZInfo 2: 0xYYZZ: YY: MEF Byte 2 ZZ: MEF Byte 3 Zinfo3: 0xYYZZ: YY: MEF Byte 4 ZZ: MEF Byte 5
0xED62	EtherCAT: Diagnosepuffer CP: Fehler bei SDO-Zugriff während State-Wechsel PK: EtherCAT-Stationsadresse (Low-Byte) OB: EtherCAT-Stationsadresse (High-Byte) DatID 1/2: Subindex ZInfo1: Index ZInfo2: SDO-Errorcode (High-Word) Zinfo3: SDO-Errorcode (Low-Word)
0xED70	EtherCAT: Diagnosepuffer CP: Doppelte Hot Connect Gruppe erkannt PK: 0 OB: PLC-Mode DatID 1/2: 0 ZInfo1: Diagnoseadresse des Masters ZInfo2: EtherCAT-Stationsadresse Zinfo3: 0
0xEE00	Zusatzinformation bei UNDEF_OPCODE
0xEE01	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
0xEEEE	CPU wurde komplett urgelöscht, da der Hochlauf nach NetzEIN nicht beendet werden konnte.
0xEF11 0xEF13	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!

Mit Testfunktionen Variablen steuern und beobachten

Ereignis-ID	Bedeutung
0xEFFF	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!
PK: C-Sourcemodulnummer DatID: Zeilennummer	

5.22 Mit Testfunktionen Variablen steuern und beobachten

Übersicht

Zur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie in Ihrem Siemens SIMATIC Manager unter dem Menüpunkt **Test** verschiedene Testfunktionen aufrufen.

Mit der Testfunktion "Test → Beobachten" können die Signalzustände von Operanden und das VKE angezeigt werden.

Mit der Testfunktion "Zielsystem → Variablen beobachten/steuern" können die Signalzustände von Variablen geändert und angezeigt werden.

"Test → Beobachten"

Diese Testfunktion zeigt die aktuellen Signalzustände und das VKE der einzelnen Operanden während der Programmbearbeitung an. Es können außerdem Korrekturen am Programm durchgeführt werden.

Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein!

Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Prozessalarme unterbrochen werden. Die CPU hört an der Unterbrechungsstelle auf, Daten für die Statusanzeige zu sammeln und übergibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0.

Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeitund Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:

- das Verknüpfungsergebnis VKE
- Status / AKKU 1
- AKKU 2
- Zustandsbyte
- absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?".

Die Unterbrechung der Statusbearbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbrechungsstelle nicht mehr gültig sind.

"Zielsystem

→ Variablen
beobachten/steuern"

Diese Testfunktion gibt den Zustand eines beliebigen Operanden (Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende einer Programmbearbeitung an. Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.

Steuern von Ausgängen

Mit Testfunktionen Variablen steuern und beobachten

Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden. Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.

Steuern von Variablen

Folgende Variablen können geändert werden: E, A, M, T, Z und D.

Unabhängig von der Betriebsart der CPU wird das Prozessabbild binärer und digitaler Operanden verändert. In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden. Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

Schnelleinstieg

6 Einsatz PtP-Kommunikation

6.1 Schnelleinstieg

Allgemein

Die CPU besitzt eine PROFIBUS/PtP-Schnittstelle mit fixer Pinbelegung. Nach dem Urlöschen ist diese Schnittstelle deaktiviert. Durch entsprechende Projektierung können Sie die PtP-Funktionalität (**p**oint **to p**oint) aktivieren:

■ PtP-Funktionalität

- Mit der Funktionalität PtP ermöglicht die RS485-Schnittstelle eine serielle Punkt-zu-Punkt-Prozessankopplung zu verschiedenen Ziel- oder Quell-Systemen.
- Die Aktivierung der PtP-Funktionalität erfolgt durch Einbindung der SPEEDBUS.GSD von VIPA im Hardwarekatalog. Nach der Installation k\u00f6nnen Sie die CPU in einem PROFIBUS-Master-System projektieren und hier auch die Schnittstelle auf PtP-Kommunikation umschalten.

Protokolle

Unterstützt werden die Protokolle bzw. Prozeduren ASCII, STX/ETX, 3964R, USS und Modbus.

Parametrierung

Die Parametrierung der seriellen Schnittstelle erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 (SER_CFG). Hierbei sind für alle Protokolle mit Ausnahme von ASCII die Parameter in einem DB abzulegen.

Kommunikation

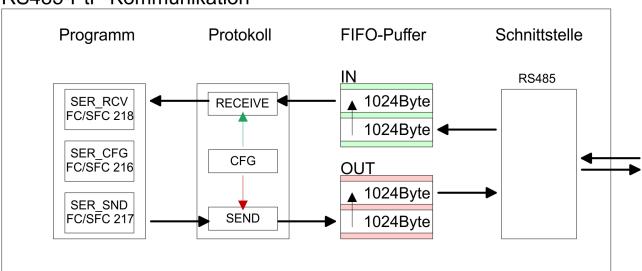
Mit FCs/SFCs steuern Sie die Kommunikation. Das Senden erfolgt unter Einsatz des FC/SFC 217 (SER_SND) und das Empfangen über FC/SFC 218 (SER_RCV). Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet. Bei den Protokollen USS und Modbus können Sie durch Aufruf des FC/SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm auslesen. Die FCs/SFCs befinden sich im Lieferumfang der CPU.

Übersicht der FCs/SFCs für die serielle Kommunikation

Folgende FC/SFCs kommen für die serielle Kommunikation zum Einsatz:

FC/SFC		Beschreibung
FC/SFC 216	SER_CFG	RS485 Parametrieren
FC/SFC 217	SER_SND	RS485 Senden
FC/SFC 218	SER_RCV	RS485 Empfangen

Einsatz der RS485-Schnittstelle für PtP


6.2 Prinzip der Datenübertragung

Übersicht

Die Datenübertragung wird zur Laufzeit über FC/SFCs gehandhabt. Das Prinzip der Datenübertragung ist für alle Protokolle identisch und soll hier kurz gezeigt werden.

- Daten, die von der CPU in den entsprechenden Datenkanal geschrieben werden, werden in einen FIFO-Sendepuffer (first in first out) mit einer Größe von 2x1024Byte abgelegt und von dort über die Schnittstelle ausgegeben.
- Empfängt die Schnittstelle Daten, werden diese in einem FIFO-Empfangspuffer mit einer Größe von 2x1024Byte abgelegt und können dort von der CPU gelesen werden.
- Sofern Daten mittels eines Protokolls übertragen werden, erfolgt die Einbettung der Daten in das entsprechende Protokoll automatisch.
- Im Gegensatz zu ASCII- und STX/ETX erfolgt bei den Protokollen 3964R, USS und Modbus die Datenübertragung mit Quittierung der Gegenseite.
- Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.
- Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

RS485-PtP-Kommunikation

6.3 Einsatz der RS485-Schnittstelle für PtP

Aktivierung der RS485 für PtP-Betrieb

Standardmäßig ist die RS485-Schnittstelle deaktiviert. Über eine Hardware-Konfiguration können Sie unter Objekteigenschaften über den Parameter *"Funktion RS485"* die RS485-Schnittstelle auf PtP-Betrieb (**p**oint **to p**oint) umschalten.

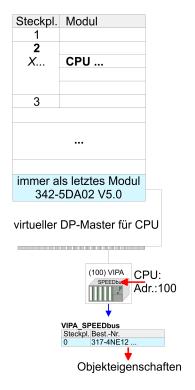
Einsatz der RS485-Schnittstelle für PtP

Voraussetzung

Damit Sie die VIPA-spezifischen CPU-Parameter einstellen können, ist die Installation der SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich. Nach der Installation können Sie die CPU in einem PROFIBUS-Master-System projektieren und entsprechend die Parameter anpassen.

SPEEDBUS.GSD installieren

Die GSD (Geräte-Stamm-Datei) ist in folgenden Sprachversionen online verfügbar. Weitere Sprachen erhalten Sie auf Anfrage:


Name	Sprache
SPEEDBUS.GSD	deutsch (default)
SPEEDBUS.GSG	deutsch
SPEEDBUS.GSE	englisch

Die GSD-Dateien finden Sie auf www.vipa.com im "Service"-Bereich. Die Einbindung der SPEEDBUS.GSD erfolgt nach folgender Vorgehensweise:

- 1. Gehen Sie auf www.vipa.com
- 2. ► Klicken Sie auf "Service → Download → GSD- und EDS-Files → Profibus"
- 3. Laden Sie die Datei Cx000023 Vxxx.
- **4.** Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die SPEEDBUS.GSD befindet sich im Verzeichnis VIPA System 300S.
- **5.** Starten Sie den Hardware-Konfigurator von Siemens.
- 6. Schließen Sie alle Projekte.
- 7. ▶ Gehen Sie auf "Extras → Neue GSD-Datei installieren".
- 8. Navigieren Sie in das Verzeichnis VIPA_System_300S und geben Sie SPEEDBUS.GSD an.
 - ⇒ Alle SPEED7-CPUs und -Module des System 300S von VIPA sind jetzt im Hardwarekatalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA SPEEDBUS enthalten.

Einsatz der RS485-Schnittstelle für PtP

Vorgehensweise

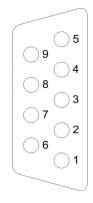
Die Einbindung der CPU 317-4NE12 erfolgt in Form eines virtuellen PROFIBUS Master-Systems nach folgender Vorgehensweise:

- **1.** Führen Sie eine Hardware-Konfiguration für die CPU durch. Kapitel 5.4 "Hardware-Konfiguration - CPU" auf Seite 50
- 2. Projektieren Sie immer als letztes Modul einen Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen und parametrieren Sie diesen in der Betriebsart "DP-Master".
- Binden Sie das Slave-System "VIPA_SPEEDbus" an. Nach der Installation der SPEEDBUS.GSD finden Sie dieses im Hardware-Katalog unter Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS.
- 4. Stellen Sie für das Slave-System die PROFIBUS-Adresse 100 ein
- **5.** Platzieren Sie auf dem Steckplatz 0 die VIPA CPU 317-4NE12 aus dem Hardware-Katalog von VIPA_SPEEDbus.
- **6.** Durch Doppelklick auf die eingefügte CPU 317-4NE12 gelangen Sie in den Eigenschaften-Dialog der CPU.

Sobald Sie Ihr Projekt zusammen mit Ihrem SPS-Programm in die CPU übertragen, werden die Parameter nach dem Hochlauf übernommen.

Die hier gezeigte Hardware-Konfiguration ist nur erforderlich, wenn Sie die VIPA-spezifischen Parameter anpassen möchten.

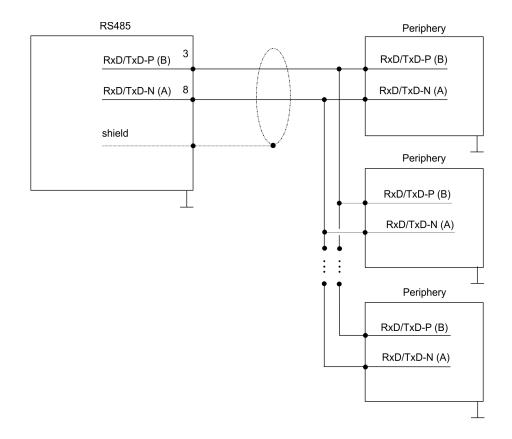
Einstellung der PtP-Parameter


- Durch Doppelklick auf die im Slave-System eingefügte CPU 317-4NE12 gelangen Sie in den Eigenschaften-Dialog der CPU.
- 2. Stellen Sie den Parameter "Funktion RS485 X3" auf "PtP".

Eigenschaften RS485

- Logische Zustände als Spannungsdifferenz zwischen 2 verdrillten Adern
- Serielle Busverbindung in Zweidrahttechnik im Halbduplex-Verfahren
- Datenübertragung bis 500m Entfernung
- Datenübertragungsrate bis 115,2kBit/s

Parametrierung > FC/SFC 216 - SER_CFG


RS485

9polige SubD-Buchse

Pin	RS485
1	n.c.
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

Anschluss

6.4 Parametrierung

6.4.1 FC/SFC 216 - SER_CFG

Beschreibung

Die Parametrierung erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 (SER_CFG). Hierbei sind die Parameter für STX/ETX, 3964R, USS und Modbus in einem DB abzulegen.

Parametrierung > FC/SFC 216 - SER CFG

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
PROTOCOL	IN	BYTE	1=ASCII, 2=STX/ETX, 3=3964R
PARAMETER	IN	ANY	Zeiger zu den Protokoll-Parametern
BAUDRATE	IN	BYTE	Nr. der Baudrate
CHARLEN	IN	BYTE	0=5Bit, 1=6Bit, 2=7Bit, 3=8Bit
PARITY	IN	BYTE	0=Non, 1=Odd, 2=Even
STOPBITS	IN	BYTE	1=1Bit, 2=1,5Bit, 3=2Bit
FLOWCONTROL	IN	BYTE	1 (fix)
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

Alle Zeitangaben für Timeouts sind als Hexadezimaler Wert anzugeben. Den Hex-Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden mit der Baudrate multiplizieren.

Beispiel:

Gewünschte Zeit 8ms bei einer Baudrate von 19200Baud

Berechnung: 19200Bit/s x 0,008s \approx 154Bit \rightarrow (9Ah)

Als Hex-Wert ist 9Ah vorzugeben.

PROTOCOL

Geben Sie hier das Protokoll an, das verwendet werden soll.

Zur Auswahl stehen:

- 1: ASCII
- 2: STX/ETX
- 3: 3964R
- 4: USS Master
- 5: Modbus RTU Master
- 6: Modbus ASCII Master

PARAMETER (als DB)

Bei eingestelltem ASCII-Protokoll wird dieser Parameter ignoriert.

Für die Protokolle geben Sie hier einen DB an, der die Kommunikationsparameter beinhaltet und für die jeweiligen Protokolle STX/ETX, 3964R, USS und Modbus folgenden Aufbau hat:

Datenbaustein bei STX/ETX						
DBB0:	STX1	BYTE	(1. Start-Zeichen in hexadezimaler Form)			
DBB1:	STX2	BYTE	(2. Start-Zeichen in hexadezi- maler Form)			
DBB2:	ETX1	BYTE	(1. Ende-Zeichen in hexadezimaler Form)			

Parametrierung > FC/SFC 216 - SER_CFG

DBB3:	ETX2	BYTE	(2. Ende-Zeichen in hexadezimaler Form)
DBW4:	TIMEOUT	WORD	(max. zeitlicher Abstand zwischen 2 Telegrammen)

Das Zeichen für Start bzw. Ende sollte immer ein Wert kleiner 20 sein, ansonsten wird das Zeichen ignoriert!

Tragen Sie immer für nicht benutzte Zeichen FFh ein!

Datenbaustein bei 3964R			
DBB0:	Prio	BYTE	(Die Priorität beider Partner muss unterschiedlich sein)
DBB1:	ConnAttmptNr	BYTE	(Anzahl der Verbindungsaufbauversuche)
DBB2:	SendAttmptNr	BYTE	(Anzahl der Telegrammwiederholungen)
DBB4:	CharTimeout	WORD	(Zeichenverzugszeit)
DBW6:	ConfTimeout	WORD	(Quittungsverzugszeit)

Datenba	austein bei USS		
DBW0:	Timeout	WORD	(Verzugszeit)

Datenba	austein bei Modb	us-Master	
DBW0:	Timeout	WORD	(Antwort-Verzugszeit)

BAUDRATE

Geschwindigkeit der Datenübertragung in Bit/s (Baud).							
04h:	1200Baud	05h:	1800Baud	06h:	2400Baud	07h:	4800Baud
08h:	7200Baud	09h:	9600Baud	0Ah:	14400Baud	0Bh:	19200Baud
0Ch:	38400Baud	0Dh:	57600Baud	0Eh:	115200Baud		

CHARLEN	Anzahl der Datenbits, auf die ein Zeichen abgebildet wird.				
	0: 5Bit	1: 6Bit	2: 7Bit	3: 8Bit	

Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle werden die Informationsbits um das Paritätsbit erweitert, das durch seinen Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt, aber nicht ausgewertet. **PARITY**

Parametrierung > FC/SFC 216 - SER CFG

STOPBITS

Die Stopbits werden jedem zu übertragenden Zeichen nachgesetzt und kennzeichnen das Ende eines Zeichens.

1: 1Bit 2: 1,5Bit 3: 2Bit

FLOWCONTROL

Der Parameter *FLOWCONTROL* wird ignoriert. Beim Senden ist RTS=1, beim Empfangen ist RTS=0.

RETVAL FC/SFC 216 (Rückgabewert)

Rückgabewerte, die der Baustein liefert:

0000h kei	in Fehler
	chnittstelle ist nicht vorhanden bzw. Schnittstelle wird PROFIBUS verwendet.
Be PT ein eb	ei der VIPA System SLIO-CPU und FeatureSet P_NO ist nur das ASCII Protokoll konfigurierbar. Wird anderes Protokoll ausgewählt wird der FC/SFC 216 enfalls mit diesem Fehlercode verlassen.
8x24h Fe	hler in FC/SFC-Parameter x, mit x:
1:	Fehler in PROTOKOLL
2:	Fehler in PARAMETER
	Fehler in BAUDRATE
4:	Fehler in CHARLENGTH
	Fehler in PARITY
6:	Fehler in STOPBITS
7:	Fehler in FLOWCONTROL (Parameter fehlt)
809xh Fe	hler in Wert des FC/SFC-Parameter x, mit x:
1:	Fehler in PROTOKOLL
3:	Fehler in BAUDRATE
4:	Fehler in CHARLENGTH
5:	Fehler in PARITY
6:	Fehler in STOPBITS
8092h Zu	griffsfehler auf Parameter-DB (DB zu kurz)
828xh Fe	hler in Parameter x von DB-Parameter mit x:
1:	Fehler im 1. Parameter
2:	Fehler im 2. Parameter

Kommunikation > FC/SFC 217 - SER SND

6.5 Kommunikation

6.5.1 Übersicht

Die Kommunikation erfolgt über die Sende- und Empfangsbausteine FC/SFC 217 (SER_SND) und FC/SFC 218 (SER_RCV). Die FCs/SFCs befinden sich im Lieferumfang der CPU.

6.5.2 FC/SFC 217 - SER SND

Beschreibung

Mit diesem Baustein werden Daten über die serielle Schnittstelle gesendet. Durch erneuten Aufruf des FC/SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RETVAL einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Sendedaten
DATALEN	OUT	WORD	Länge der Sendedaten
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR

Geben Sie hier einen Bereich vom Typ Pointer für den Sendepuffer an, in den die Daten, die gesendet werden sollen, abzulegen sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel:

Daten liegen in DB5 ab 0.0 mit einer Länge von 124Byte

DataPtr:=P#DB5.DBX0.0 BYTE 124

DATALEN

Wort, in dem die Anzahl der gesendeten Bytes abgelegt wird.

Werden unter **ASCII** die Daten intern mittels FC/SFC 217 schneller an die serielle Schnittstelle übertragen als sie gesendet werden können, kann aufgrund eines Pufferüberlaufs die zu sendende Datenlänge von *DATALEN* abweichen. Dies sollte im Anwenderprogramm berücksichtigt werden!

Bei **STX/ETX**, **3964R**, **Modbus** und **USS** wird immer die unter *DATAPTR* angegebene Länge oder 0 eingetragen.

RETVAL FC/SFC 217 (Rückgabewerte)

Rückgabewerte, die der Baustein liefert:

Fehler- code	Beschreibung
0000h	Daten gesendet - fertig
1000h	Nichts gesendet (Datenlänge 0)

Kommunikation > FC/SFC 217 - SER SND

Fehler- code	Beschreibung
20xxh	Protokoll wurde fehlerfrei ausgeführt mit xx-Bitmuster für Diagnose
7001h	Daten liegen im internen Puffer - aktiv (busy)
7002h	Transfer - aktiv
80xxh	Protokoll wurde fehlerhaft ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
90xxh	Protokoll wurde nicht ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
8x24h	Fehler in FC/SFC-Parameter x, mit x:
	1: Fehler in DATAPTR
	2: Fehler in DATALEN
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)
807Fh	Interner Fehler
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet
809Bh	Schnittstelle nicht konfiguriert

Protokollspezifische RETVAL-Werte

ASCII

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9002h	Daten sind zu kurz (0Byte)

STX/ETX

Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)
9004h	Unzulässiges Zeichen

3964R

Wert	Beschreibung
2000h	Senden fertig ohne Fehler
80FFh	NAK empfangen - Fehler in der Kommunikation
80FEh	Datenübertragung ohne Quittierung der Gegenseite oder mit fehlerhafter Quittierung
9000h	Pufferüberlauf (keine Daten gesendet)

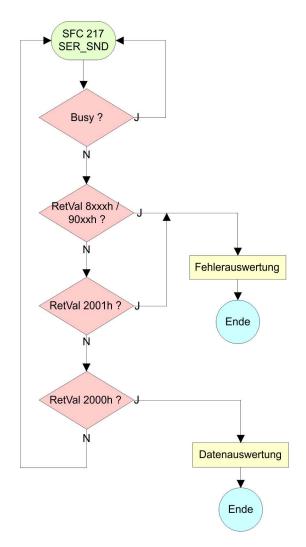
Kommunikation > FC/SFC 217 - SER_SND

Wert	Beschreibung
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)

USS

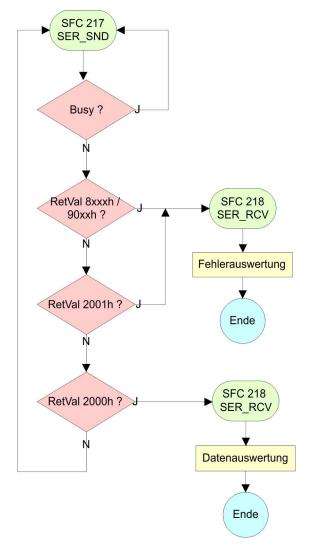
Fehler- code	Beschreibung
2000h	Senden fertig ohne Fehler
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FEh	Falsches Startzeichen in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Modbus RTU/ASCII Master

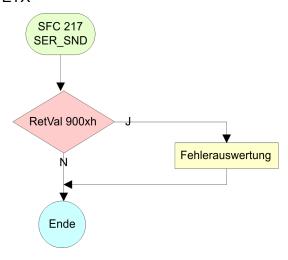

Fehler- code	Beschreibung
2000h	Senden fertig (positive Slave-Rückmeldung vorhanden)
2001h	Senden fertig (negative Slave-Rückmeldung vorhanden)
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FDh	Länge der Rückantwort ist zu lang
80FEh	Falscher Funktionscode in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Kommunikation > FC/SFC 217 - SER SND

Prinzip der Programmierung


Nachfolgend soll kurz die Struktur zur Programmierung eines Sendeauftrags für die verschiedenen Protokolle gezeigt werden.

3964R



Kommunikation > FC/SFC 217 - SER SND

USS / Modbus

ASCII / STX/ETX

Kommunikation > FC/SFC 218 - SER RCV

6.5.3 FC/SFC 218 - SER_RCV

Beschreibung

Mit diesem Baustein werden Daten über die serielle Schnittstelle empfangen.

Bei den Protokollen USS und Modbus können Sie durch Aufruf des FC/SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm auslesen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
DATAPTR	IN	ANY	Zeiger auf Empfangspuffer
DATALEN	OUT	WORD	Länge der empfangenen Daten
ERROR	OUT	WORD	Fehler-Nr.
RETVAL	OUT	WORD	Rückgabewert (0 = OK)

DATAPTR

Geben Sie hier einen Bereich vom Typ Pointer für den Empfangspuffer an, in den die Daten, die empfangen werden, abzulegen sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel:

Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen

DataPtr:=P#DB5.DBX0.0 BYTE 124

DATALEN

Wort, in dem die Anzahl der empfangenen Bytes abgelegt wird.

Bei STX/ETX und 3964R wird immer die Länge der empfangenen

Nutzdaten oder 0 eingetragen.

Unter **ASCII** wird hier die Anzahl der gelesenen Zeichen eingetragen.

Dieser Wert kann von der Telegrammlänge abweichen.

ERROR

In diesem Wort erfolgt ein Eintrag im Fehlerfall.

Folgende Fehlermeldungen können protokollabhängig generiert werden:

ASCII

Bit	Fehler	Beschreibung
0	overrun	Überlauf, ein Zeichen konnte nicht schnell genug aus der Schnittstelle gelesen werden kann
1	framing error	Fehler, der anzeigt, dass ein definierter Bitrahmen nicht übereinstimmt, die zulässige Länge über- schreitet oder eine zusätzliche Bitfolge enthält (Stopbitfehler)
2	parity	Paritätsfehler
3	overflow	Der Puffer ist voll.

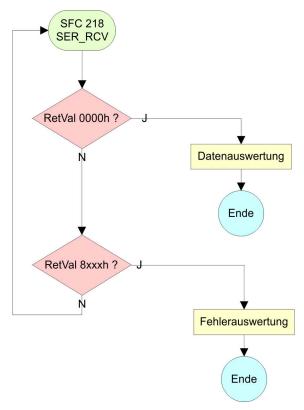
Kommunikation > FC/SFC 218 - SER RCV

STX/ETX

Bit	Fehler	Beschreibung
0	over- flow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.
1	char	Es wurde ein Zeichen außerhalb des Bereichs 20h 7Fh empfangen.
3	over- flow	Der Puffer ist voll.

3964R / Modbus RTU/ASCII Master

Bit	Fehler	Beschreibung
0	over- flow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.


RETVAL FC/SFC 218 (Rückgabewert)

Rückgabewerte, die der Baustein liefert:

Fehler- code	Beschreibung
0000h	kein Fehler
1000h	Empfangspuffer ist zu klein (Datenverlust)
8x24h	Fehler in FC/SFC-Parameter x, mit x:
	1: Fehler in DATAPTR
	2: Fehler in <i>DATALEN</i>
	3: Fehler in <i>ERROR</i>
8122h	Fehler in Parameter DATAPTR (z.B. DB zu kurz)
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für PROFIBUS verwendet
809Bh	Schnittstelle ist nicht konfiguriert

Prinzip der Programmierung

Nachfolgend sehen Sie die Grundstruktur zur Programmierung eines Receive-Auftrags. Diese Struktur können Sie für alle Protokolle verwenden.

6.6 Protokolle und Prozeduren

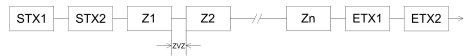
Übersicht

Die CPU unterstützt folgende Protokolle und Prozeduren:

- ASCII-Übertragung
- STX/ETX
- 3964R
- USS
- Modbus

ASCII

Die Datenkommunikation via ASCII ist die einfachste Form der Kommunikation. Die Zeichen werden 1 zu 1 übergeben. Bei ASCII werden je Zyklus mit dem Lese-FC/SFC die zum Zeitpunkt des Aufrufs im Puffer enthaltenen Daten im parametrierten Empfangsdatenbaustein abgelegt. Ist ein Telegramm über mehrere Zyklen verteilt, so werden die Daten überschrieben. Eine Empfangsbestätigung gibt es nicht. Der Kommunikationsablauf ist vom jeweiligen Anwenderprogramm zu steuern. Einen entsprechenden Receive_ASCII-FB finden Sie im Service-Bereich unter www.vipa.com.


STX/ETX

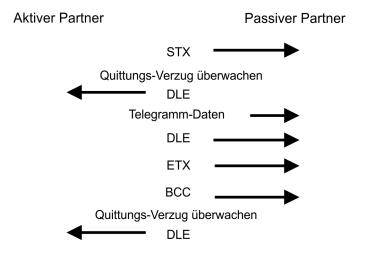
STX/ETX ist ein einfaches Protokoll mit Start- und Ende-Kennung. Hierbei stehen STX für **S**tart of **T**ext und ETX für **E**nd of **T**ext. Die Prozedur STX/ETX wird zur Übertragung von ASCII-Zeichen eingesetzt. Sie arbeitet ohne Blockprüfung (BCC).

- Sollen Daten von der Peripherie eingelesen werden, muss das Start-Zeichen vorhanden sein, anschließend folgen die zu übertragenden Zeichen. Danach muss das Ende-Zeichen vorliegen. Abhängig von der Byte-Breite können folgende ASCII-Zeichen übertragen werden: 5Bit: nicht zulässig: 6Bit: 20...3Fh, 7Bit: 20...7Fh, 8Bit: 20...FFh.
- Die Nutzdaten, d.h. alle Zeichen zwischen Start- und Ende-Kennung, werden nach Empfang des Schlusszeichens an die CPU übergeben.
- Beim Senden der Daten von der CPU an ein Peripheriegerät werden die Nutzdaten an den FC/SFC 217 (SER_SND) übergeben und von dort mit angefügten Start- und Endezeichen über die serielle Schnittstelle an den Kommunikationspartner übertragen.
- Es kann mit 1, 2 oder keiner Start- und mit 1, 2 oder keiner Ende-Kennung gearbeitet werden.
- Wird kein Ende-Zeichen definiert, so werden alle gelesenen Zeichen nach Ablauf einer parametrierbaren Zeichenverzugszeit (Timeout) an die CPU übergeben.

Als Start- bzw. Ende-Kennung sind alle Hex-Werte von 00h bis 1Fh zulässig. Zeichen größer 1Fh werden ignoriert und nicht berücksichtigt. In den Nutzdaten sind Zeichen kleiner 20h nicht erlaubt und können zu Fehlern führen. Die Anzahl der Start- und Endezeichen kann unterschiedlich sein (1 Start, 2 Ende bzw. 2 Start, 1 Ende oder andere Kombinationen). Für nicht verwendete Start- und Endezeichen muss in der Hardware-Konfiguration FFh eingetragen werden.

Telegrammaufbau:

3964


Die Prozedur 3964R steuert die Datenübertragung bei einer Punktzu-Punkt-Kopplung zwischen der CPU und einem Kommunikationspartner. Die Prozedur fügt bei der Datenübertragung den Nutzdaten Steuerzeichen hinzu. Durch diese Steuerzeichen kann der Kommunikationspartner kontrollieren, ob die Daten vollständig und fehlerfrei bei ihm angekommen sind.

Die Prozedur wertet die folgenden Steuerzeichen aus:

- STX: Start of Text
- DLE: Data Link Escape
- ETX: End of Text
- BCC: Block Check Character
- NAK: Negative Acknowledge

Sie können pro Telegramm maximal 255Byte übertragen.

Prozedurablauf

Wird ein "DLE" als Informationszeichen übertragen, so wird dieses zur Unterscheidung vom Steuerzeichen "DLE" beim Verbindungsauf- und -abbau auf der Sendeleitung doppelt gesendet (DLE-Verdoppelung). Der Empfänger macht die DLE-Verdoppelung wieder rückgängig.

Unter 3964R <u>muss</u> einem Kommunikationspartner eine niedrigere Priorität zugeordnet sein. Wenn beide Kommunikationspartner gleichzeitig einen Sendeauftrag erteilen, dann stellt der Partner mit niedriger Priorität seinen Sendeauftrag zurück.

USS

Das USS-Protokoll (**U**niverselle **s**erielle **S**chnittstelle) ist ein von Siemens definiertes serielles Übertragungsprotokoll für den Bereich der Antriebstechnik. Hiermit lässt sich eine serielle Buskopplung zwischen einem übergeordneten Master - und mehreren Slave-Systemen aufbauen. Das USS-Protokoll ermöglich durch Vorgabe einer fixen Telegrammlänge einen zeitzyklischen Telegrammverkehr.

Folgende Merkmale zeichnen das USS-Protokoll aus:

- Mehrpunktfähige Kopplung
- Master-Slave Zugriffsverfahren
- Single-Master-System
- Maximal 32 Teilnehmer
- Einfacher, sicherer Telegrammrahmen

Es gilt:

- Am Bus können 1 Master und max. 31 Slaves angebunden sein.
- Die einzelnen Slaves werden vom Master über ein Adresszeichen im Telegramm angewählt.
- Die Kommunikation erfolgt ausschließlich über den Master im Halbduplex-Betrieb.
- Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.

Die Telegramme für Senden und Empfangen haben folgenden Aufbau:

Master-Slave-Telegramm

STX	LGE	ADR	PKE		IND		PWE		STW		HSW		BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	

Slave-Master-Telegramm

STX	LGE	ADR	PKE		IND		PWE		ZSW		HIW		BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	

mit

STX - Startzeichen

STW - Steuerwort

LGE - Telegrammlänge

ZSW - Zustandswort

ADR - Adresse

HSW - Hauptsollwert

PKE - Parameterkennung

HIW - Hauptistwert

IND - Index

BCC - Block Check Character

PWE - Parameterwert

USS-Broadcast mit gesetztem Bit 5 in ADR-Byte

Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht ist Bit 5 im ADR-Byte auf 1 zu setzen. Hierbei wird die Slave-Adr. (Bit 0 ... 4) ignoriert. Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über FC/SFC 218 SER_RCV erforderlich. Nur Schreibaufträge dürfen als Broadcast gesendet werden.

Modbus

- Das Protokoll Modbus ist ein Kommunikationsprotokoll, das eine hierarchische Struktur mit einem Master und mehreren Slaves festlegt.
- Physikalisch arbeitet Modbus über eine serielle Halbduplex-Verbindung. Es treten keine Buskonflikte auf, da der Master immer nur mit einem Slave kommunizieren kann.
- Nach einer Anforderung vom Master wartet dieser solange auf die Antwort des Slaves, bis eine einstellbare Wartezeit abgelaufen ist. Während des Wartens ist eine Kommunikation mit einem anderen Slave nicht möglich.

- Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des FC/SFC 218 SER_RCV auszulesen.
- Die Anforderungs-Telegramme, die ein Master sendet und die Antwort-Telegramme eines Slaves haben den gleichen Aufbau:

Telegrammaufbau

Startzei- Slav chen Adre	re- resse Funktions- Code	Daten	Flusskon- trolle	Endezei- chen
-----------------------------	---------------------------------	-------	---------------------	------------------

Broadcast mit Slave-Adresse = 0

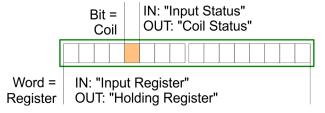
- Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen.
- Zur Kennzeichnung einer Broadcast-Nachricht wird die Slave-Adresse 0 eingetragen.
- Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über FC/SFC 218 SER_RCV erforderlich.
- Nur Schreibaufträge dürfen als Broadcast gesendet werden.

ASCII-, RTU-Modus

Bei Modbus gibt es zwei unterschiedliche Übertragungsmodi. Die Modus-Wahl erfolgt zur Laufzeit unter Einsatz des FC/SFC 216 SER CFG.

- ASCII-Modus: Jedes Byte wird im 2 Zeichen ASCII-Code übertragen. Die Daten werden durch Anfang- und Ende-Zeichen gekennzeichnet. Dies macht die Übertragung transparent aber auch langsam.
- RTU-Modus: Jedes Byte wird als ein Zeichen übertragen. Hierdurch haben Sie einen höheren Datendurchsatz als im ASCII-Modus. Anstelle von Anfang- und Ende-Zeichen wird eine Zeitüberwachung eingesetzt.

Unterstützte Modbus-Protokolle


Die RS485-Schnittstelle unterstützt folgende Modbus-Protokolle:

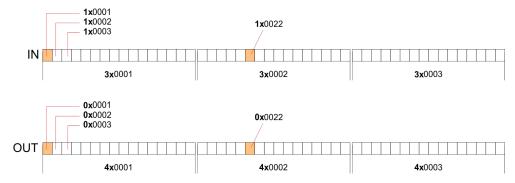
- Modbus RTU Master
- Modbus ASCII Master

6.7 Modbus - Funktionscodes

Namenskonventionen

Für Modbus gibt es Namenskonventionen, die hier kurz aufgeführt sind:

- Modbus unterscheidet zwischen Bit- und Wortzugriff; Bits = "Coils" und Worte = "Register".
- Bit-Eingänge werden als "Input-Status" bezeichnet und Bit-Ausgänge als "Coil-Status".
- Wort-Eingänge werden als "Input-Register" und Wort-Ausgänge als "Holding-Register" bezeichnet.


Bereichsdefinitionen

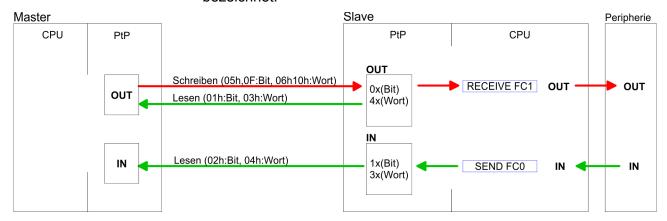
Üblicherweise erfolgt unter Modbus der Zugriff mittels der Bereiche 0x, 1x, 3x und 4x.

Mit 0x und 1x haben Sie Zugriff auf digitale Bit-Bereiche und mit 3x und 4x auf analoge Wort-Bereiche.

Da aber bei den CPs von VIPA keine Unterscheidung zwischen Digital- und Analogdaten stattfindet, gilt folgende Zuordnung:

- 0x Bit-Bereich für Ausgabe-Daten des Masters Zugriff über Funktions-Code 01h, 05h, 0Fh
- 1x Bit-Bereich für Eingabe-Daten des Masters
 Zugriff über Funktions-Code 02h
- 3x Wort-Bereich für Eingabe-Daten des MastersZugriff über Funktions-Code 04h
- 4x Wort-Bereich für Ausgabe-Daten des Masters Zugriff über Funktions-Code 03h, 06h, 10h

Eine Beschreibung der Funktions-Codes finden Sie auf den Folgeseiten.


Übersicht

Mit folgenden Funktionscodes können Sie von einem Modbus-Master auf einen Slave zugreifen. Die Beschreibung erfolgt immer aus Sicht des Masters:

Code	Befehl	Beschreibung
01h	Read n Bits	n Bit lesen von Master-Ausgabe-Bereich 0x
02h	Read n Bits	n Bit lesen von Master-Eingabe-Bereich 1x
03h	Read n Words	n Worte lesen von Master-Ausgabe-Bereich 4x
04h	Read n Words	n Worte lesen von Master-Eingabe-Bereich 3x
05h	Write 1 Bit	1 Bit schreiben in Master-Ausgabe-Bereich 0x
06h	Write 1 Word	1 Wort schreiben in Master-Ausgabe-Bereich 4x
0Fh	Write n Bits	n Bit schreiben in Master-Ausgabe-Bereich 0x
10h	Write n Words	n Worte schreiben in Master-Ausgabe-Bereich 4x

Sichtweise für "Eingabe"- und "Ausgabe"-Daten

Die Beschreibung der Funktionscodes erfolgt immer aus Sicht des Masters. Hierbei werden Daten, die der Master an den Slave schickt, bis zu ihrem Ziel als "Ausgabe"-Daten (OUT) und umgekehrt Daten, die der Master vom Slave empfängt als "Eingabe"-Daten (IN) bezeichnet.

Antwort des Slaves

Liefert der Slave einen Fehler zurück, wird der Funktionscode mit 80h "verodert" zurückgesendet.

Ist kein Fehler aufgetreten, wird der Funktionscode zurückgeliefert.

Slave-Antwort:	Funktionscode OR 80h	\rightarrow Fehler
	Funktionscode	\rightarrow OK

Byte-Reihenfolge im Wort

1 Wort				
High-Byte	Low-Byte			

Prüfsumme CRC, RTU, LRC

Die aufgezeigten Prüfsummen CRC bei RTU- und LRC bei ASCII-Modus werden automatisch an jedes Telegramm angehängt. Sie werden nicht im Datenbaustein angezeigt.

Read n Bits 01h, 02h

Code 01h: n Bit lesen von Master-Ausgabe-Bereich 0x Code 02h: n Bit lesen von Master-Eingabe-Bereich 1x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Bit	Anzahl der Bits	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave- Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Byte	Daten 2. Byte		Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Byte	1Byte		1Wort
			max. 250Byte			

Read n Words 03h, 04h 03h: n Worte lesen von Master-Ausgabe-Bereich 4x

04h: n Worte lesen von Master-Eingabe-Bereich 3x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse 1.Bit	Anzahl der Worte	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave- Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Wort	Daten 2. Wort		Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Wort	1Wort		1Wort
			max. 125Worte			

Write 1 Bit 05h Code 05h: 1 Bit schreiben in Master-Ausgabe-Bereich 0x

Eine Zustandsänderung erfolgt unter "Zustand Bit" mit folgenden

Werten:

"Zustand Bit" = $0000h \rightarrow Bit = 0$ "Zustand Bit" = $FF00h \rightarrow Bit = 1$

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse Bit	Zustand Bit	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write 1 Word 06h

Code 06h: 1 Wort schreiben in Master-Ausgabe-Bereich 4x

Kommandotelegramm

Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse Wort	Wert Wort	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write n Bits 0Fh

Code 0Fh: n Bit schreiben in Master-Ausgabe-Bereich 0x Bitte beachten Sie, dass die Anzahl der Bits zusätzlich in Byte anzugeben sind.

Kommandotelegramm

Slave- Adresse	Funk- tions- Code	Adresse 1. Bit	Anzahl der Bits	Anzahl der Bytes	Daten 1. Byte	Daten 2. Byte		Prüf- summe CRC/ LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Byte	1Byte	1Byte	1Wort
					m	nax. 250Byt	е	

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Bit	Anzahl der Bits	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Modbus - Beispiel zur Kommunikation

Write n Words 10h

Code 10h: n Worte schreiben in Master-Ausgabe-Bereich

Kommandotelegramm

Slave- Adresse	Funk- tions- Code	Adresse 1. Wort	Anzahl der Worte	Anzahl der Bytes	Daten 1. Wort	Daten 2. Wort		Prüf- summe CRC/ LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Wort	1Wort	1Wort	1Wort
max. 125Worte								

Antworttelegramm

Slave-Adresse	Funktions-Code	Adresse 1. Wort	Anzahl der Worte	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

6.8 Modbus - Beispiel zur Kommunikation

Übersicht

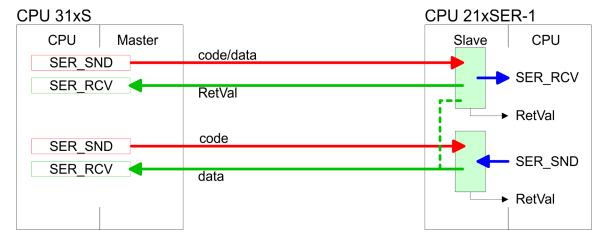
In dem Beispiel wird eine Kommunikation zwischen einem Master und einem Slave über Modbus aufgebaut. Folgende Komponenten sind für das Beispiel erforderlich:

- CPU 31xS als Modbus RTU-Master
- CPU 21xSER-1 als Modbus RTU-Slave
- Siemens SIMATIC Manager und Möglichkeit für Projekttransfer
- Modbus-Kabel-Verbindung

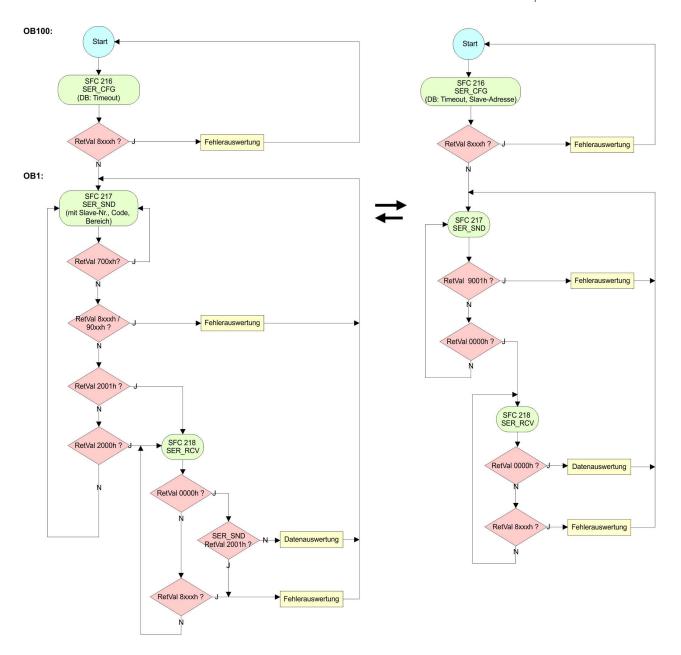
Vorgehensweise

- 1. Bauen Sie ein Modbus-System bestehend aus CPU 31xS als Modbus-Master und CPU 21xSER-1 als Modbus-Slave und Modbus-Kabel auf.
- 2. Projektieren Sie die Master-Seite! Erstellen Sie hierzu ein SPS-Anwenderprogramm nach folgender Struktur:
 - OB 100:

Aufruf SFC 216 (Konfiguration als Modbus RTU-Master) mit Timeout-Angabe und Fehlerauswertung.


■ OB 1:

Aufruf des SFC 217 (SER_SND) wobei mit Fehlerauswertung die Daten gesendet werden. Hierbei ist das Telegramm gemäß den Modbus-Vorgaben aufzubauen. Aufruf des SFC 218 (SER_RECV) wobei mit Fehlerauswertung die Daten empfangen werden.


Modbus - Beispiel zur Kommunikation

- **3.** Projektieren Sie die Slave-Seite! Das SPS-Anwenderprogramm auf der Slave-Seite sollte folgenden Aufbau haben:
 - OB 100: Aufruf SFC 216 (Konfiguration als Modbus RTU-Slave) mit Timeout-Angabe und Modbus-Adresse im DB und Fehlerauswertung
 - OB 1: Aufruf des SFC 217 (SER_SND) für den Datentransport von der Slave-CPU in den Ausgangs-Puffer. Aufruf des SFC 218 (SER_RECV) für den Datentransport vom Eingangspuffer in die CPU. Für beide Richtungen ist eine entsprechende Fehlerauswertung vorzusehen.

Struktur für die jeweiligen SPS-Programme für Master- und Slave-Seite:

Modbus - Beispiel zur Kommunikation

Schnelleinstieg

7 Einsatz PROFIBUS-Kommunikation

7.1 Übersicht

PROFIBUS-DP

- PROFIBUS ist ein international offener und serieller Feldbus-Standard für Gebäude-, Fertigungs- und Prozessautomatisierung im unteren (Sensor-/ Aktor-Ebene) bis mittleren Leistungsbereich (Prozessebene).
- PROFIBUS besteht aus einem Sortiment kompatibler Varianten. Die hier angeführten Angaben beziehen sich auf den PROFIBUS-DP.
- PROFIBUS-DP ist besonders geeignet für die Fertigungsautomatisierung. DP ist sehr schnell, bietet "Plug and Play" und ist eine kostengünstige Alternative zur Parallelverkabelung zwischen SPS und dezentraler Peripherie.
- Der Datenaustausch "Data Exchange" erfolgt zyklisch. Während eines Buszyklus liest der Master die Eingangswerte der Slaves und schreibt neue Ausgangsinformationen an die Slaves.

CPU mit DP-Master

Der PROFIBUS-DP-Master ist im Hardware-Konfigurator zu projektieren. Hierbei erfolgt die Projektierung über das Submodul X1 (MPI/DP) der Siemens-CPU.

Nach der Übertragung der Daten in die CPU, leitet diese die Projektierdaten intern weiter an den PROFIBUS-Master-Teil.

Während des Hochlaufs blendet der DP-Master automatisch seine Datenbereiche im Adressbereich der CPU ein. Eine Projektierung auf CPU-Seite ist hierzu nicht erforderlich.

Einsatz CPU mit DP-Master

Über den PROFIBUS-DP-Master können PROFIBUS-DP-Slaves an die CPU angekoppelt werden. Der DP-Master kommuniziert mit den DP-Slaves und blendet die Datenbereiche im Adressbereich der CPU ein.

Bei jedem NETZ EIN bzw. nach dem URLÖSCHEN holt sich die CPU vom Master die I/O-Mapping-Daten. Bei DP-Slave-Ausfall leuchtet die ER-LED und der OB 86 wird angefordert. Ist dieser nicht vorhanden, geht die CPU in STOP und BASP wird gesetzt. Sobald das BASP-Signal von der CPU kommt, stellt der DP-Master die Ausgänge der angeschlossenen Peripherie auf Null. Unabhängig von der CPU bleibt der DP-Master weiter im RUN.

DP-Slave-Betrieb

Für den Einsatz in einem übergeordneten Master-System projektieren Sie zuerst Ihr Slave-System als Siemens-CPU im Slave-Betrieb mit konfigurierten Ein-/Ausgabe-Bereichen. Danach projektieren Sie Ihr Master-System. Binden Sie an das Master-System Ihr Slave-System an, indem Sie die CPU 31x aus dem Hardware-Katalog unter *Bereits projektierte Stationen* auf das Master-System ziehen und Ihr Slave-System auswählen und ankoppeln

7.2 Schnelleinstieg

Übersicht

Der PROFIBUS-DP-Master ist im Hardware-Konfigurator zu projektieren. Hierbei erfolgt die Projektierung über das Submodul X2 (DP) der Siemens-CPU.

Hardware-Konfiguration - CPU

Schritte der Projektierung

Die Projektierung des PROFIBUS-DP-Masters sollte nach folgender Vorgehensweise erfolgen:

- Hardware-Konfiguration CPU
- Einsatz als DP-Master oder Einsatz als DP-Slave
- Transfer des Gesamtprojekts in die CPU ∜ Kapitel 5.11 "Projekt transferieren" auf Seite 65

Im Siemens SIMATIC Manager ist die CPU 317-4NE12 von VIPA als

CPU 318-2 (318-2AJ00-0AB00/V3.0)

zu projektieren!

Über das Submodul X2 (DP) projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (X3). Den Ethernet-PG/OP-Kanal der CPU 317-4NE12 projektieren Sie immer als 1. Modul nach den reell gesteckten Modulen am Standard-Bus als CP 343-1 (343-1EX11) von Siemens.

7.3 Hardware-Konfiguration - CPU

Voraussetzung

Die Konfiguration der CPU erfolgt im "Hardware-Konfigurator" von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit "Extras → Katalog aktualisieren" den Hardware-Katalog aktualisieren.

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Bitte beachten Sie, dass diese SPEED7-CPU 4 AKKUs besitzt. Nach einer arithmetischen Operation (+I, -I, *I, /I, +D, -D, *D, /D, MOD, +R, -R, *R, /R) wird der Inhalt des AKKUs 3 und 4 in die AKKUs 2 und 3 geladen. Dies kann bei Programmen, die einen unveränderten AKKU 2 voraussetzen, zu Konflikten führen.

Nähere Informationen hierzu finden Sie im Handbuch "VIPA Operationsliste SPEED7" unter "Unterschiede zwischen SPEED7 und 300V Programmierung".

Einsatz als PROFIBUS-DP-Master

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 318-2
X2	DP
X1	MPI/DP
3	

Im Siemens SIMATIC Manager sind folgende Schritte durchzuführen:

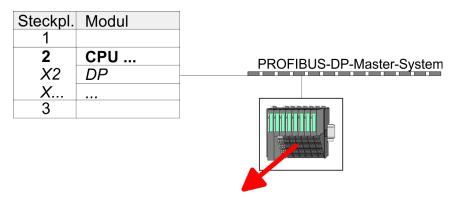
- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 318-2 (6ES7 318-2AJ00-0AB0/V3.0).
- **4.** ▶ Über das Submodul "X2 DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).

7.4 Einsatz als PROFIBUS-DP-Master

Voraussetzung

Die zuvor beschriebene Hardware-Konfiguration ist durchgeführt.

Vorgehensweise


- Öffnen Sie den Eigenschaften-Dialog der DP-Schnittstelle, indem Sie auf "DP" doppelklicken.
- 2. Stellen Sie unter Schnittstelle: Typ "PROFIBUS" ein.
- **3.** Vernetzen Sie mit PROFIBUS und geben Sie eine Adresse (vorzugsweise 2) vor. Schließen Sie Ihre Eingabe mit [OK] ab.
- **4.** Stellen Sie unter Betriebsart "DP-Master" ein und schließen Sie den Dialog mit [OK].
 - ⇒ Ein Master-System wird eingefügt:

Sie haben jetzt ihren PROFIBUS-DP-Master projektiert. Binden Sie nun Ihre DP-Slaves mit Peripherie an Ihren DP-Master an.

- Zur Projektierung von PROFIBUS-DP-Slaves entnehmen Sie aus dem Hardwarekatalog den entsprechenden PROFIBUS-DP-Slave und ziehen Sie diesen auf das Subnetz Ihres Masters.
- 2. Geben Sie dem DP-Slave eine gültige PROFIBUS-Adresse.
- Binden Sie in der gesteckten Reihenfolge die Module Ihres DP-Slave-Systems ein und vergeben Sie die Adressen, die von den Modulen zu verwenden sind.
- **4.** ▶ Parametrieren Sie die Module gegebenenfalls.
- **5.** Speichern, übersetzen und transferieren Sie Ihr Projekt.

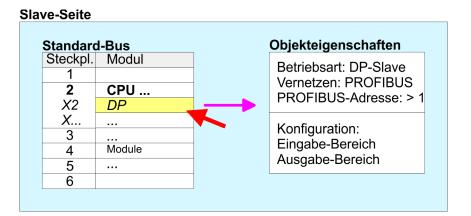
Einsatz als PROFIBUS-DP-Slave

Steckpl.	Baugruppe	Bestellnummer	
1			
2	Module		
3			
4			
5			

7.5 Einsatz als PROFIBUS-DP-Slave

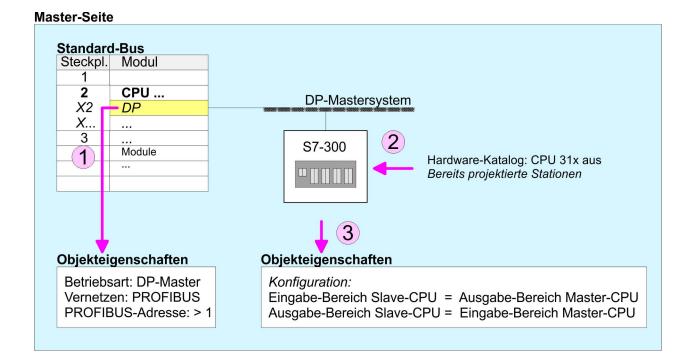
Schnelleinstieg

Nachfolgend ist der Einsatz des PROFIBUS-Teils als "intelligenter" DP-Slave an Master-Systemen beschrieben, welche ausschließlich im Siemens SIMATIC Manager projektiert werden können. Folgende Schritte sind hierzu erforderlich:


- Projektieren Sie eine Station mit einer CPU mit der Betriebsart DP-Slave.
- **2.** Vernetzen Sie mit PROFIBUS und konfigurieren Sie die Ein-/ Ausgabe-Bereiche für die Slave-Seite.
- 3. Speichern und übersetzen Sie Ihr Projekt.
- **4.** Projektieren Sie als weitere Station eine weitere CPU mit der Betriebsart DP-Master.
- **5.** Vernetzen Sie mit PROFIBUS und konfigurieren Sie die Ein-/ Ausgabe-Bereiche für die Master-Seite.
- **6.** Speichern, übersetzen und transferieren Sie Ihr Projekt in die CPU.

Projektierung der Slave-Seite

- **1.** Starten Sie den Siemens SIMATIC Manager und projektieren Sie eine CPU wie unter "Hardware-Konfiguration CPU" beschrieben.
- 2. Bezeichnen Sie die Station als "...DP-Slave".
- 3. Binden Sie gemäß Ihrem Hardwareaufbau Ihre Module ein.
- **4.** Öffnen Sie den Eigenschaften-Dialog der DP-Schnittstelle der CPU, indem Sie auf "DP" doppelklicken.
- 5. Stellen Sie unter Schnittstelle: Typ "PROFIBUS" ein.
- Vernetzen Sie mit PROFIBUS und geben Sie eine Adresse (z.B. 3) vor. Schließen Sie Ihre Eingabe mit [OK] ab.
- 7. Stellen Sie unter Betriebsart "DP-Slave" ein.


Einsatz als PROFIBUS-DP-Slave

- Bestimmen Sie über Konfiguration die Ein-/Ausgabe-Adressbereiche der Slave-CPU, die dem DP-Slave zugeordnet werden sollen
- **9.** Speichern, übersetzen und transferieren Sie Ihr Projekt in die CPU.

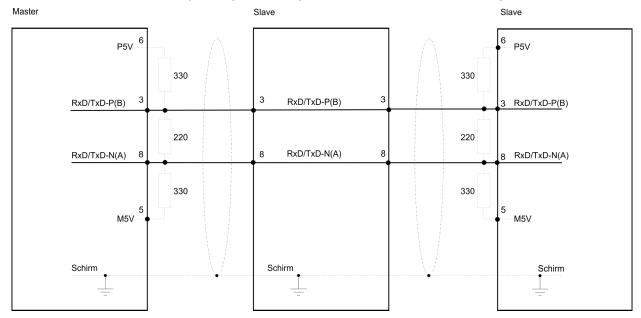
Projektierung der Master-Seite

- **1.** Fügen Sie eine weitere Station ein und projektieren Sie eine CPU.
- 2. Bezeichnen Sie die Station als "...DP-Master".
- 3. Binden Sie gemäß Ihrem Hardwareaufbau Ihre Module ein.
- **4.** Öffnen Sie den Eigenschaften-Dialog der DP-Schnittstelle der CPU, indem Sie auf "DP" doppelklicken.
- **5.** Stellen Sie unter *Schnittstelle*: Typ "PROFIBUS" ein.
- Vernetzen Sie mit PROFIBUS und geben Sie eine Adresse (z.B. 2) vor. Schließen Sie Ihre Eingabe mit [OK] ab.
- **7.** Stellen Sie unter Betriebsart "DP-Master" ein und schließen Sie den Dialog mit [OK].
- 8. Binden Sie an das Master-System Ihr Slave-System an, indem Sie die "CPU 31x" aus dem Hardware-Katalog unter Bereits projektierte Stationen auf das Master-System ziehen, Ihr Slave-System auswählen und ankoppeln.
- **9.** Öffnen Sie die *Konfiguration* unter *Objekteigenschaften* Ihres Slave-Systems.
- Ordnen Sie durch Doppelklick auf die entsprechende Konfigurationszeile den Slave-Ausgabe-Daten den entsprechenden Eingabe-Adressbereich und den Slave-Eingabe-Daten den entsprechenden Ausgabe-Adressbereich in der Master-CPU zu.
- Speichern, übersetzen und transferieren Sie Ihr Projekt in die CPU.

7.6 PROFIBUS-Aufbaurichtlinien

PROFIBUS allgemein

- Ein PROFIBUS-DP-Netz darf nur in Linienstruktur aufgebaut werden.
- PROFIBUS-DP besteht aus mindestens einem Segment mit mindestens einem Master und einem Slave.
- Ein Master ist immer in Verbindung mit einer CPU einzusetzen.
- PROFIBUS unterstützt max. 126 Teilnehmer.
- Pro Segment sind max. 32 Teilnehmer zulässig.
- Die maximale Segmentlänge hängt von der Übertragungsrate ab: 9,6 ... 187,5kBit/s $\rightarrow 1000$ m $500kBit/s \rightarrow 400m$
 - 1,5MBit/s → 200m

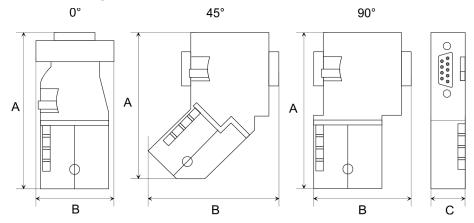

 - $3 \dots 12MBit/s \rightarrow 100m$
- Maximal 10 Segmente dürfen gebildet werden. Die Segmente werden über Repeater verbunden. Jeder Repeater zählt als Teil-
- Der Bus bzw. ein Segment ist an beiden Enden abzuschließen.
- Alle Teilnehmer kommunizieren mit der gleichen Übertragungsrate. Die Slaves passen sich automatisch an die Übertragungsrate an.

Übertragungsmedium

- PROFIBUS verwendet als Übertragungsmedium eine geschirmte, verdrillte Zweidrahtleitung auf Basis der RS485-Schnittstelle.
- Die RS485-Schnittstelle arbeitet mit Spannungsdifferenzen. Sie ist daher unempfindlicher gegenüber Störeinflüssen als eine Spannungs- oder Stromschnittstelle.
- Pro Segment sind maximal 32 Teilnehmer zulässig. Innerhalb eines Segment sind die einzelnen Teilnehmer über Linienstruktur zu verbinden. Die einzelnen Segmente werden über Repeater verbunden. Die max. Segmentlänge ist von der Übertragungsrate abhängig.
- Bei PROFIBUS-DP wird die Übertragungsrate aus dem Bereich zwischen 9,6kBit/s bis 12MBit/s eingestellt, die Slaves passen sich automatisch an. Alle Teilnehmer im Netz kommunizieren mit der gleichen Übertragungsrate.
- Die Busstruktur erlaubt das rückwirkungsfreie Ein- und Auskoppeln von Stationen oder die schrittweise Inbetriebnahme des Systems. Spätere Erweiterungen haben keinen Einfluss auf Stationen, die bereits in Betrieb sind. Es wird automatisch erkannt, ob ein Teilnehmer ausgefallen oder neu am Netz ist.

Busverbindung

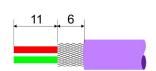
In der nachfolgenden Abbildung sind die Abschlusswiderstände der jeweiligen Anfangs- und Endstation stilisiert dargestellt.



Die PROFIBUS-Leitung muss mit Ihrem Wellenwiderstand abgeschlossen werden. Bitte beachten Sie, dass Sie bei dem jeweiligen letzten Teilnehmer den Bus durch Zuschalten eines Abschlusswiderstands abschließen.

EasyConn Busanschlussstecker

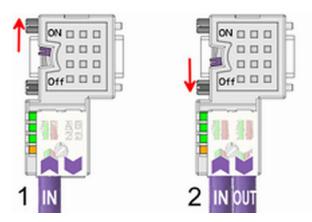
In PROFIBUS werden alle Teilnehmer parallel verdrahtet. Hierzu ist das Buskabel durchzuschleifen. Unter der Best.-Nr. 972-0DP10 erhalten Sie von VIPA den Stecker "EasyConn". Dies ist ein Busanschlussstecker mit zuschaltbarem Abschlusswiderstand und integrierter Busdiagnose.


Maße in mm	0°	45°	90°
Α	64	61	66
В	34	53	40
С	15,8	15,8	15,8

Zum Anschluss des EasyConn-Steckers verwenden Sie bitte die Standard PROFIBUS-Leitung Typ A (EN50170). Ab Ausgabestand 5 können auch hochflexible Bus-Kabel verwendet werden:

Lapp Kabel Best.-Nr.: 2170222, 2170822, 2170322.

Von VIPA erhalten Sie unter der Best.-Nr. 905-6AA00 das "EasyStrip" Abisolierwerkzeug, das Ihnen den Anschluss des EasyConn-Steckers sehr vereinfacht.



Maße in mm

Leitungsabschluss mit "EasyConn"

Auf dem "EasyConn" Busanschlussstecker von VIPA befindet sich unter anderem ein Schalter, mit dem Sie einen Abschlusswiderstand zuschalten können.

Verdrahtung

- [1] Einstellung für 1./letzter Bus-Teilnehmer
- [2] Einstellung für jeden weiteren Busteilnehmer

VORSICHT!

Der Abschlusswiderstand wird nur wirksam, wenn der Stecker an einem Bus-Teilnehmer gesteckt ist und der Bus-Teilnehmer mit Spannung versorgt wird.

Das Anzugsmoment der Schrauben zur Fixierung des Steckers an einem Teilnehmer darf 0,02Nm nicht überschreiten!

Eine ausführliche Beschreibung zum Anschluss und zum Einsatz der Abschlusswiderstände liegt dem Stecker bei.

Montage

- 1. Lösen Sie die Schraube.
- 2. Klappen Sie die Kontaktabdeckung hoch.
- 3. Stecken Sie beide Adern in die dafür vorgesehenen Öffnungen (Farbzuordnung wie unten beachten!).
- **4.** Bitte beachten Sie, dass zwischen Schirm und Datenleitungen kein Kurzschluss entsteht!
- 5. Schließen Sie die Kontaktabdeckung.
- Ziehen Sie die Schraube wieder fest (max. Anzugsmoment 0,08Nm).

Den grünen Draht immer an A, den roten immer an B anschließen!

Inbetriebnahme und Anlaufverhalten

7.7 Inbetriebnahme und Anlaufverhalten

Anlauf im Auslieferungszustand

Im Auslieferungszustand ist die CPU urgelöscht. Nach Netz EIN ist der PROFIBUS-Teil deaktiviert und die LEDs des PROFIBUS-Teils sind ausgeschaltet.

Online mit Bus-Parametern ohne Slave-Projekt

Über eine Hardware-Konfiguration können Sie den DP-Master mit Busparametern versorgen. Sobald diese übertragen sind geht der DP-Master mit den Bus-Parametern online und zeigt dies über die RUN-LED an. Der DP-Master ist durch Angabe der PROFIBUS-Adresse über PROFIBUS erreichbar. In diesem Zustand können Sie direkt über PROFIBUS Ihre CPU projektieren bzw. Ihr Slave-Projekt übertragen.

Slave-Projektierung

Sofern der Master gültige Projektierdaten erhalten hat, geht dieser in Data Exchange mit den DP-Slaves und zeigt dies über die DE-LED an.

Zustand CPU beeinflusst DP-Master

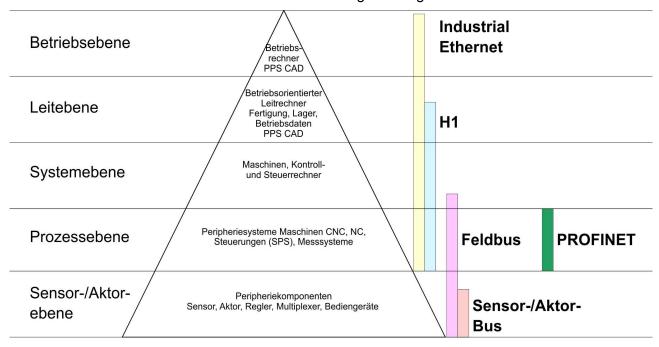
Nach NetzEIN bzw. nach der Übertragung einer neuen Hardware-Konfiguration werden automatisch die Projektierdaten und Bus-Parameter an den DP-Master übergeben. Abhängig vom CPU-Zustand zeigt der DP-Master folgendes Verhalten:

Master-Verhalten bei CPU-STOP

- Der Master sendet an alle angebundenen Slaves das Global Control Kommando "Clear" und zeigt dies durch Blinken der DE-LED an.
- DP-Slaves im Fail Safe Mode bekommen die Ausgangstelegrammlänge "0" gesendet.
- DP-Slaves ohne *Fail Safe Mode* bekommen das Ausgangstelegramm in voller Länge aber mit Ausgabewerten=0 gesendet.
- Eingabe-Daten der DP-Slaves werden weiterhin zyklisch im Eingabe-Bereich der CPU abgelegt.

Master-Verhalten bei CPU-RUN

- Der Master sendet an alle angebundenen Slaves das Global Control Kommando "Operate" und zeigt dies durch Leuchten der DE-LED an.
- Alle angebundenen Slaves bekommen zyklisch ein Ausgangstelegramm mit aktuellen Ausgabedaten gesendet.
- Die Eingabe-Daten der DP-Slaves werden zyklisch im Eingabe-Bereich der CPU abgelegt.


Grundlagen - Industrial Ethernet in der Automatisierung

8 Einsatz Ethernet-Kommunikation - Produktiv

8.1 Grundlagen - Industrial Ethernet in der Automatisierung

Übersicht

Der Informationsfluss in einem Unternehmen stellt sehr unterschiedliche Anforderungen an die eingesetzten Kommunikationssysteme. Je nach Unternehmensbereich hat ein Bussystem unterschiedlich viele Teilnehmer, es sind unterschiedlich große Datenmengen zu übertragen, die Übertragungsintervalle variieren. Aus diesem Grund greift man je nach Aufgabenstellung auf unterschiedliche Bussysteme zurück, die sich wiederum in verschiedene Klassen einteilen lassen. Eine Zuordnung verschiedener Bussysteme zu den Hierarchieebenen eines Unternehmens zeigt das folgende Modell:

Industrial Ethernet

Physikalisch ist Industrial Ethernet ein elektrisches Netz auf Basis einer geschirmten Twisted Pair Verkabelung oder ein optisches Netz auf Basis eines Lichtwellenleiters. Ethernet ist definiert durch den internationalen Standard IEEE 802.3.

Der Netzzugriff bei Industrial Ethernet entspricht dem in der IEEE 802.3 festgelegten CSMA/CD-Verfahren (Carrier Sense Multiple Access/Collision Detection - Mithören bei Mehrfachzugriff/ Kollisionserkennung):

- Jeder Teilnehmer "hört" ständig die Busleitung ab und empfängt die an ihn adressierten Sendungen.
- Ein Teilnehmer startet eine Sendung nur, wenn die Leitung frei ist.
- Starten zwei Teilnehmer gleichzeitig eine Sendung, so erkennen sie dies, stellen die Sendung ein und starten nach einer Zufallszeit erneut.
- Durch Einsatz von Switches wird eine kollisionsfreie Kommunikation zwischen den Teilnehmern gewährleistet.

Grundlagen - ISO/OSI-Schichtenmodell

8.2 Grundlagen - ISO/OSI-Schichtenmodell

Übersicht

Das ISO/OSI-Schichtenmodell basiert auf einem Vorschlag, der von der International Standards Organization (ISO) entwickelt wurde. Es stellt den ersten Schritt zur internationalen Standardisierung der verschiedenen Protokolle dar. Das Modell trägt den Namen ISO-OSI-Schichtenmodell. OSI steht für **O**pen **S**ystem Interconnection, die Kommunikation offener Systeme. Das ISO/OSI-Schichtenmodell ist keine Netzwerkarchitektur, da die genauen Dienste und Protokolle, die in jeder Schicht verwendet werden, nicht festgelegt sind. Sie finden in diesem Modell lediglich Informationen über die Aufgaben, welche die jeweilige Schicht zu erfüllen hat. Jedes offene Kommunikationssystem basiert heutzutage auf dem durch die Norm ISO 7498 beschriebenen ISO/OSI Referenzmodell. Das Referenzmodell strukturiert Kommunikationssysteme in insgesamt 7 Schichten, denen jeweils Teilaufgaben in der Kommunikation zugeordnet sind. Dadurch wird die Komplexität der Kommunikation auf verschiedene Ebenen verteilt und somit eine größere Übersichtlichkeit erreicht.

Folgende Schichten sind definiert:

- Schicht 7 Application Layer (Anwendung)
- Schicht 6 Presentation Layer (Darstellung)
- Schicht 5 Session Layer (Sitzung)
- Schicht 4 Transport Layer (Transport)
- Schicht 3 Network Layer (Netzwerk)
- Schicht 2 Data Link Layer (Sicherung)
- Schicht 1 Physical Layer (Bitübertragung)

Je nach Komplexität der geforderten Übertragungsmechanismen kann sich ein Kommunikationssystem auf bestimmte Teilschichten beschränken.

Schicht 1 - Bitübertragungsschicht (physical layer)

Die Bitübertragungsschicht beschäftigt sich mit der Übertragung von Bits über einen Kommunikationskanal. Allgemein befasst sich diese Schicht mit den mechanischen, elektrischen und prozeduralen Schnittstellen und mit dem physikalischen Übertragungsmedium, das sich unterhalb der Bitübertragungsschicht befindet:

- Wie viel Volt entsprechen einer logischen 0 bzw. 1?
- Wie lange muss die Spannung für ein Bit anliegen?
- Pinbelegung der verwendeten Schnittstelle.

Schicht 2 - Sicherungsschicht (data link layer)

Diese Schicht hat die Aufgabe, die Übertragung von Bitstrings zwischen zwei Teilnehmern sicherzustellen. Dazu gehören die Erkennung und Behebung bzw. Weitermeldung von Übertragungsfehlern, sowie die Flusskontrolle. Die Sicherungsschicht verwandelt die zu übertragenden Rohdaten in eine Datenreihe. Hier werden Rahmengrenzen beim Sender eingefügt und beim Empfänger erkannt. Dies wird dadurch erreicht, dass am Anfang und am Ende eines Rahmens spezielle Bitmuster gesetzt werden. In der Sicherungsschicht wird häufig noch eine Flussregelung und eine Fehlererkennung integriert. Die Datensicherungsschicht ist in zwei Unterschichten geteilt, die LLC- und die MAC-Schicht. Die MAC (Media Access Control) ist die untere Schicht und steuert die Art, wie Sender einen einzigen Übertragungskanal gemeinsam nutzen. Die LLC (Logical Link Control) ist die obere Schicht und stellt die Verbindung für die Übertragung der Datenrahmen von einem Gerät zum anderen her.

Grundlagen - Begriffe

Schicht 3 - Netzwerkschicht (network layer)

Die Netzwerkschicht wird auch Vermittlungsschicht genannt. Die Aufgabe dieser Schicht besteht darin, den Austausch von Binärdaten zwischen nicht direkt miteinander verbundenen Stationen zu steuern. Sie ist für den Ablauf der logischen Verknüpfungen von Schicht 2-Verbindungen zuständig. Dabei unterstützt diese Schicht die Identifizierung der einzelnen Netzwerkadressen und den Auf- bzw. Abbau von logischen Verbindungskanälen. IP basiert auf Schicht 3. Eine weitere Aufgabe der Schicht 3 besteht in der priorisierten Übertragung von Daten und die Fehlerbehandlung von Datenpaketen. IP (Internet Protokoll) basiert auf Schicht 3.

Schicht 4 - Transportschicht (transport layer)

Die Aufgabe der Transportschicht besteht darin, Netzwerkstrukturen mit den Strukturen der höheren Schichten zu verbinden, indem sie Nachrichten der höheren Schichten in Segmente unterteilt und an die Netzwerkschicht weiterleitet. Hierbei wandelt die Transportschicht die Transportadressen in Netzwerkadressen um. Gebräuchliche Transportprotokolle sind: TCP, SPX, NWLink und NetBEUI.

Schicht 5 - Sitzungsschicht (session layer)

Die Sitzungsschicht wird auch Kommunikationssteuerungsschicht genannt. Sie erleichtert die Kommunikation zwischen Service-Anbieter und Requestor durch Aufbau und Erhaltung der Verbindung, wenn das Transportsystem kurzzeitig ausgefallen ist. Auf dieser Ebene können logische Benutzer über mehrere Verbindungen gleichzeitig kommunizieren. Fällt das Transportsystem aus, so ist es die Aufgabe, gegebenenfalls eine neue Verbindung aufzubauen. Darüber hinaus werden in dieser Schicht Methoden zur Steuerung und Synchronisation bereitgestellt.

Schicht 6 - Darstellungsschicht (presentation layer)

Auf dieser Ebene werden die Darstellungsformen der Nachrichten behandelt, da bei verschiedenen Netzsystemen unterschiedliche Darstellungsformen benutzt werden. Die Aufgabe dieser Schicht besteht in der Konvertierung von Daten in ein beiderseitig akzeptiertes Format, damit diese auf den verschiedenen Systemen lesbar sind. Hier werden auch Kompressions-/Dekompressions- und Verschlüsselungs-/ Entschlüsselungsverfahren durchgeführt. Man bezeichnet diese Schicht auch als Dolmetscherdienst. Eine typische Anwendung dieser Schicht ist die Terminalemulation.

Schicht 7 - Anwendungsschicht (application layer)

Die Anwendungsschicht stellt sich als Bindeglied zwischen der eigentlichen Benutzeranwendung und dem Netzwerk dar. Sowohl die Netzwerk-Services wie Datei-, Druck-, Nachrichten-, Datenbank- und Anwendungs-Service als auch die zugehörigen Regeln gehören in den Aufgabenbereich dieser Schicht. Diese Schicht setzt sich aus einer Reihe von Protokollen zusammen, die entsprechend den wachsenden Anforderungen der Benutzer ständig erweitert werden.

8.3 Grundlagen - Begriffe

Netzwerk (LAN)

Ein Netzwerk bzw. LAN (Local Area Network) verbindet verschiedene Netzwerkstationen so, dass diese miteinander kommunizieren können. Netzwerkstationen können PCs, IPCs, TCP/IP-Baugruppen, etc. sein. Die Netzwerkstationen sind, durch einen Mindestabstand getrennt, mit dem Netzwerkkabel verbunden. Die Netzwerkstationen und das Netzwerkkabel zusammen bilden ein Gesamtsegment. Alle Segmente eines Netzwerks bilden das Ethernet (Physik eines Netzwerks).

Grundlagen - Protokolle

Twisted Pair

Früher gab es das Triaxial- (Yellow Cable) oder Thin Ethernet-Kabel (Cheapernet). Mittlerweile hat sich aber aufgrund der Störfestigkeit das Twisted Pair Netzwerkkabel durchgesetzt. Die CPU hat einen Twisted-Pair-Anschluss. Das Twisted Pair Kabel besteht aus 8 Adern, die paarweise miteinander verdrillt sind. Aufgrund der Verdrillung ist dieses System nicht so störanfällig wie frühere Koaxialnetze. Verwenden Sie für die Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen. Abweichend von den beiden Ethernet-Koaxialnetzen, die auf einer Bus-Topologie aufbauen, bildet Twisted Pair ein Punkt-zu-Punkt-Kabelschema. Das hiermit aufzubauende Netz stellt eine Stern-Topologie dar. Jede Station ist einzeln direkt mit dem Sternkoppler (Hub/Switch) zu einem Ethernet verbunden.

Hub (Repeater)

Ein Hub ist ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Seine Aufgabe ist dabei, die Signale in beide Richtungen zu regenerieren und zu verstärken. Gleichzeitig muss er in der Lage sein, segmentübergreifende Kollisionen zu erkennen, zu verarbeiten und weiter zu geben. Er kann nicht im Sinne einer eigenen Netzwerkadresse angesprochen werden, da er von den angeschlossenen Stationen nicht registriert wird. Er bietet Möglichkeiten zum Anschluss an Ethernet oder zu einem anderen Hub bzw. Switch.

Switch

Ein Switch ist ebenfalls ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Mehrere Stationen bzw. Hubs werden über einen Switch verbunden. Diese können dann, ohne das restliche Netzwerk zu belasten, über den Switch miteinander kommunizieren. Eine intelligente Hardware analysiert für jeden Port in einem Switch die eingehenden Telegramme und leitet diese kollisionsfrei direkt an die Zielstationen weiter, die am Switch angeschlossen sind. Ein Switch sorgt für die Optimierung der Bandbreite in jedem einzeln angeschlossenen Segment eines Netzes. Switches ermöglichen exklusiv nach Bedarf wechselnde Verbindungen zwischen angeschlossenen Segmenten eines Netzes.

8.4 Grundlagen - Protokolle

Übersicht

In Protokollen ist ein Satz an Vorschriften oder Standards definiert, der es Kommunikationssystemen ermöglicht, Verbindungen herzustellen und Informationen möglichst fehlerfrei auszutauschen. Ein allgemein anerkanntes Protokoll für die Standardisierung der kompletten Kommunikation stellt das ISO/OSI-Schichtenmodell dar.

Kapitel 8.2 "Grundlagen - ISO/OSI-Schichtenmodell" auf Seite 141

Folgende Protokolle kommen zum Einsatz:

- Kommunikationsverbindungen
 - Siemens S7-Verbindungen
 - TCP/IP
 - UDP
 - RFC1006 (ISO-ON-TCP)
 - ISO-Transport (ehemals H1)
- Offene Kommunikation
 - TCP native gemäß RFC 793
 - ISO on TCP gemäß RFC 1006
 - UDP gemäß RFC 768

Grundlagen - Protokolle

Siemens S7-Verbindungen

Mit der Siemens S7-Kommunikation können Sie auf Basis von Siemens STEP®7 größere Datenmengen zwischen SPS-Systemen übertragen. Hierbei sind die Stationen über Ethernet zu verbinden. Voraussetzung für die Siemens S7-Kommunikation ist eine projektierte Verbindungstabelle, in der die Kommunikationsverbindungen definiert werden. Hierzu können Sie beispielsweise NetPro von Siemens verwenden.

Eigenschaften:

- Eine Kommunikationsverbindung ist durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert.
- Die Quittierung der Datenübertragung erfolgt vom Partner auf Schicht 7 des ISO/OSI-Schichtenmodells.
- Zur Datenübertragung auf SPS-Seite sind für Siemens S7-Verbindungen die FB/SFB-VIPA-Hantierungsbausteine zu verwenden.

Nähere Informationen zum Einsatz der Bausteine finden Sie im Handbuch Operationsliste HB00_OPL_SP7 in Kapitel "VIPA-spezifische Bausteine".

TCP/IP

TCP/IP-Protokolle stehen auf allen derzeit bedeutenden Systemen zur Verfügung. Dies gilt am unteren Ende für einfache PCs, über die typischen Mini-Rechner, bis hinauf zu Großrechnern. Durch die weite Verbreitung von Internetzugängen und -anschlüssen wird TCP/IP sehr häufig für den Aufbau heterogener Systemverbunde verwendet. Hinter TCP/IP (Transmission Control Protocol / Internet Protocol) verbirgt sich eine ganze Familie von Protokollen und Funktionen. TCP und IP sind nur zwei der für den Aufbau einer vollständigen Architektur erforderlichen Protokolle.

■ TCP/IP

- Die Anwendungsschicht stellt Programme wie "FTP" und "Telnet" auf PC-Seite zur Verfügung. Die Anwendungsschicht des Ethernet CP ist mit dem Anwenderprogramm unter Verwendung der Standardhantierungsbausteine definiert. Diese Anwendungsprogramme nutzen für den Datenaustausch die Transportschicht mit den Protokollen TCP oder UDP, die wiederum mit dem IP-Protokoll der Internetschicht kommunizieren
- Zur Adressierung werden neben der IP-Adresse Ports verwendet. Eine Port-Adresse sollte im Bereich 2000...65535 liegen.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) erforderlich

■ IF

- IP deckt die Netzwerkschicht (Schicht 3) des ISO/OSI-Schichtmodells ab.
- Die Aufgabe des IP besteht darin, Datenpakete von einem Rechner über mehrere Rechner hinweg zum Empfänger zu senden. Diese Datenpakete sind sogenannte Datagramme. Das IP gewährleistet weder die richtige Reihenfolge der Datagramme, noch die Ablieferung beim Empfänger.
- Zur eindeutigen Unterscheidung zwischen Sender und Empfänger kommen 32Bit-Adressen (IP-Adressen) zum Einsatz, die bei IPv4 in vier Oktetts (genau 8Bit) geschrieben werden, z.B. 172.16.192.11. Diese Internetadressen werden weltweit eindeutig vergeben, so dass jeder Anwender von TCP/IP mit allen anderen TCP/IP Anwendern kommunizieren kann.
- Ein Teil der Adresse spezifiziert das Netzwerk, der Rest dient zur Identifizierung der Rechner im Netzwerk. Die Grenze zwischen Netzwerkanteil und Host-Anteil ist fließend und hängt von der Größe des Netzwerkes ab.
- Um IP-Adressen zu sparen, werden sogenannte NAT-Router eingesetzt, die eine einzige offizielle IP-Adresse besitzen und das Netzwerk hinter diesem Rechner abschotten. Somit können im privaten Netzwerk dann beliebige IP-Adressen vergeben werden.

■ TCP

- TCP setzt direkt auf IP auf, somit deckt das TCP die Transportschicht (Schicht 4) auf dem ISO/OSI-Schichtenmodell ab.
- TCP ist ein verbindungsorientiertes End-to-End-Protokoll und dient zur logischen Verbindung zwischen zwei Partnern.
- TCP gewährleistet eine folgerichtige und zuverlässige Datenübertragung. Hierzu ist ein relativ großer Protokoll-Overhead erforderlich, der folglich die Übertragung verlangsamt.
- Jedes Datagramm wird mit einem mindestens 20Byte langen Header versehen. In diesem Header befindet sich auch eine Folgenummer, mit der die richtige Reihenfolge erkannt wird. So können in einem Netzwerkverbund die einzelnen Datagramme auf unterschiedlichen Wegen zum Ziel gelangen.

- Bei TCP-Verbindungen wird die Gesamtdatenlänge nicht übermittelt. Aus diesem Grund muss der Empfänger wissen, wie viele Bytes zu einer Nachricht gehören.
- Zur Übertragung von Daten mit variabler Länge können Sie die Längenangabe den Nutzdaten voranstellen und diese Längenangabe entsprechend auf der Gegenseite auswerten.

UDP

UDP (**U**ser **D**atagramm **P**rotocol) ist ein verbindungsloses Transportprotokoll. Es wurde im RFC768 (**R**equest **f**or **C**omment) definiert. Im Vergleich zu TCP hat es wesentlich weniger Merkmale. Die Adressierung erfolgt durch Portnummern. UDP ist ein schnelles ungesichertes Protokoll, da es sich weder um fehlende Datenpakete kümmert, noch um die Reihenfolge der Pakete.

ISO-on-TCP RFC1006

Da der TCP-Transportdienst streamorientiert ist, bedeutet dies, dass einzelne vom Anwender zusammengestellte Datenpakete nicht unbedingt in der gleichen Paketierung beim Teilnehmer ankommen. Je nach Datenvolumen können Pakete zwar in der gleichen Reihenfolge aber anders paketiert ankommen, so dass der Empfänger die einzelnen Paketgrenzen nicht mehr erkennen kann. Beispielsweise werden 2x 10Byte-Pakete geschickt, die auf der Gegenseite als 20Byte-Paket ankommen. Aber gerade die richtige Paketierung ist für die meisten Anwendungen unerlässlich. Dies bedeutet, dass oberhalb von TCP ein zusätzliches Protokoll erforderlich ist. Diese Aufgabe erfüllt der Protokollaufsatz RFC1006 (ISO-on-TCP).

- RFC1006 beschreibt die Arbeitsweise einer ISO Transportschnittstelle (ISO 8072) auf der Basis des Transportinterfaces TCP (RFC793).
- Das dem RFC1006 zugrunde liegende Protokoll ist in seinen wesentlichen Teilen identisch zu TP0 (Transport Protokoll, Class 0) in ISO 8073.
- Da RFC1006 als Protokollaufsatz zu TCP gefahren wird, erfolgt die Dekodierung im Datenteil des TCP-Pakets.
- Im Gegensatz zu TCP wird hier der Empfang eines Telegramms bestätigt.
- Zur Adressierung werden neben der IP-Adresse anstelle von Ports TSAPs verwendet. Die TSAP-Länge kann 1 ... 16 Zeichen betragen. Die Eingabe kann im ASCII- oder Hex-Format erfolgen.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG RECV (FC 6) erforderlich.
- Im Gegensatz zu TCP können über RFC1006 unterschiedliche Telegrammlängen empfangen werden.

ISO-Transport (ehemals H1)

ISO-Transport-Verbindungen ermöglichen die programm- und ereignisgesteuerte Kommunikation über Industrial Ethernet. Hierbei können Datenblöcke bidirektional ausgetauscht werden. Die ISO-Transport-Verbindung bietet Dienste für die gesicherte Übertragung von Daten über projektierte Verbindungen. Sie können große Datenmengen geblockt übertragen. Die Übertragungssicherheit ist durch die automatische Wiederholung, durch zusätzliche Blockprüfmechanismen und durch die Empfangsquittierung auf der Empfängerseite sehr hoch.

- Der ISO-Transportdienst (ISO 8073 Class 4) entspricht dem Transport-Layer (Schicht 4) des ISO/OSI-Schichtmodells.
- ISO-Transport-Verbindungen werden ausschließlich über Industrial Ethernet übertragen und sind optimiert für den Einsatz in einer abgeschlossenen Fertigungsebene.
- Der Empfang der Daten wird von der Gegenseite bestätigt. Hierbei können unterschiedliche Telegrammlängen verarbeitet werden.
- Für den Einsatz von ISO-Transportverbindungen müssen Sie diese in den Ethernet-Eigenschaften des CP in Ihrem Projekt freigeben. Hier haben Sie auch die Möglichkeit für Ihren CP eine MAC-Adresse zu vergeben.
- Die Adressierung erfolgt über MAC-Adresse (Ethernet-Adresse) und TSAPs (Transport Service Access Point).
- Die Datenübertragung kann mittels der Dienste SEND/RECEIVE und FETCH/WRITE erfolgen.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) erforderlich.

Offene Kommunikation

Bei der "Offenen Kommunikation" erfolgt die Kommunikation über das Anwenderprogramm bei Einsatz von Hantierungsbausteinen. Diese Bausteine sind Bestandteil des Siemens SIMATIC Manager. Sie finden diese in der "Standard Library" unter "Communication Blocks".

Verbindungsorientierte Protokolle:

Verbindungsorientierte Protokolle bauen vor der Datenübertragung eine (logische) Verbindung zum Kommunikationspartner auf und bauen diese nach Abschluss der Datenübertragung ggf. wieder ab. Verbindungsorientierte Protokolle werden eingesetzt, wenn es bei der Datenübertragung insbesondere auf Sicherheit ankommt. Auch wird hier die richtige Reihenfolge der empfangenen Pakete gewährleistet. Über eine physikalische Leitung können in der Regel mehrere logische Verbindungen bestehen. Bei den FBs zur Öffenen Kommunikation über Industrial Ethernet werden die folgenden verbindungsorientierten Protokolle unterstützt:

TCP native gemäß RFC 793:

Bei der Datenübertragung über TCP nativ werden weder Informationen zur Länge noch über Anfang und Ende einer Nachricht übertragen. Auch besteht keine Möglichkeit zu erkennen, wo ein Datenstrom endet und der nächste beginnt. Die Übertragung ist stream-orientiert. Aus diesem Grund sollten Sie in den FBs bei Sender und Empfänger identische Datenlängen angeben. Falls die empfangene Anzahl der Daten von der parametrierten Länge abweicht, erhalten Sie entweder Daten, welche nicht die vollständigen Telegrammdaten enthalten oder mit dem Inhalt eines nachfolgenden Telegramms aufgefüllt sind.

– ISO on TCP gemäß RFC 1006:

Bei der Datenübertragung werden Informationen zur Länge und zum Ende einer Nachricht übertragen. Die Übertragung ist blockorientiert. Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich.

■ Verbindungslose Protokolle:

Bei den verbindungslosen Protokollen entfallen Verbindungsaufund Verbindungsabbau zum remoten Partner. Verbindungslose Protokolle übertragen die Daten unquittiert und damit ungesichert zum remoten Partner.

UDP gemäß RFC 768:

Bei Aufruf des Sendebausteins ist ein Verweis auf die Adressparameter des Empfängers (IP-Adresse und Port-Nr.) anzugeben. Auch werden Informationen zur Länge und zum Ende einer Nachricht übertragen. Analog erhalten Sie nach Abschluss des Empfangsbausteins einen Verweis auf die Adressparameter des Senders (IP-Adresse und Port-Nr.). Damit sie Sende- und Empfangsbaustein nutzen können, müssen Sie zuvor sowohl auf der Sender- als auch auf der Empfängerseite einen lokalen Kommunikationszugangspunkt einrichten. Bei jedem Sendauftrag können Sie den remoten Partner durch Angabe seiner IP-Adresse und seiner Port-Nr. neu referenzieren.

Grundlagen - IP-Adresse und Subnetz

8.5 Grundlagen - IP-Adresse und Subnetz

Aufbau IP-Adresse

Unterstützt wird ausschließlich IPv4. Unter IPv4 ist die IP-Adresse eine 32-Bit-Adresse, die innerhalb des Netzes eindeutig sein muss und sich aus 4 Zahlen zusammensetzt, die jeweils durch einen Punkt getrennt sind. Jede IP-Adresse besteht aus einer *Net-ID* und *Host-ID* und hat folgenden

Aufbau: XXX . XXX . XXX

Wertebereich: 000.000.000.000 bis 255.255.255.255

Net-ID, Host-ID

Die **Net**work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert. Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.

Subnetz-Maske

Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der *Subnetz-Maske* weiter aufgeteilt werden, in eine *Subnet-ID* und eine neue *Host-ID*. Derjenige Bereich der ursprünglichen *Host-ID*, welcher von Einsen der Subnetz-Maske überstrichen wird, wird zur *Subnet-ID*, der Rest ist die neue *Host-ID*.

Subnetz-Maske	binär alle "1"		binär alle "0"
IPv4 Adresse	Net-ID	Host-ID	
Subnetz-Maske und IPv4 Adresse	Net-ID	Subnet-ID	neue Host- ID

Adresse bei Erstinbetriebnahme

Bei der Erstinbetriebnahme der CPU besitzen der Ethernet-PG/OP-Kanal und der CP 343 keine IP-Adresse.

So weisen Sie dem Ethernet-PG/OP-Kanal IP-Adress-Daten zu Kapitel 5.6 "Hardware-Konfiguration - Ethernet-PG/OP-Kanal" auf Seite 51.

So weisen Sie dem CP 343 IP-Adress-Daten zu & Kapitel 8.8 "Inbetriebnahme und Urtaufe" auf Seite 152.

Adress-Klassen

Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4 Byte = 32Bit lang sind.

Klasse A	0 Network-ID (1+7bit)			Host	-ID (24bit)	
Klasse B	10	10 Network-ID (2+14bit)		0 Network-ID (2+14bit) Host-ID		st-ID (16bit)
Klasse C	110 Network-ID (3+21b		Network-ID (3+21bit)			Host-ID (8bit)
Klasse D	1110 Mu		Multicast Gruppe			
Klasse E	1111	0	Reserviert			

Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert. Die Adressformate der 3 Klassen A,B,C unterscheiden sich lediglich dadurch, dass Network-ID und Host-ID verschieden lang sind.

Grundlagen - MAC-Adresse und TSAP

Private IP Netze

Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden. Zur Bildung privater IP-Netze sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

Netzwerk Klasse	von IP	bis IP	Standard Sub- netz-Maske				
Α	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>				
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>				
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>				
(Die Host-ID ist jeweils unterstrichen.)							

Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = "0"	Identifier dieses Netzwerks, reserviert!
Host-ID = maximal (binär komplett "1")	Broadcast-Adresse dieses Netzwerks

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnetz-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

8.6 Grundlagen - MAC-Adresse und TSAP

MAC-Adresse

Für jeden CP ist eine eindeutige MAC-Adresse (**M**edia **A**ccess **C**ontrol) erforderlich. In der Regel ist die MAC-Adresse vom Hersteller auf die Baugruppe aufgedruckt und ist bei der Projektierung des CPs einzugeben. Die MAC-Adresse hat eine Länge von 6Byte. Im Auslieferungszustand spezifizieren die ersten drei Byte den Hersteller. Diese Bytes werden vom IEEE-Komitee vergeben. Die letzten 3 Bytes können vom Hersteller vergeben werden. In einem Netz dürfen nicht mehrere Stationen mit der gleichen MAC-Adresse existieren. Sie können jederzeit die MAC-Adresse ändern. Eine gültige MAC-Adresse erhalten Sie von Ihrem Netzwerkadministrator.

Broadcast-Adresse

 Die MAC-Adresse, bei der alle Bits auf 1 gesetzt sind, lautet: FF-FF-FF-FF

Diese Adresse wird als Broadcast-Adresse verwendet und adressiert alle Teilnehmer im Netz.

Adresse bei Erstinbetriebnahme

 Jeder CP einer VIPA-CPU besitzt immer eine eindeutige MAC-Adresse. Diese finden Sie auf einem Aufkleber unterhalb der Frontklappe.

Schnelleinstieg

TSAP

TSAP steht für **T**ransport **S**ervice **A**ccess **P**oint. ISO-Transport-Verbindungen unterstützen TSAP-Längen von 1...16Byte. Sie können den TSAP im ASCII-Format oder hexadezimal eingeben.

Adressparameter

Teilnehmer A				Teilnehmer B
ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
lokaler TSAP	←	Verbindung	←	ferner TSAP
MAC-Adresse A				MAC-Adresse B

Eine ISO-Transport-Verbindung wird durch den lokalen und fernen Verbindungsendpunkt spezifiziert. Die TSAPs einer ISO-Transport-Verbindung müssen wie folgt übereinstimmen:

- Ferner TSAP (im CP) = lokaler TSAP (in Ziel-Station)
- Lokaler TSAP (im CP) = ferner TSAP (in Ziel-Station)

8.7 Schnelleinstieg

Übersicht

Bei der Erstinbetriebnahme bzw. nach dem Urlöschen mit erneutem PowerON der CPU besitzen der Ethernet PG/OP-Kanal und der CP 343 keine IP-Adresse. Diese sind lediglich über ihre MAC-Adresse erreichbar. Mittels der MAC-Adressen, die sich auf Aufkleber unterhalb der Frontklappe befinden in der Reihenfolge Adresse PG/OP-Kanal und darunter Adresse CP 343, können Sie der entsprechenden Komponente IP-Adress-Daten zuweisen. Die Zuweisung erfolgt hier direkt über die Hardware-Konfiguration im Siemens SIMATIC Manager.

Schritte der Projektierung

Die Projektierung des CP 343 für Produktiv-Verbindungen sollte nach folgender Vorgehensweise erfolgen:

- Montage und Inbetriebnahme
- Hardware-Konfiguration CPU
- Verbindungen projektieren
 - Kommunikationsverbindungen (Projektierung erfolgt über Siemens NetPro, die Kommunikation über VIPA Hantierungsbausteine)
 - Offene Kommunikation

 (Projektierung und Kommunikation erfolgen über Standard-Hantierungsbausteine)
- Transfer des Gesamtprojekts in die CPU.

Inbetriebnahme und Urtaufe

Im Siemens SIMATIC Manager ist die CPU 317-4NE12 von VIPA als

CPU 318-2 (318-2AJ00-0AB00 V3.0)

zu projektieren!

Über das Submodul X2 (DP) projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (X3). Den Ethernet-PG/OP-Kanal der CPU 317-4NE12 projektieren Sie immer als 1. Modul nach den reell gesteckten Modulen am Standard-Bus als CP 343-1 (343-1EX11) von Siemens.

Der CP 343 der CPU ist immer unterhalb des zuvor projektierten PG/OP-Kanals ebenfalls als CP 343-1 (343-1EX11) zu projektieren.

8.8 Inbetriebnahme und Urtaufe

Montage und Inbetriebnahme

- 1. Bauen Sie Ihr System 300S mit Ihrer CPU auf.
- **2.** Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung und Signale anschließen.
- 3. Binden Sie Ihren CP 343 an Ethernet an.
- **4.** Schalten Sie die Spannungsversorgung ein.
 - ⇒ Nach kurzer Hochlaufzeit befindet sich der CP im Leerlauf. Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzen der CP 343 und der Ethernet-PG/OP-Kanal keine IP-Adresse.

IP-Adress-Parameter zuweisen

Bitte beachten Sie, dass diese Funktionalität ab der CP-Firmware-Version 1.7.4 unterstützt wird.

Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Die Zuweisung der IP-Adress-Daten erfolgt online im Siemens SIMATIC Manager ab Version V 5.3 & SP3 nach folgender Vorgehensweise:

- 1. Starten Sie den Siemens SIMATIC Manager und stellen Sie über "Extras → PG/PC-Schnittstelle einstellen" auf "TCP/IP -> Netzwerkkarte" ein.
- 2. ▶ Öffnen Sie mit "Zielsystem → Ethernet-Teilnehmer bearbeiten" das gleichnamige Dialogfenster.
- Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf dem 2. Aufkleber unter der Frontklappe der CPU.
- **4.** Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.

Hardware-Konfiguration - CPU

- 5. Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnetz-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client-ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestrich "-", 0-9, a-z, A-Z
- **6.** Destätigen Sie mit [IP-Konfiguration zuweisen] Ihre Eingabe.

Direkt nach der Zuweisung ist der CP 343 über die angegebenen IP-Adress-Daten online erreichbar.

Da die hier zugewiesenen IP-Adress-Daten mit PowerOFF wieder gelöscht werden, müssen Sie diese mittels der nachfolgend aufgeführten Hardware-Konfiguration in Ihr Projekt übernehmen und übertragen.

8.9 Hardware-Konfiguration - CPU

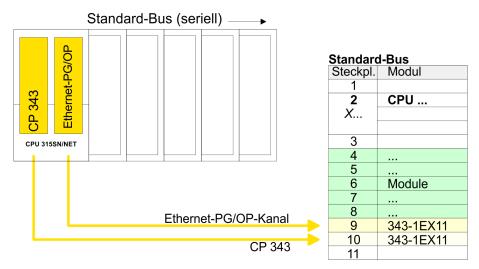
Voraussetzung

Die Konfiguration der CPU erfolgt im "Hardware-Konfigurator" von Siemens. Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog, ggf. müssen Sie mit "Extras ** Katalog aktualisieren" den Hardware-Katalog aktualisieren.

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

Vorgehensweise

Steckpl.	Modul
1	
2	CPU 318-2
X2	DP
X1	MPI/DP
3	


Im Siemens SIMATIC Manager sind folgende Schritte durchzuführen:

- **1.** Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt.
- **2.** Fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- 3. Platzieren Sie auf "Slot"-Nummer 2 die CPU 318-2 (6ES7 318-2AJ00-0AB0/V3.0).
- **4.** Über das Submodul "X2 DP" projektieren und vernetzen Sie den integrierten PROFIBUS-DP-Master (Buchse X3).

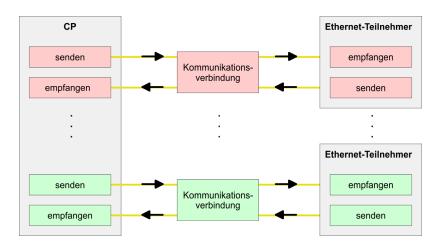
Projektierung Ethernet-PG/OP-Kanal und CP 343

- 1. Platzieren Sie für den internen Ethernet-PG/OP-Kanal immer als 1. Modul unterhalb der reell gesteckten Module einen Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0).
- Projektieren Sie den integrierten CP 343 der CPU ebenfalls als CP 343-1 (343-1EX11) aber immer unterhalb des zuvor platzierten CP 343-1.

Kommunikationsverbindungen projektieren > Übersicht

- 3. Offnen Sie durch Doppelklick auf den CP den Dialog des CPs
- **4.** Geben Sie unter "Allgemein" einen Gerätenamen an. Der Gerätename muss eindeutig am Ethernet-Subnetz sein.
- **5.** Geben Sie für den CP unter [Eigenschaften] IP-Adresse, Subnetz-Maske und Gateway an und wählen Sie das gewünschte Subnetz aus.

8.10 Kommunikationsverbindungen projektieren

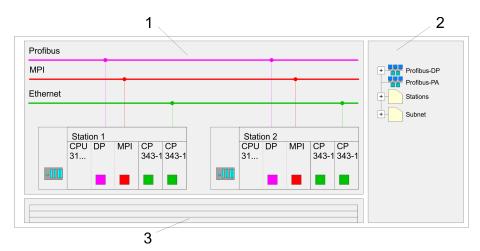

8.10.1 Übersicht

Die Projektierung von Verbindungen, d.h. die "Vernetzung" zwischen den Stationen erfolgt in NetPro von Siemens. NetPro ist eine grafische Benutzeroberfläche zur Vernetzung von Stationen. Eine Kommunikationsverbindung ermöglicht die programmgesteuerte Kommunikation zwischen zwei Teilnehmern am Industrial Ethernet. Die Kommunikationspartner können hierbei im selben Projekt oder - bei Multiprojekten - in den zugehörigen Teilprojekten verteilt angeordnet sein. Kommunikationsverbindungen zu Partner außerhalb eines Projekts werden über das Objekt "In unbekanntem Projekt" oder mittels Stellvertreterobjekten wie "Andere Stationen" oder Siemens "SIMATIC S5 Station" projektiert. Die Kommunikation steuern Sie durch Einsatz von VIPA Hantierungsbausteinen in Ihrem Anwenderprogramm. Für den Einsatz dieser Bausteine sind immer projektierte Kommunikationsverbindungen auf der aktiven Seite erforderlich.

Eigenschaften einer Kommunikationsverbindung

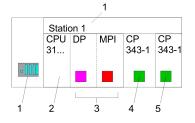
Folgende Eigenschaften zeichnen eine Kommunikationsverbindung aus:

- Eine Station führt immer einen aktiven Verbindungsaufbau durch.
- Bidirektionaler Datentransfer (Senden und Empfangen auf einer Verbindung).
- Beide Teilnehmer sind gleichberechtigt, d.h. jeder Teilnehmer kann ereignisabhängig den Sende- bzw. Empfangsvorgang anstoßen.
- Mit Ausnahme der UDP-Verbindung wird bei einer Kommunikationsverbindung die Adresse des Kommunikationspartners über die Projektierung festgelegt. Hierbei ist immer von einer Station der Verbindungsaufbau aktiv durchzuführen.


Voraussetzung

- Siemens SIMATIC Manager V 5.3 SP3 oder h\u00f6her und SIMATIC NET sind installiert.
- Bei der Hardware-Konfiguration wurden dem CP über die Eigenschaften IP-Adress-Daten zugewiesen.
 - Alle Stationen außerhalb des aktuellen Projekts müssen mit Stellvertreterobjekten, wie z.B. Siemens "SIMATIC S5" oder "Andere Station" oder mit dem Objekt "In unbekanntem Projekt" projektiert sein. Sie können aber auch beim Anlegen einer Verbindung den Partnertyp "unspezifiziert" anwählen und die erforderlichen Remote-Parameter im Verbindungsdialog direkt angeben.

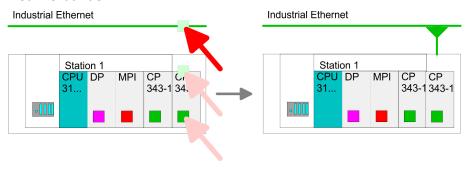
8.10.2 Siemens NetPro


Arbeitsumgebung von NetPro

Zur Projektierung von Verbindungen werden fundierte Kenntnisse im Umgang mit NetPro von Siemens vorausgesetzt! Nachfolgend soll lediglich der grundsätzliche Einsatz von NetPro gezeigt werden. Nähre Informationen zu NetPro finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation. NetPro starten Sie, indem Sie im Siemens SIMATIC Manager auf ein "Netz" klicken oder innerhalb Ihrer CPU auf "Verbindungen". Die Arbeitsumgebung von NetPro hat folgenden Aufbau:

- 1 *Grafische Netzansicht:* Hier werden alle Stationen und Netzwerke in einer grafischen Ansicht dargestellt. Durch Anwahl der einzelnen Komponenten können Sie auf die jeweiligen Eigenschaften zugreifen und ändern.
- 2 Netzobjekte: In diesem Bereich werden alle verfügbaren Netzobjekte in einer Verzeichnisstruktur dargestellt. Durch Ziehen eines gewünschten Objekts in die Netzansicht können Sie weitere Netzobjekte einbinden und im Hardware-Konfigurator öffnen.
- 3 *Verbindungstabelle:* In der Verbindungstabelle sind alle Verbindungen tabellarisch aufgelistet. Diese Liste wird nur eingeblendet, wenn Sie die CPU einer verbindungsfähigen Baugruppe angewählt haben. In dieser Tabelle können Sie mit dem gleichnamigen Befehl neue Verbindungen einfügen.

SPS-Stationen

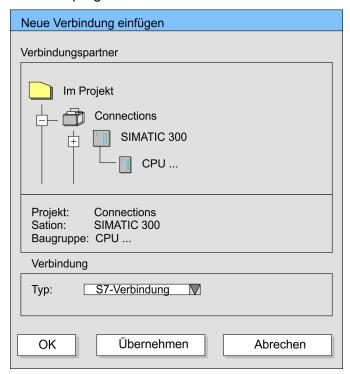


Für jede SPS-Station und ihre Komponente haben Sie folgende grafische Darstellung. Durch Anwahl der einzelnen Komponenten werden Ihnen im Kontext-Menü verschiedene Funktionen zu Verfügung gestellt:


- Station: Dies umfasst eine SPS-Station mit Rack, CPU und Kommunikationskomponenten. Über das Kontext-Menü haben Sie die Möglichkeit eine aus den Netzobjekten eingefügte Station im Hardware-Konfigurator mit den entsprechenden Komponenten zu projektieren. Nach der Rückkehr in NetPro werden die neu projektierten Komponenten dargestellt.
- 2 CPU: Durch Klick auf die CPU wird die Verbindungstabelle angezeigt. In der Verbindungstabelle sind alle Verbindungen aufgelistet, die für die CPU projektiert sind.
- 3 Interne Kommunikationskomponenten: Hier sind die Kommunikationskomponenten aufgeführt, die sich in Ihrer CPU befinden. Da die NET-CPU als Siemens-CPU projektiert wird, wird bei den internen Komponenten kein CP angezeigt. Aus diesem Grund ist der CP, der sich in der NET-CPU befindet, als externer CP hinter den reell gesteckten Modulen zu projektieren. Die CPs werden dann auch in NetPro als externe CPs (4, 5) in der Station eingeblendet.
- 4 Ethernet-PG/OP-Kanal: In der Hardware-Konfiguration ist der interne Ethernet-PG/OP-Kanal immer als externer CP zu projektieren. Dieser CP dient ausschließlich der PG/OP-Kommunikation. Produktiv-Verbindungen sind nicht möglich.
- 5 *CP 343* In der Hardware-Konfiguration ist der interne CP 343 immer als externer 2. CP nach dem Ethernet-PG/OP-Kanal zu projektieren.

Stationen vernetzen

NetPro bietet Ihnen die Möglichkeit die kommunizierenden Stationen zu vernetzen. Die Vernetzung können Sie über die Eigenschaften in der Hardware-Konfiguration durchführen oder grafisch unter NetPro. Gehen Sie hierzu mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Daraufhin wird Ihr CP über eine Linie mit dem gewünschten Netz verbunden



Verbindungen projektieren

- 2ur Projektierung von Verbindungen blenden Sie die Verbindungsliste ein, indem Sie die entsprechende CPU anwählen. Öffnen Sie "Kontextmenü → Neue Verbindung einfügen":
 - Verbindungspartner (Station Gegenseite)
 - Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Verbindungstyp einstellen können.
 - Spezifizierte Verbindungspartner
 - Jede im Siemens SIMATIC Manager projektierte Station wird in die Liste der Verbindungspartner aufgenommen.
 - Durch Angabe einer IP-Adresse und Subnetz-Maske sind diese Stationen eindeutig spezifiziert.
 - Unspezifizierte Verbindungspartner
 - Hier kann sich der Verbindungspartner im aktuellen Projekt oder in einem unbekannten Projekt befinden.
 - Verbindungs-Aufträge in ein unbekanntes Projekt sind über einen eindeutigen Verbindungs-Namen zu definieren, der für die Projekte in beiden Stationen zu verwenden ist.
 - Aufgrund dieser Zuordnung bleibt die Verbindung selbst unspezifiziert.
 - Alle Broadcast-Teilnehmer
 - Ausschließlich bei UDP-Verbindungen können Sie hier an alle erreichbaren Broadcast-Teilnehmer senden.
 - Der Empfang von Nutzdaten ist nicht möglich.
 - Über einen Port und eine Broadcast-Adresse bei Sender und Empfänger werden die Broadcast-Teilnehmer spezifiziert.
 - Standardmäßig werden Broadcasts, die ausschließlich der Ethernet-Kommunikation dienen, wie z.B. ARP-Requests (Suche MAC <> IP-Adresse), empfangen und entsprechend bearbeitet.
 - Zur Identifikation der Broadcast-Teilnehmer im Netz ist bei der Projektierung einer Broadcast-Verbindung eine gültige Broadcast-Adresse als Partner-IP vorzugeben.
 - Zusätzlich zur Broadcast-Adresse müssen Sie für Sender und Empfänger einen gemeinsamen Port angeben

- Alle Multicast-Teilnehmer
 - Durch Anwahl von "Alle Multicast-Teilnehmer" bestimmen Sie, dass UDP-Telegramme an Teilnehmern einer Multicast-Gruppe zu senden bzw. von diesen zu empfangen sind.
 - Im Gegensatz zu Broadcast ist hier der Empfang möglich.
 - Durch Angabe <u>eines</u> Ports und <u>einer</u> Multicast-Gruppe für Sender und Empfänger sind die Multicast-Teilnehmer zu spezifizieren. Die maximale Anzahl der Multicast-Kreise, die vom CP unterstützt werden, ist identisch mit der maximalen Anzahl an Verbindungen.
- Verbindungstypen Für die Kommunikation stehen Ihnen folgende Verbindungstypen zur Verfügung:
 - Siemens S7-Verbindung, Send/Receive-Verbindungen (TCP, ISO-on-TCP und ISO-Transport) zur gesicherten Datenübertragung von Datenblöcke zwischen zwei Ethernet-Teilnehmern
 - UDP zur ungesicherten Datenübertragung von Datenblöcken zwischen zwei Ethernet-Teilnehmer
- **2.** Wählen Sie den Verbindungspartner und den Verbindungstyp und klicken Sie auf [OK].
 - ⇒ Sofern aktiviert, öffnet sich ein Eigenschaften-Dialog der entsprechenden Verbindung als Bindeglied zu Ihrem SPS-Anwenderprogramm.

3. Nachdem Sie auf diese Weise alle Verbindungen projektiert haben, können Sie Ihr Projekt "Speichern und übersetzen" und NetPro beenden.

8.10.3 Verbindungstyp - S7

Siemens S7-Verbindung

- Für Siemens S7-Verbindungen sind für den Datenaustausch die FB/SFB-VIPA-Hantierungsbausteine zu verwenden, deren Gebrauch im Handbuch "Operationsliste" Ihrer CPU näher beschrieben ist.
- Bei Siemens S7-Verbindungen werden Kommunikationsverbindungen durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert.
- Eine Verbindung wird durch den lokalen und fernen Verbindungsendpunkt spezifiziert.
- Bei Siemens S7-Verbindungen müssen die verwendeten TSAPs kreuzweise übereinstimmen.

Folgende Parameter definieren einen Verbindungsendpunkt:

Station A				Station B
ferner TSAP	\rightarrow	Siemens	\rightarrow	lokaler TSAP
lokaler TSAP	←	S7-Verbindung	←	ferner TSAP
ID A				ID B

Kombinationsmöglichkeiten unter Einsatz der FB/SFB-VIPA-Hantierungsbausteine

Verbindungspartner	Verbindungsaufbau	Verbindung
spezifiziert in NetPro (im aktuellen Projekt)	aktiv/passiv	spezifiziert
unspezifiziert in	aktiv	spezifiziert
NetPro (im aktuellen Projekt)	passiv	unspezifiziert
unspezifiziert in NetPro (in unbe- kanntem Projekt)	aktiv/passiv	spezifiziert (Verbindungsname in einem anderen Projekt)

Nachfolgend sind alle relevanten Parameter für eine Siemens S7-Verbindung beschrieben:

Lokaler Verbindungsendpunkt:

Hier können Sie angeben, wie Ihre Verbindung aufgebaut werden soll. Da der Siemens SIMATIC Manager die Kommunikationsmöglichkeiten anhand der Endpunkte identifizieren kann, sind manche Optionen schon vorbelegt und können nicht geändert werden.

Aktiver Verbindungsaufbau:

Für die Datenübertragung muss eine Verbindung aufgebaut sein. Durch Aktivierung der Option Aktiver Verbindungsaufbau übernimmt die lokale Station den Verbindungsaufbau. Bitte beachten Sie, dass nicht jede Station aktiv eine Verbindung aufbauen kann. In diesem Fall hat diese Aufgabe die Gegenstation zu übernehmen.

– Einseitig:

Im aktivierten Zustand sind nur einseitige Kommunikationsbausteine wie PUT und GET im Anwenderprogramm der CPU zur Nutzung dieser Verbindung möglich. Hier dient der Verbindungspartner als Server, der weder aktiv senden noch aktiv empfangen kann.

Bausteinparameter

– Lokale ID:

Die ID ist das Bindeglied zu Ihrem SPS-Programm. Die ID muss identisch sein mit der ID in der Aufrufschnittstelle des FB/SFB-VIPA-Hantierungsbausteins.

– [Vorgabe]:

Sobald Sie auf [Vorgabe] klicken, wird die ID auf die vom System generierte ID zurückgesetzt.

Verbindungsweg:

In diesem Teil des Dialogfensters können Sie den Verbindungsweg zwischen der lokalen Station und dem Verbindungspartner einstellen. Abhängig von der Vernetzung der Baugruppen werden Ihnen die möglichen Schnittstellen zur Kommunikation in einer Auswahlliste aufgeführt.

– [Adressdetails]:

Über diese Schaltfläche gelangen Sie in das Dialogfeld zur Anzeige und Einstellung der Adressinformationen für den lokalen bzw. den Verbindungspartner.

– TSAP:

Bei einer Siemens S7-Verbindung wird der TSAP automatisch generiert aus den Verbindungsressourcen (einseitig/zweiseitig) und Ortsangabe (Rack/Steckplatz bzw. einer systeminternen ID bei PC-Stationen).

– Verbindungsressource:

Die Verbindungsressource ist Teil des TSAP der lokalen Station bzw. des Partners. Nicht jede Verbindungsressource ist für jeden Verbindungstyp verwendbar. Je nach Verbindungspartner und -Typ wird bei der Projektierung der Wertebereich eingeschränkt bzw. die Verbindungsressource fest vorgegeben.

Siemens S7-Verbindung - Kommunikationsfunktionen

Bei den SPEED7-CPUs von VIPA gibt es folgende 2 Möglichkeiten für den Einsatz der Kommunikationsfunktionen:

- Siemens S7-300-Kommunikationsfunktionen: Durch Einbindung der Funktionsbausteine FB 8 ... FB 15 von VIPA können Sie auf die Siemens S7-300-Kommunikationsfunktionen zugreifen.
- Siemens S7-400-Kommunikationsfunktionen:
 Für die Siemens S7-400-Kommunikationsfunktionen verwenden
 Sie die SFB 8 ... SFB 15, die im Betriebssystem der CPU integriert sind. Hierzu kopieren Sie die Schnittstellenbeschreibung der
 SFBs aus der Siemens Standard-Bibliothek in das Verzeichnis
 "Bausteine", generieren für jeden Aufruf einen Instanzen-Datenbaustein und rufen den SFB mit dem zugehörigen InstanzenDatenbaustein auf.

Funktionsbausteine

FB/SFB	Bezeich- nung	Beschreibung
FB/SFB 12	BSEND	Blockorientiertes Senden: Mit dem FB/SFB 12 BSEND können Daten an einen remoten Bartner FB/SFB vom Tvp BBCV (FB/SFB 13) gesendet werden. Der
		Partner-FB/SFB vom Typ BRCV (FB/SFB 13) gesendet werden. Der zu sendende Datenbereich wird segmentiert. Jedes Segment wird einzeln an den Partner gesendet. Das letzte Segment wird vom Partner bereits bei seiner Ankunft quittiert, unabhängig vom zugehörigen Aufruf des FB/SFB BRCV. Aufgrund der Segmentierung können Sie mit einem Sendeauftrag bis zu 65534Byte große Daten übertragen.
FB/SFB 13	BRCV	Blockorientiertes Empfangen:
		Mit dem FB/SFB 13 BRCV können Daten von einem remoten Partner-FB/SFB vom Typ BSEND (FB/SFB 12) empfangen werden, wobei darauf zu achten ist, dass der Parameter R_ID bei beiden FB/SFBs identisch ist. Nach jedem empfangenen Datensegment wird eine Quittung an den Partner-FB/SFB geschickt, und der Parameter LEN aktualisiert.
FB/SFB 14	GET	Remote CPU lesen:
		Mit dem FB/SFB 14 GET können Daten aus einer remoten CPU ausgelesen werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.
FB/SFB 15	PUT	Remote CPU schreiben:
		Mit dem FB/SFB 15 PUT können Daten in eine remote CPU geschrieben werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.

8.10.4 Verbindungstyp - Send/Receive

Send/Receive-Verbindungen

Für diese Verbindungen sind für den Datenaustausch auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) zu verwenden.

Send/Receive-Verbindungen umfassen folgende Verbindungen:

- TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-on-TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)

- ISO-Transport (SEND-RECEIVE, FETCH-WRITE PASSIV)
- UDP (SEND-RECEIVE)

Folgende Parameter definieren einen Verbindungsendpunkt:

Station A				Station B
ferner Port	\rightarrow	TCP-	\rightarrow	lokaler Port
lokaler Port	←	Verbindung	←	ferner Port
IP-Adresse A				IP-Adresse B
Station A				Station B
ferner TSAP	\rightarrow	ISO-TCP-	\rightarrow	lokaler TSAP
lokaler TSAP	←	Verbindung	←	ferner TSAP
IP-Adresse A				IP-Adresse B
Station A				Station B
ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
lokaler TSAP	←	Verbindung	←	ferner TSAP
MAC-Adresse A				MAC-Adresse B
Station A				Station B
ferner Port	\rightarrow	UDP-	\rightarrow	lokaler Port
lokaler Port	←	Verbindung	←	ferner Port
IP-Adresse A				IP-Adresse B

Kombinationsmöglichkeiten mit den verschiedenen Betriebarten

Verbindungs- partner	Verbindungstyp	Verbindungs- aufbau	Verbindung	Betriebsart
spezifiziert in NetPro (im aktu- ellen Projekt)	TCP / ISO-on- TCP /ISO-Trans- port	aktiv/passiv	spezifiziert	SEND/RECEIVE
	UDP	-		
unspezifiziert in	TCP / ISO-on-	aktiv	spezifiziert	SEND/RECEIVE
NetPro (im aktu- ellen Projekt)	TCP /ISO-Trans- port	passiv	teilspezifiziert	SEND/RECEIVE
			(Port/TSAP)	FETCH PASSIV
			unspezifiziert	WRITE PASSIV
	UDP	-	spezifiziert	SEND/RECEIVE
unspezifiziert in	TCP / ISO-on- TCP /ISO-Trans- port	aktiv	spezifiziert	SEND/RECEIVE
NetPro (in unbe- kannten Projekt)		passiv	(Verbindungs- name in einem	SEND/RECEIVE
• ,			anderen Projekt)	FETCH PASSIV
				WRITE PASSIV

Verbindungs- partner	Verbindungstyp	Verbindungs- aufbau	Verbindung	Betriebsart
	UDP	-		SEND/RECEIVE
Alle Broadcast- Teilnehmer	UDP	-	spezifiziert (Port, Broadcast- Adr.)	SEND
Alle Multicast- Teilnehmer	UDP	-	spezifiziert (Port, Multicast- Gruppe)	SEND/RECEIVE

Nachfolgend sind alle relevanten Parameter für die verschiedenen Verbindungstypen beschrieben:

Allgemein:

In diesem Register werden die allgemeinen Verbindungsparameter angezeigt, die den lokalen Verbindungsendpunkt identifizieren.

– ID

Dieser Eintrag ist identisch mit dem Eintrag in der Verbindungsliste. Sie können diesen Wert jederzeit ändern. Bitte beachten Sie, dass Sie hierbei auch den ID-Parameter Ihrer Aufrufschnittstelle im FC anpassen.

Name

Dieses Feld beinhaltet den Namen der Verbindung. Dieser wird vom System generiert und kann jederzeit geändert werden.

Über CP [Wegewahl]

Hier wird dargestellt, über welchen lokalen CP die Verbindung aufgebaut werden soll. Mit der Schaltfläche [Wegewahl] können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll. Verwenden Sie für projektierbare Verbindungen nicht den 1. CP der Wegewahl. Als 1. CP finden Sie immer den Ethernet-PG/OP-Kanal, der keine projektierbaren Verbindungen unterstützt.

Aktiver Verbindungsaufbau

Im aktivierten Zustand baut die lokale Station aktiv die Verbindung zum Partner auf. Hierbei ist im Register *"Adressen"* der Verbindungspartner zu spezifizieren. Bei einer unspezifizierten Verbindung erfolgt der Verbindungsaufbau passiv.

Bausteinparameter

 Hier werden Ihnen die Parameter ID und LADDR für Ihr Anwenderprogramm angezeigt. Beides sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 und FC 6 (AG_SEND, AG_RECEIVE) anzugeben sind. Bitte hier immer die VIPA FCs verwenden, welche Sie als Bibliothek von VIPA beziehen können.

Adressen

Im Register Adressen werden die relevanten lokalen und fernen Adressinformationen als Vorschlagswerte angezeigt. Je nach Kommunikationsart können Sie Adressinformationen unspezifiziert lassen.

Port

Ports bzw. Port-Adressen definieren den Zugangspunkt zum Anwenderprogramm innerhalb der Station/CPU. Diese müssen eindeutig sein. Eine Port-Adresse sollte im Bereich 2000...65535 liegen.

TSAP

ISO-on-TCP und ISO-Transport unterstützen TSAP-Längen (Transport Service Accesss Point) von 1...16 Byte. Sie können den TSAP im ASCII- oder im hexadezimalen Format eingeben. Die Längenberechnung erfolgt automatisch.

Optionen

Abhängig von der Spezifikation des Verbindungspartners können Sie hier folgende *Betriebsart* einstellen bzw. anzeigen lassen:

SEND/RECEIVE

Die SEND/RECEIVE-Schnittstelle ermöglicht die programmgesteuerte Kommunikation über eine projektierte Verbindung zu beliebigen Fremdstationen. Die Datenübertragung erfolgt hierbei durch Anstoß durch Ihr Anwenderprogramm. Als Schnittstelle dienen Ihnen FC5 und FC6, die Bestandteil der VIPA-Baustein-Bibliothek sind. Hiermit wird Ihre Steuerung in die Lage versetzt, abhängig von Prozessereignissen Nachrichten zu versenden.

FETCH/WRITE PASSIV

Mit den FETCH/WRITE-Diensten haben Fremdsysteme direkten Zugriff auf Speicherbereiche der CPU. Es handelt sich hierbei um "passive" Kommunikationsverbindungen, die zu projektieren sind. Die Verbindungen werden "aktiv" vom Verbindungspartner aufgebaut.

- FETCH PASSIV (Daten anfordern)
 Mit FETCH kann ein Fremdsystem Daten anfordern.
- WRITE PASSIV (Daten schreiben)
 Hiermit kann ein Fremdsystem in den Datenbereich der CPU schreiben.

■ Übersicht

Hier werden alle in dieser Station projektierten Verbindungen mit ihren Partnern angezeigt. Die Angaben dienen der Information und können nicht geändert werden.

- Wird ein CP durch einen anderen ersetzt, muss dieser mindestens die gleichen Dienste bereitstellen und mindestens den gleichen Versionsstand haben. Nur so ist gewährleistet, dass die über den CP projektierten Verbindungen konsistent erhalten bleiben und genutzt werden können.
- Durch entsprechende Verschiebe- bzw. Lösch-Aktivitäten im Siemens SIMATIC Manager können Verbindungen ihre Zuordnung zum CP verlieren. Bei diesen Verbindungen wird in der Übersicht die ID mit einem "!" markiert.

8.10.4.1 FC 5 - AG_SEND / FC 6 - AG_RECV - CP 343 Kommunikation

Übersicht

Die beiden Bausteine dienen der Verarbeitung von Verbindungsaufträgen auf SPS-Seite eines Ethernet-CP 343. Durch Einbindung dieser Bausteine in den Zyklus-Baustein OB1 können Sie zyklisch Daten senden und empfangen.

Innerhalb dieser Bausteine werden die FC/SFCs 205 und 206 aufgerufen, die als Sonderfunktionsbausteine in der CPU abliegen.

Hinweis!

Bitte beachten Sie, dass Sie in Ihrem Anwenderprogramm für die Kommunikation mit VIPA-CPs ausschließlich die SEND/RECV-FCs von VIPA einsetzen dürfen. Bei Wechsel zu VIPA-CPs in einem schon bestehenden Projekt können die bestehenden AG_SEND / AG_LSEND bzw. AG_RECV / AG_LRECV durch AG_SEND bzw. AG_RECV von VIPA ohne Anpassung ersetzt werden. Da sich der CP automatisch an die Länge der zu übertragenden Daten anpasst ist die L-Variante von SEND bzw. RECV bei VIPA nicht erforderlich.

Kommunikationsbausteine

Für die Kommunikation zwischen CPU und Ethernet-CP 343 stehen Ihnen folgende FCs zur Verfügung:

AG SEND (FC 5)

Dieser Baustein übergibt die Nutzdaten aus dem über *SEND* angegebenen Datenbereich an den über *ID* und *LADDR* spezifizierten CP. Als Datenbereich können Sie einen PA-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übertragen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

AG RECV (FC 6)

Der Baustein übernimmt vom CP die Nutzdaten und legt sie in dem über *RECV* definierten Datenbereich ab. Als Datenbereich können Sie einen PE-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übernommen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

Statusanzeigen

Der CP bearbeitet Sende- und Empfangsaufträge unabhängig vom CPU Zyklus und benötigt hierzu eine Übertragungszeit. Die Schnittstelle mit den FC-Bausteinen zum Anwenderprogramm wird hierbei über Quittungen synchronisiert.

Für die Statusauswertung liefern die Kommunikationsbausteine Parameter zurück, die Sie in Ihrem Anwenderprogramm direkt auswerten können.

Diese Statusanzeigen werden bei jedem Baustein-Aufruf aktualisiert.

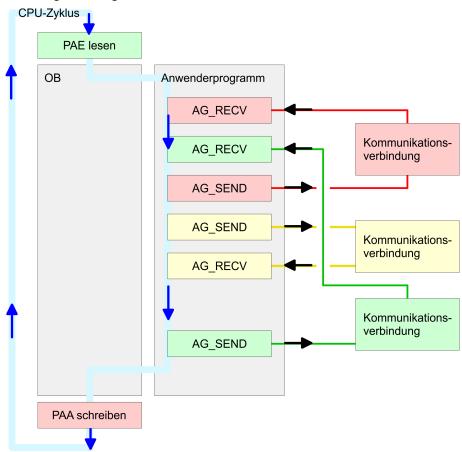
Einsatz unter hoher Kommunikationslast

Verwenden Sie keine zyklischen Aufrufe der Kommunikationsbausteine im OB 1. Dies führt zu einer ständigen Kommunikation zwischen CPU und CP. Programmieren Sie statt dessen Ihre Kommunikationsbausteine in einem Zeit-OB, deren Zykluszeit größer ist als die des OB1 bzw. ereignisgesteuert.

Aufruf FC schneller als CP-Übertragungszeit

Wird ein Baustein im Anwenderprogramm erneut aufgerufen, bevor die Daten vollständig gesendet oder empfangen wurden, wird an der Schnittstelle der FC-Bausteine wie folgt verfahren:

AG_SEND


Es wird kein Auftrag entgegen genommen, bis die Datenübertragung über die Verbindung vom Partner quittiert wurde. Solange erhalten Sie die Meldung "Auftrag läuft", bis der CP den nächsten Auftrag für die gleiche Verbindung übernehmen kann.

AG RECV

Der Auftrag wird mit der Meldung "Es liegen noch keine Daten vor" quittiert, solange der CP die Empfangsdaten noch nicht vollständig empfangen hat.

AG_SEND, AG_RECV im Anwenderprogramm

Eine mögliche Ablaufsequenz für die FC-Bausteine zusammen mit den Organisations- und Programmbausteinen im CPU-Zyklus ist nachfolgend dargestellt:

Die FC-Bausteine mit zugehöriger Kommunikationsverbindung sind farblich zusammengefasst. Hier können Sie auch erkennen, dass Ihr Anwenderprogramm aus beliebig vielen Bausteinen bestehen kann. Somit können Sie ereignis- bzw. programmgesteuert an beliebiger Stelle im CPU-Zyklus mit AG_SEND Daten senden bzw. mit AG_RECV Daten empfangen. Sie können die Bausteine für eine Kommunikationsverbindung auch mehrmals in einem Zyklus aufrufen.

AG_SEND (FC 5)

Mit AG_SEND werden die zu sendenden Daten von der CPU an einen Ethernet-CP 343 übertragen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ACT	INPUT	BOOL	Aktivierung des Senders 0: Aktualisiert die <i>DONE, ERROR</i> und <i>STATUS</i> 1: Der unter <i>SEND</i> mit der Länge <i>LEN</i> abgelegte Datenbereich wird gesendet
ID	INPUT	INT	Verbindungsnummer 1 16 (identisch mit <i>ID</i> aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs (identisch mit <i>LADDR</i> aus NetPro)
SEND	INPUT	ANY	Datenbereich
LEN	INPUT	INT	Anzahl der Bytes, die aus dem Datenbereich zu übertragen sind
DONE	OUTPUT	BOOL	Zustandsparameter für den Auftrag 0: Auftrag läuft 1: Auftrag fertig ohne Fehler
ERROR	OUTPUT	BOOL	Fehleranzeige 0: Auftrag läuft (bei <i>DONE</i> = 0) 0: Auftrag fertig ohne Fehler (bei <i>DONE</i> = 1) 1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>DONE</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.

AG_RECV (FC 6)

Mit dem 1. Aufruf von AG_RECV richten Sie einen Empfangspuffer zwischen der CPU und einem Ethernet CP 343 ein. Von jetzt ab werden empfangene Daten automatisch in diesem Puffer abgelegt. Sobald nach einem Aufruf von AG_RECV der Rückgabewert *NDR* = 1 zurückgeliefert wird, liegen gültige Daten ab.

Da mit einem weiteren Aufruf von AG_RECV der Empfangspuffer für den Empfang neuer Daten wieder freigegeben wird, müssen Sie die zuvor empfangenen Daten sichern.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ID	INPUT	INT	Verbindungsnummer 1 16
			(identisch mit ID aus NetPro)
LADDR	INPUT	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
RECV	INPUT	ANY	Datenbereich für die empfangenen Daten.

Parameter	Deklaration	Datentyp	Beschreibung
NDR	OUTPUT	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig Daten wurden ohne Fehler übernommen
ERROR	OUTPUT	BOOL	Fehleranzeige
			0: Auftrag läuft (bei <i>NDR</i> = 0)
			0: Auftrag fertig ohne Fehler (<i>NDR</i> = 1)
			1: Auftrag fertig mit Fehler
STATUS	OUTPUT	WORD	Statusanzeige, die in Verbindung mit <i>NDR</i> und <i>ERROR</i> zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.
LEN	OUTPUT	INT	Anzahl der Bytes, die empfangen wurden.

DONE, ERROR, STATUS

In der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der Ethernet-CP 343 nach einem SEND-Auftrag bzw. RECV-Auftrag zurückliefern kann.

Ein "-" bedeutet, dass diese Meldung für den entsprechenden SENDbzw. RECV-Auftrag nicht existiert.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
1	-	0	0000h	Auftrag fertig ohne Fehler.
-	1	0	0000h	Neue Daten wurden ohne Fehler übernommen.
0	-	0	0000h	Kein Auftrag in Bearbeitung.
-	0	0	8180h	Es liegen noch keine Daten vor.
0	0	0	8181h	Auftrag läuft
0	0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektierung.
0	-	1	8184h	Es ist ein Systemfehler aufgetreten.
-	0	1	8184h	Es ist ein Systemfehler aufgetreten (Quelldatenbereich fehlerhaft)
0	-	1	8185h	Parameter LEN größer als Quell-Bereich SEND.
	0	1	8185h	Ziel-Puffer (RECV) ist zu klein.
0	0	1	8186h	Parameter <i>ID</i> ungültig (nicht im Bereich 1 16).
0	-	1	8302h	Keine Empfangsressourcen bei Ziel-Station, Empfänger-Station kann empfangene Daten nicht schnell genug verarbeiten bzw. hat keine Empfangsressourcen bereitgestellt.
0	-	1	8304h	Die Verbindung ist nicht aufgebaut. Der Sende- auftrag sollte erst nach einer Wartezeit >100 ms erneut abgesetzt werden.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
-	0	1	8304h	Die Verbindung ist nicht aufgebaut. Der Empfangsauftrag sollte erst nach einer Wartezeit > 100ms erneut abgesetzt werden.
0	-	1	8311h	Zielstation ist unter der angegebenen Ethernet- Adresse nicht erreichbar.
0	-	1	8312h	Ethernet-Fehler im CP
0		1	8F22h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
-	0	1	8F23h	Quell-Bereich ungültig, wenn beispielsweise Bereich im DB nicht vorhanden Parameter <i>LEN</i> < 0.
0	-	1	8F24h	Bereichsfehler beim Lesen eines Parameters.
-	0	1	8F25h	Bereichsfehler beim Schreiben eines Parameters.
0	-	1	8F28h	Ausrichtungsfehler beim Lesen eines Parameters.
-	0	1	8F29h	Ausrichtungsfehler beim Schreiben eines Parameters.
-	0	1	8F30h	Parameter liegt im schreibgeschützten 1. akt. Datenbaustein
-	0	1	8F31h	Parameter liegt im schreibgeschützten 2. akt. Datenbaustein
0	0	1	8F32h	Parameter enthält zu große DB-Nummer.
0	0	1	8F33h	DB-Nummer Fehler
0	0	1	8F3Ah	Bereich nicht geladen (DB)
0	-	1	8F42h	Quittungsverzug beim Lesen eines Parameters aus dem Peripheriebereich.
-	0	1	8F43h	Quittungsverzug beim Schreiben eines Parameters in den Peripheriebereich.
0	-	1	8F44h	Adresse des zu lesenden Parameters in der Zugriffsspur gesperrt.
-	0	1	8F45h	Adresse des zu schreibenden Parameters in der Zugriffsspur gesperrt.
0	0	1	8F7Fh	Interner Fehler z.B. unzulässige ANY-Referenz z.B. Parameter <i>LEN</i> = 0.
0	0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsadresse nicht vorhanden oder CPU in STOP.
0	0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel-Wort-Raster.
0	0	1	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE angegeben.
-	0	1	80A0h	Negative Quittung beim Lesen von Baugruppe.
0	0	1	80A4h	reserviert
0	0	1	80B0h	Baugruppe kennt den Datensatz nicht.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Beschreibung
0	0	1	80B1h	Die Längenangabe (im Parameter <i>LEN</i>) ist falsch.
0	0	1	80B2h	reserviert
0	0	1	80C0h	Datensatz kann nicht gelesen werden.
0	0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbeitung.
0	0	1	80C2h	Es liegt ein Auftragsstau vor.
0	0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär belegt.
0	0	1	80C4h	Kommunikationsfehler (tritt temporär auf; daher ist eine Wiederholung im Anwenderprogramm sinnvoll).
0	0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.

Status-Parameter bei Neuanlauf

Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 0
- STATUS = 8180h (bei AG_RECV) STATUS = 8181h (bei AG_SEND)

8.11 Offene Kommunikation projektieren

Verbindungsorientierte Protokolle

- Verbindungsorientierte Protokolle bauen vor der Datenübertragung eine (logische) Verbindung zum Kommunikationspartner auf und bauen diese nach Abschluss der Datenübertragung ggf. wieder ab.
- Verbindungsorientierte Protokolle werden eingesetzt, wenn es bei der Datenübertragung insbesondere auf Sicherheit ankommt.
- Die richtige Reihenfolge der empfangenen Pakete ist gewährleistet.
- Über eine physikalische Leitung können in der Regel mehrere logische Verbindungen bestehen.

Bei den FBs zur Offenen Kommunikation über Industrial Ethernet werden die folgenden verbindungsorientierten Protokolle unterstützt:

- TCP native gemäß RFC 793 (Verbindungstypen 01h und 11h):
 - Bei der Datenübertragung über TCP nativ werden weder Informationen zur Länge noch über Anfang und Ende einer Nachricht übertragen.
 - Es besteht keine Möglichkeit zu erkennen, wo ein Datenstrom endet und der nächste beginnt.
 - Die Übertragung ist stream-orientiert. Aus diesem Grund sollten Sie in den FBs bei Sender und Empfänger identische Datenlängen angeben.
 - Falls die empfangene Anzahl der Daten von der parametrierten Länge abweicht, erhalten Sie entweder Daten, welche nicht die vollständigen Telegrammdaten enthalten oder mit dem Inhalt eines nachfolgenden Telegramms aufgefüllt sind. Der Empfangsbaustein kopiert so viele Bytes in den Empfangsbereich, wie Sie als Länge parametriert haben. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit dem Wert von LEN. Mit jedem weiteren Aufruf erhalten Sie damit einen weiteren Block der gesendeten Daten.
- ISO on TCP gemäß RFC 1006:
 - Bei der Datenübertragung werden Informationen zur Länge und zum Ende einer Nachricht übertragen.
 - Die Übertragung ist blockorientiert.
 - Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit der Länge der gesendeten Daten.
 - Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

Verbindungsloses Protokoll

- Bei den verbindungslosen Protokollen entfallen Verbindungsaufund Verbindungsabbau zum remoten Partner.
- Verbindungslose Protokolle übertragen die Daten unquittiert und damit ungesichert zum remoten Partner.

Bei den FBs zur Offenen Kommunikation über Industrial Ethernet wird das folgende verbindungslose Protokoll unterstützt:

- UDP gemäß RFC 768 (Verbindungstyp 13h):
 - Bei Aufruf des Sendebausteins ist ein Verweis auf die Adressparameter des Empfängers (IP-Adresse und Port-Nr.) anzugeben.
 - Informationen zur Länge und zum Ende einer Nachricht werden übertragen. Analog erhalten Sie nach Abschluss des Empfangsbausteins einen Verweis auf die Adressparameter des Senders (IP-Adresse und Port-Nr.).
 - Damit sie Sende- und Empfangsbaustein nutzen k\u00f6nnen, m\u00fcssen Sie zuvor sowohl auf der Sender- als auch auf der Empf\u00e4ngerseite einen lokalen Kommunikationszugangspunkt einrichten.
 - Bei jedem Sendauftrag können Sie den remoten Partner durch Angabe seiner IP-Adresse und seiner Port-Nr. neu referenzieren.
 - Falls Sie die Länge der zu empfangenden Daten größer gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein die gesendeten Daten vollständig in den Empfangsdatenbereich. Anschließend setzt er NDR auf TRUE und beschreibt RCVD_LEN mit der Länge der gesendeten Daten.
 - Falls Sie die Länge der zu empfangenden Daten kleiner gewählt haben als die Länge der gesendeten Daten, kopiert der Empfangsbaustein keine Daten in den Empfangsdatenbereich, sondern liefert folgende Fehlerinformation: ERROR = 1, STATUS = 8088h.

Hantierungsbausteine

Die nachfolgend aufgeführten UDTs und FBs dienen der "Offenen Kommunikation" mit anderen Ethernet-fähigen Kommunikationspartnern über Ihr Anwenderprogramm. Diese Bausteine sind Bestandteil des Siemens SIMATIC Manager. Sie finden diese in der "Standard Library" unter "Communication Blocks". Bitte beachten Sie, dass bei Einsatz der Bausteine für offene Kommunikation die Gegenseite nicht zwingend mit diesen Bausteinen projektiert sein muss. Diese kann mit AG_SEND/AG_RECEIVE oder mit IP_CONFIG projektiert sein.

UDTs

FB	Bezeichnung	Verbindungsorientierte Protokolle: TCP native gemäß RFC 793, ISO on TCP gemäß RFC 1006	Verbindungsloses Protokoll: UDP gemäß RFC 768
UDT 65	TCON_PAR	Datenstruktur zur Verbin- dungsparametrierung	Datenstruktur zur Parametrierung des lokalen Kommunikationszugangspunktes
UDT 66	TCON_ADR		Datenstruktur der Adressierungs- parameter des remoten Partners

FBs

FB	Bezeichnung	Verbindungsorientierte Protokolle: TCP native gemäß RFC 793, ISO on TCP gemäß RFC 1006	Verbindungsloses Protokoll: UDP gemäß RFC 768
FB 63	TSEND	Daten senden	
FB 64	TRCV	Daten empfangen	
FB 65	TCON	Verbindungsaufbau	Einrichtung des lokalen Kommu- nikationszugangspunktes
FB 66	TDISCON	Verbindungsabbau	Auflösung des lokalen Kommuni- kationszugangspunktes
FB 67	TUSEND		Daten senden
FB 68	TURCV		Daten empfangen

NCM-Diagnose - Hilfe zur Fehlersuche

8.12 NCM-Diagnose - Hilfe zur Fehlersuche

Checkliste zur Fehlersuche

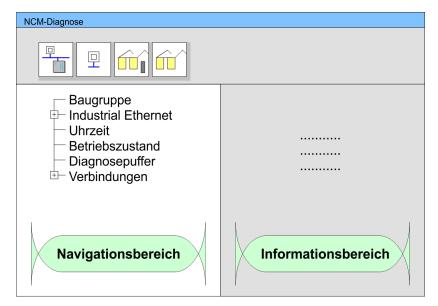
Diese Seite soll Ihnen bei der Fehlersuche dienen. Die nachfolgende Checkliste soll Ihnen helfen, einige typische Problemstellungen und deren mögliche Ursachen zu erkennen:

Frage	Abhilfe bei "nein"
CPU im Run?	 DC 24V-Spannungsversorgung überprüfen. Betriebsartenschalter in Stellung RUN bringen. SPS-Programm überprüfen und neu übertragen.
AG_SEND, AG_RECV im Anwenderprogramm?	Für den Datentransfer zwischen CP und CPU sind diese 2 Bausteine im Anwenderprogramm erforderlich. Auch bei einer passiven Verbindung sind beide Bausteine aufzurufen.
Kann CP verbinden?	 Ethernet-Leitung überprüfen (bei Punkt-zu-Punkt-Verbindung ist ein gekreuztes Ethernet-Kabel zu verwenden). IP-Adresse überprüfen.
Können Daten transferiert werden?	 Port-Nr. für Lesen und Schreiben überprüfen. Die Quell- und Zielbereiche überprüfen. Prüfen, ob der 2. CP in der Wegewahl angewählt ist. Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer vergrößern.
Wird der komplette Datenblock bei ISO-on-TCP gesendet?	 Überprüfen Sie den LEN-Parameter bei AG_SEND. Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer auf die erforderliche Größe einstellen.

Siemens NCM S7-Diagnose

Der CP unterstützt das Siemens NCM-Diagnosetool. Das NCM-Diagnosetool ist Bestandteil des Siemens SIMATIC Managers. Dieses Tool liefert dynamisch Informationen zum Betriebszustand der Kommunikationsfunktionen von online geschalteten CPs.

Folgende Diagnose-Funktionen stehen Ihnen zur Verfügung:


- Betriebszustand an Ethernet ermitteln
- Im CP den Diagnosepuffer auslesen
- Verbindungen diagnostizieren

NCM-Diagnose starten

Das Diagnose-Tool starten Sie über "Windows-START-Menü
→ SIMATIC → ... NCM S7 → Diagnose".

NCM-Diagnose - Hilfe zur Fehlersuche

Aufbau

Die Arbeitsumgebung des Diagnose-Tools hat folgenden Aufbau:

- Im "Navigationsbereich" auf der linken Seite finden Sie die hierarchisch geordneten Diagnoseobjekte. Je nach CP haben Sie eine angepasste Objektstruktur im Navigationsbereich.
- Im "Informationsbereich" auf der rechten Seite finden Sie immer das Ergebnis der von Ihnen angewählten Navigationsfunktion im Navigationsbereich.

Keine Diagnose ohne Verbindung

Für eine Diagnose ist immer eine Online-Verbindung zu dem zu diagnostizierenden CP erforderlich. Klicken Sie hierzu in der Symbolleiste auf 🛅

Es öffnet sich folgendes Dialogfenster:

Stellen Sie unter "Zielstation" folgende Parameter ein:

- Anschluss ..: Ind. Ethernet TCP/IP
- Teilnehmer-Adr.: Tragen Sie hier die IP-Adresse des CPs ein
- Baugruppenträger/Steckplatz: Geben Sie hier den Baugruppenträger und Steckplatz des CP 343 an, den Sie an 2. Stelle projektiert haben. Stellen Sie Ihre PG/PC-Schnittstelle auf "TCP/IP -> Netzwerkkarte " ein. Mit [OK] starten Sie die Online-Diagnose.

Diagnosepuffer auslesen

Der CP besitzt einen Diagnosepuffer. Dieser hat die Architektur eines Ringspeichers. Hier können bis zu 100 Diagnosemeldungen festgehalten werden. In der NCM-Diagnose können Sie über das Diagnoseobjekt *Diagnosepuffer* die Diagnosemeldungen anzeigen und auswerten. Über einen Doppelklick auf eine Diagnosemeldung hält die NCM-Diagnose weitere Informationen bereit.

Vorgehensweise bei der Diagnose

Sie führen eine Diagnose aus, indem Sie ein Diagnoseobjekt im Navigationsbereich anklicken. Weitere Funktionen stehen Ihnen über das Menü und über die Symbolleiste zur Verfügung.

Für den gezielten Diagnoseeinsatz ist folgende Vorgehensweise zweckmäßig:

- 1. ▶ Diagnose aufrufen
- 2. Mit Dialog für Online-Verbindung öffnen, Verbindungsparameter eintragen und mit [OK] Online-Verbindung herstellen.
- **3.** Den CP identifizieren und über Baugruppenzustand den aktuellen Zustand des CPs ermitteln.
- **4.** Verbindungen überprüfen auf Besonderheiten wie:
 - Verbindungszustand
 - Empfangszustand
 - Sendezustand
- **5.** Über "Diagnosepuffer" den Diagnosepuffer des CP einsehen und entsprechend auswerten.
- **6.** Soweit erforderlich, Projektierung bzw. Programmierung ändern und Diagnose erneut starten.

8.13 Kopplung mit Fremdsystemen

Übersicht

Die bei TCP- bzw. ISO-on-TCP unterstütze Betriebsart FETCH/WRITE können Sie prinzipiell für Zugriffe von Fremdgeräten auf den SPS-Systemspeicher verwenden. Damit Sie diesen Zugriff z.B. auch für PC-Anwendungen implementieren können, müssen Sie den Telegramm-Aufbau für die Aufträge kennen. Die spezifischen Header für Anforderungs- und Quittungstelegramme sind standardmäßig 16Byte lang und werden auf den Folgeseiten beschrieben.

ORG-Format

Das Organisationsformat ist die Kurzbeschreibung einer Datenquelle bzw. eines Datenziels in SPS-Umgebung. Die verwendbaren ORG-Formate sind in der nachfolgenden Tabelle aufgelistet. Die ERW-Kennung ist bei der Adressierung von Datenbausteinen relevant. In diesem Fall wird hier die Datenbaustein-Nummer eingetragen. Die Anfangsadresse und Anzahl adressieren den Speicherbereich und sind im HIGH-/LOW- Format abgelegt (Motorola - Adressformat).

Beschreibung	Тур	Bereich
ORG-Kennung	BYTE	1x
ERW-Kennung	BYTE	1255
Anfangsadresse	HILOWORD	0y
Länge	HILOWORD	1z

In der nachfolgenden Tabelle sind die verwendbaren ORG-Formate aufgelistet. Die "Länge" darf nicht mit -1 (FFFFh) angegeben werden.

ORG-Kennung 01h-04h

CPU-Bereich	DB	MB	ЕВ	AB
ORG-Kennung	01h	02h	03h	04h
Beschreibung	Quell-/Zieldaten aus/in Datenbau- stein im Hauptspei- cher.	Quell-/Zieldaten aus/in Merkerbe-reich.	Quell-/Zieldaten aus/in Prozessab- bild der Eingänge (PAE).	Quell-/Zieldaten aus/in Prozessab- bild der Ausgänge (PAA).
ERW-Kennung (DBNR)	DB, aus dem die Quelldaten ent- nommen werden bzw. in den die Ziel- daten transferiert werden.	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	DBB-Nr., ab der die Daten entnommen bzw. einge- schrieben werden.	MB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	EB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	AB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.
Länge Bedeutung	Länge des Quell-/ Zieldatenblocks in Worten.	Länge des Quell-/ Zieldatenblocks in Bytes.	Länge des Quell-/ Zieldatenblocks in Bytes.	Länge des Quell-/ Zieldatenblocks in Bytes.

ORG-Kennung 05h-07h

CPU-Bereich	РВ	ZB	ТВ
ORG-Kennung	05h	06h	07h
Beschreibung	Quell-/Zieldaten aus/in Peripheriebaugruppen. Bei Quelldaten Eingabebau- gruppen, bei Zieldaten Ausgabebaugruppen.	Quell-/Zieldaten aus/in Zählerzellen.	Quell-/Zieldaten aus/in Zeitenzellen.
ERW-Kennung (DBNR)	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	PB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	ZB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	TB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.
Länge Bedeutung	Länge des Quell-/Zielda- tenblocks in Bytes.	Länge des Quell-/Zielda- tenblocks in Worten (Zählerzelle = 1 Wort).	Länge des Quell-/Zielda- tenblocks in Worten (Zählerzelle = 1 Wort).

Übertragen von Bausteinen mit Nummern >255

ORG-Kennung 81h-FFh

Zur Übertragung von Datenbausteinen im Nummernbereich 256 ... 32768 können Sie die ORG-Kennung 81h-FFh verwenden. Da die Angabe einer DB-Nr. >255 ein Wort als Länge erfordert, setzt sich DBNR_{neu} aus dem Inhalt von ORG-Kennung und DBNR zusammen. DBNR_{neu} wird als Wort auf folgende Weise generiert:

DBNR_{neu}

Hig	h-By	rte						Low	v-Byt	:e					
1	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
	ORG-Kennung (0XXXXXXX)				DBNR (XXXXXXXX)										

Ist das höchste Bit der ORG-Kennung gesetzt, so ergibt sich das Low-Byte von DBNR_{neu} aus der DBNR und das High-Byte von DBNR_{neu} aus der ORG-Kennung, wobei das höchste Bit der ORG-Kennung eliminiert wird. Folgende Formel soll dies nochmals verdeutlichen:

DBNR_{neu}=256 x (ORGKennung AND 7Fh) + DBNR

Aufbau SPS-Header

Bei FETCH und WRITE generiert der CP SPS-Header für Anforderungs-und Quittungstelegramme. Diese Header sind 16Byte lang und haben folgende Struktur:

WRITE

Anforderungstelegramm Remote Station	Quittungstelegramm CP
Systemkennung = "S5" (Wort)	Systemkennung = "S5" (Wort)
Länge Header = 10h (Byte)	Länge Header = 10h (Byte)
Kenn. OP-Code = 01h (Byte)	Kenn. OP-Code = 01h (Byte)
Länge OP-Code = 03h (Byte)	Länge OP-Code = 03h (Byte)
OP-Code = 03h (Byte)	OP-Code = 04h (Byte)
ORG-Block = 03h (Byte)	Quittungsblock = 0Fh (Byte)
Länge ORG-Block = 08h (Byte)	Länge Q-Block = 03h (Byte)
ORG-Kennung* (Byte)	Fehler-Nr. (Byte)
ERW-Kennung (Byte)	Leerblock = FFh (Byte)
Anfangsadresse (Wort)	Länge Leerblock = 07h (Byte)
Länge (Wort)	5 leere Bytes angehängt
Leerblock = FFh (Byte)	

Anforderungstelegramm Remote Station	Quittungstelegramm CP
Länge Leerblock = 02h (Byte)	
Daten bis zu 64kByte	
(nur wenn Fehler-Nr.=0)	

FETCH

Anforderungstelegramm Remote Station	Quittungstelegramm CP			
Systemkennung = "S5" (Wort)	Systemkennung = "S5" (Wort)			
Länge Header = 10h (Byte)	Länge Header = 10h (Byte)			
Kenn. OP-Code = 01h (Byte)	Kenn. OP-Code = 01h (Byte)			
Länge OP-Code = 03h (Byte)	Länge OP-Code = 03h (Byte)			
OP-Code = 05h (Byte)	OP-Code = 06h (Byte)			
ORG-Block = 03h (Byte)	Quittungsblock = 0Fh (Byte)			
Länge ORG-Block = 08h (Byte)	Länge Q-Block = 03h (Byte)			
ORG-Kennung* (Byte)	Fehler-Nr. (Byte)			
ERW-Kennung (Byte)	Leerblock = FFh (Byte)			
Anfangsadresse (Wort)	Länge Leerblock = 07h (Byte)			
Länge (Wort)	5 leere Bytes angehängt			
Leerblock = FFh (Byte)	Daten bis zu 64kByte			
Länge Leerblock = 02h (Byte)	(nur wenn Fehler-Nr.=0)			
*) Nähere Angaben zum Datenbereich finden Sie unter "ORG-Format" weiter oben.				

Bitte beachten Sie, dass im Gegensatz zu Siemens-S5-Systemen hier bei der Daten-Baustein-Adressierung die Anfangsadresse als Byte-Nummer interpretiert wird.

Meldungen von Fehler-Nr.

Folgende Meldungen können über Fehler-Nr. zurückgeliefert werden:

Fehler-Nr.	Meldung
00h	Kein Fehler aufgetreten
01h	Der angegebene Bereich kann nicht gelesen bzw. beschrieben werden

Installation

9 WinPLC7

9.1 Systemvorstellung

Allgemein

WinPLC7 ist eine Programmier- und Simulationssoftware von VIPA für alle mit Siemens STEP®7 programmierbaren Steuerungen. Hiermit können Sie Anwenderprogramme in FUP, KOP und AWL erstellen. Neben einer komfortablen Programmierumgebung hat WinPLC7 einen Simulator integriert, der ohne Einsatz zusätzlicher Hardware die Simulation Ihres Anwenderprogramms auf dem PC ermöglicht. Diese "Soft-SPS" wird wie eine reale SPS bedient und bietet gleiches Fehlerverhalten und Diagnosemöglichkeit über Diagnosebuffer, USTACK und BSTACK.

Ausführliche Informationen und Programmier-Beispiele finden Sie in der Online-Hilfe bzw. in der Online-Dokumentation von WinPLC7.

Alternativen

Sie haben auch die Möglichkeit, anstelle von WinPLC7 von VIPA, entsprechende Konfigurationstools von Siemens zu verwenden. Die Vorgehensweisen hierzu finden Sie in diesem Handbuch.

Systemvoraussetzungen

- Windows XP (SP3)
- Windows Vista
- Windows 7 (32 und 64 Bit)
- Windows 8 (32 und 64 Bit)

Bezugsquellen

Eine *Demoversion* können Sie von VIPA beziehen. Mit der *Demoversion* können Sie ohne Freischaltung die CPUs 11x aus dem System 100V von VIPA projektieren. Zur Projektierung der SPEED7 CPUs ist eine Lizenz für die "Profi"-Version erforderlich. Diese können Sie von VIPA beziehen und online aktivieren.

Für WinPLC7 gibt es folgende Bezugsquellen:

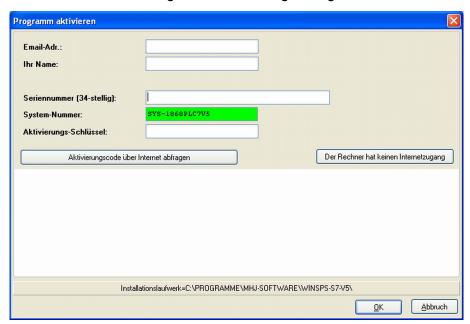
- Online
 - Unter www.vipa.com im Service-Bereich unter Downloads finden Sie einen Link auf die aktuellste Demo-Version und auf Updates von WinPLC7.
- CD
 - SW211C1DD: WinPLC7 Einzellizenz, CD, mit deutscher Beschreibung
 - SW211C1ED: WinPLC7 Einzellizenz, CD, mit englischer Beschreibung

9.2 Installation

Voraussetzung

Die Projektierung einer SPEED7-CPU von VIPA unter WinPLC7 ist ausschließlich mit einer aktivierten "Profi"-Version von WinPLC7 möglich.

Installation


Installation WinPLC7 Demo

Die Installation und die Registrierung von WinPLC7 erfolgt nach folgender Vorgehensweise:

- Zur Installation von WinPLC7 starten Sie das Setup-Programm von der entsprechenden CD bzw. führen Sie die online bezogene exe-Datei aus.
- **2.** Wählen Sie die gewünschte Sprachvariante aus.
- 3. Stimmen Sie dem Softwarelizenzvertrag zu.
- **4.** Geben Sie ein Installationsverzeichnis und eine Gruppenzuordnung an und starten Sie den Installationsvorgang.

Aktivierung der "Profi"-Version

- 1. Starten Sie WinPLC7.
 - ⇒ Es erscheint der Dialog "Demo"
- Klicken Sie auf [Vollversion aktivieren].
 - ⇒ Es erscheint folgender Aktivierungsdialog:

- 3. Füllen Sie folgende Felder aus:
 - Email-Adr.
 - Ihr Name
 - Seriennummer Ihre Seriennummer finden Sie auf einem Aufkleber auf der CD-Hülle von WinPLC7.
- Sofern Ihr PC mit dem Internet verbunden ist, können Sie online über [Aktivierungscode über Internet abfragen] den Aktivierungs-Schlüssel anfordern. Ansonsten klicken Sie auf die Schaltfläche [Der Rechner hat keinen Internetzugang] und folgen Sie den Anweisungen.
 - ⇒ Bei erfolgreicher Registrierung wird der Aktivierungs-Schlüssel im Dialogfenster eingeblendet bzw. Sie erhalten diesen per E-Mail.
- **5.** Geben Sie diesen unter "Aktivierungs-Schlüssel" ein und klicken Sie auf [OK].
 - ⇒ WinPLC7 ist jetzt als "Profi"-Version aktiviert.

WinPCAP für Teilnehmersuche über Ethernet installieren

Für die Teilnehmersuche über Ethernet (Erreichbare Teilnehmer) ist der WinPCAP-Treiber zu installieren. Sie finden diesen auf Ihrem PC in Ihrem Installationsverzeichnis unter WinSPS-S7-V5/WinPcap_... .exe. Führen Sie diese Datei aus und folgen Sie den Anweisungen.

9.3 Beispiel zur Projektierung

9.3.1 Aufgabenstellung

Im Beispiel wird ein FC 1 programmiert, welcher vom OB 1 zyklisch aufgerufen wird. Durch Vorgabe von 2 Vergleichswerten (value1 und value2) an den FC können Sie abhängig vom Vergleichsergebnis eine Ausgabe zur SPS aktivieren.

Hierbei soll gelten:

- wenn value1 = value2 aktiviere Ausgang A 124.0
- wenn value1 > value2 aktiviere Ausgang A 124.1
- wenn value1 < value2 aktiviere Ausgang A 124.2</p>

Voraussetzung

- Sie besitzen Administratorenrechte für Ihren PC.
- WinPLC7 ist installiert und als "Profi"-Version aktiviert.
- Eine SPEED7-CPU und ein digitales Ausgabe-Modul sind aufgebaut und verdrahtet.
- Der Ethernet-PG/OP-Kanal der CPU ist mit Ihrem Ethernet-Netzwerk verbunden. Mit einem Ethernet-Kabel können Sie Ihre CPU entweder direkt oder über einen Switch/Hub an Ihren PC anschließen.
- WinPCap für die Teilnehmersuche über Ethernet ist installiert.
- Die Spannungsversorgung von CPU und E/A-Peripherie ist eingeschaltet und die CPU befindet sich im STOP-Zustand.

9.3.2 Projektierung

- 1. Starten Sie WinPLC7 ("Profi"-Version)
- **2.** Legen Sie mit [Neue Projektmappe anlegen] ein neues Projekt an und öffnen Sie dies.

Hardware-Konfiguration

Für den Aufruf des Hardware-Konfigurators ist es erforderlich WinPLC7 vom Simulations-Modus in den Offline-Modus zu schalten. Stellen Sie hierzu zur Kommunikation über Ethernet "Ziel: TCP/IP Direkt" ein.

Doppelklicken Sie auf "Hardwarestation" und hier auf "Neu erzeugen".

- **3.** Geben Sie einen Stationsnamen an. Bitte beachten Sie, dass der Name keine Leerzeichen enthalten darf.
- Nach der Ladeanimation wählen Sie im Register SPS-System selektieren das System "VIPA SPEED7" und klicken Sie auf [Erzeugen]. Eine neue Station wird angelegt.
- 5. Sichern Sie die leere Station mit [Strg]+[S].
- Gehen Sie im Hardware-Katalog auf "CPU SPEED7" und fügen Sie die entsprechende VIPA-CPU durch Doppelklick in der Station ein.
- **7.** Platzieren Sie für die Ausgabe ein digitales Ausgabe-Modul, geben Sie diesem die Anfangsadresse 124 und sichern Sie die Hardware-Konfiguration.

Online-Zugriff über Ethernet-PG/OP-Kanal einrichten:

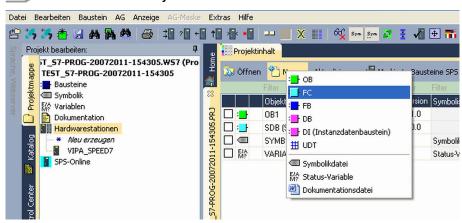
- Öffnen Sie die CPU-Eigenschaften, indem Sie im Hardware-Konfigurator auf die CPU auf Steckplatz 2 doppelklicken.
- 2. Klicken Sie auf die Schaltfläche [Ethernet CP-Einstellungen (PG/OP-Kanal)].
 - ⇒ Es öffnet sich der Dialog "Eigenschaften CP343"
- 3. Wählen Sie das Register "Allgemeine Parameter" an.
- 4. Klicken Sie auf [Eigenschaften Ethernet].
- **5.** Wählen Sie das Subnetz "PG OP Ethernet".
- **6.** Geben Sie eine gültige IP-Adresse und Subnetz-Maske an. Sie erhalten diese von Ihrem Systemadministrator.
- 7. Schließen Sie alle Dialogfenster mit [OK].
- **8.** Stellen Sie, wenn nicht schon geschehen, "Ziel: Extern TCP/IP direkt" ein.
- 9. ▶ Öffnen Sie mit "Online → Konfiguration übertragen" den gleichnamigen Dialog.
- Klicken Sie auf [Erreichbare Teilnehmer]. Bitte beachten Sie, dass hierzu WinPCap installiert sein muss!
- Wählen Sie Ihre Netzwerkkarte aus und klicken Sie auf die Schaltfläche [Teilnehmer ermitteln].
 - Nach einer Wartezeit werden alle erreichbaren Teilnehmer aufgelistet. Hier finden Sie auch Ihre CPU, die mit IP 0.0.0.0 gelistet ist. Zur Kontrolle wird hier auch die MAC-Adresse angezeigt, die sich als Aufkleber unterhalb der Frontabdeckung Ihrer CPU befindet.
- 2ur Vergabe einer temporären IP-Adresse wählen Sie Ihre CPU an und klicken Sie auf [IP Parameter temporär setzen]. Geben Sie hier die gleichen IP-Parameter an, die Sie in den CPU-Eigenschaften parametriert haben und kicken Sie auf [Parameter schreiben].

- 13. Bestätigen Sie die Meldung, dass die CPU urgelöscht wird.
 - ⇒ Die IP-Parameter werden an die CPU übertragen und die Liste der erreichbaren Teilnehmer wird aktualisiert.
- 14. Wählen Sie Ihre CPU aus und klicken Sie auf [Übernehmen].
 - ⇒ Sie befinden sich nun wieder im Dialog "Konfiguration übertragen".

Hardware-Konfiguration übertragen

- Wählen Sie Ihre Netzwerkkarte aus und klicken Sie auf [Konfiguration übertragen].
 - ⇒ Nach einer kurzen Zeit erhalten Sie die Meldung, dass die Konfiguration übertragen wurde.

Hiermit ist die Hardware-Konfiguration abgeschlossen und die CPU immer über die von Ihnen vergebene IP-Adresse auch über WinPLC7 zu erreichen.


In der Regel erfolgt die Online-Übertragung Ihrer Hardware-Konfiguration aus dem Hardware-Konfigurator. Sie können aber auch mit "Datei

→ Aktive Station im WinPLC-Unterprojekt speichern" Ihre Hardware-Konfiguration als System-Datei in WinPLC7 übertragen und über WinPLC7 an Ihre CPU transferieren.

Programmierung von FC 1

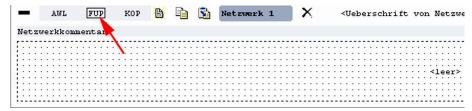
Die SPS-Programmierung findet in WinPLC7 statt. Schließen Sie den Hardware-Konfigurator und kehren Sie zu Ihrem Projekt in WinPLC7 zurück. Das SPS-Programm ist im Baustein FC 1 zu erstellen.

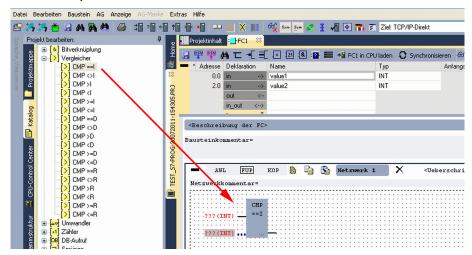
1. ▶ Wählen Sie in "Projektinhalt" "Neu → FC".

- **2.** Geben Sie als Baustein "FC1" an und bestätigen Sie Ihre Eingabe mit [OK].
 - ⇒ Der Editor für den FC 1 wird aufgerufen.

Parameter anlegen

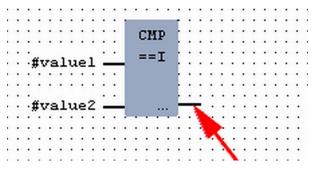
Der obere Teil des Editors enthält die Parametertabelle. In diesem Beispiel sollen die 2 Integer-Werte *value1* und *value2* miteinander verglichen werden. Da beide Werte innerhalb der Funktion nur gelesen werden, sind diese als "in" zu deklarieren.

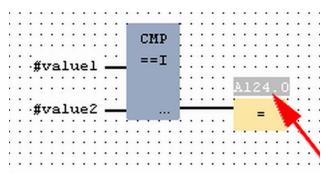

- 1. Gehen Sie auf der "Parametertabelle" in die Zeile "in →" und tragen Sie im Feld "Name" "value1" ein. Drücken Sie die [Eingabe]-Taste.
 - ⇒ Der Cursor springt zu der Spalte für den Datentyp.
- 2. Sie können jetzt entweder den Datentyp direkt eingeben oder durch Drücken der [Eingabe]-Taste aus einer Liste verfügbarer Datentypen auswählen. Geben Sie als Datentyp INT an und betätigen Sie die [Eingabe]-Taste.
 - ⇒ Der Cursor springt zu der Spalte für den "Kommentar".
- **3.** Geben Sie hier "1. Vergleichswert" an und drücken Sie die *[Eingabe]*-Taste.
 - ⇒ Eine neue "in →"-Zeile wird erzeugt und der Cursor in "Name" gesetzt.
- **4.** Verfahren Sie für *value2* auf die gleiche Weise wie unter *value1* beschrieben.
- 5. Speichern Sie den Baustein. Einen eventuellen Hinweis, dass die Schnittstelle des Bausteins geändert wurde, können Sie mit [Ja] quittieren.
 - ⇒ Die Parametertabelle enthält nun folgende Einträge:


Programm eingeben

Wie in der Aufgabenstellung gefordert soll je nach Vergleich von *value1* und *value2* der entsprechende Ausgang aktiviert werden. Für jede Vergleichsoperation ist ein Netzwerk anzulegen.

1. Das Programm soll als FUP (Funktionsplan) erzeugt werden. Wählen Sie hierzu durch Klicken auf *"FUP"* die FUP-Ansicht.

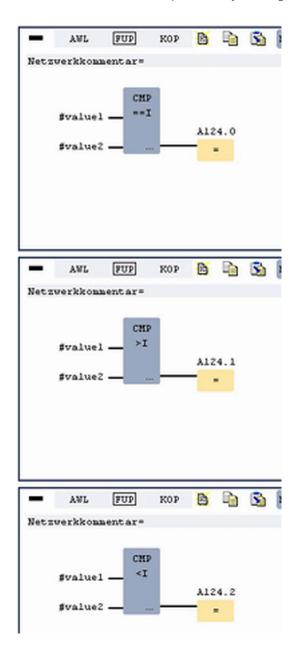

- Klicken Sie in das mit "<leer>" bezeichnete Eingabefeld. Die zur Verfügung stehenden Operationen können Sie mit Drag&Drop aus dem Katalog in Ihr Projekt ziehen oder durch Doppelklick im Katalog in Ihr Projekt übernehmen.
- 3. ▶ Öffnen Sie im *Katalog* die Kategorie "Vergleicher" und fügen Sie die Operation *"CMP==I"* in Ihr Netzwerk ein.


- Klicken Sie auf den linken oberen Eingang und fügen Sie value1 ein. Da es sich hierbei um Bausteinparameter handelt, können Sie durch Eingabe von "#" eine Auswahlliste der Bausteinparameter öffnen.
- **5.** Geben Sie "#" ein und betätigen Sie mit der *[Eingabe]*-Taste
- **6.** Wählen Sie aus der Auswahlliste den entsprechenden Parameter aus und übernehmen Sie mit der *[Eingabe]*-Taste.
- 7. Verfahren Sie auf die gleiche Weise mit dem Parameter *value2*.

Die Zuordnung zu dem korrespondierenden Ausgang, hier A 124.0, erfolgt nach folgender Vorgehensweise:

1. Klicken Sie auf den Ausgang auf der rechten Seite des Operators.

- Offnen Sie im *Katalog* die Kategorie "Bitverknüpfung" und wählen Sie die Verknüpfung "--[=]". Das Einfügen von "--[=]" ist bei WinPLC7 auf der Funktions-Taste [F7] abgelegt.
- 3. Geben Sie durch Klick auf den Operanten den Ausgang A 124.0 an.

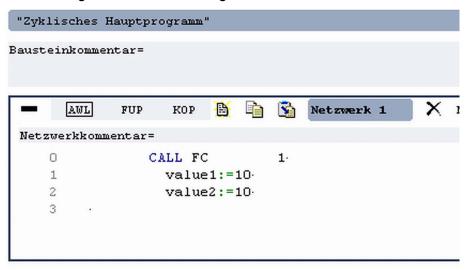


⇒ Hiermit ist Netzwerk1 abgeschlossen.

Neues Netzwerk einfügen

Für die weiteren Vergleiche sind die Operationen "CMP>I" auf A 124.1 und "CMP<I auf A 124.2 erforderlich. Legen Sie für beide Operationen nach folgender Vorgehensweise ein Netzwerk an:

- **1.** Bewegen Sie Ihre Maus auf das Editor-Fenster an beliebiger Stelle und betätigen Sie die rechte Maustaste.
- 2. ▶ Wählen Sie "Kontextmenü → Einfügen neues Netzwerk".
 - ⇒ Es öffnet sich ein Dialogfeld zur Vorgabe von Position und Anzahl der Netzwerke.
- Verfahren Sie auf die gleiche Weise wie für "Netzwerk 1" beschrieben.
- 4. Speichern Sie den FC 1 mit "Datei
 - → Aktuelles Fenster speichern" bzw. mit [Strg]+[S].
 - ⇒ Nachdem Sie die noch fehlenden Netzwerke ausprogrammiert haben, hat der FC 1 folgenden Aufbau:

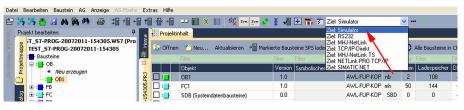

Baustein OB 1 erzeugen

Der Aufruf des FC 1 hat aus dem Zyklus-OB OB 1 zu erfolgen.

- **1.** Wechseln Sie in den OB 1, der bei der Projektanlage schon automatisch erzeugt wurde.
- **2.** Gehen Sie in "Projektinhalt" oder in Ihre "Projektmappe" und öffnen Sie den OB 1 durch Doppelklick.
- **3.** Wechseln Sie in die AWL-Ansicht.

Beispiel zur Projektierung > SPS-Programm in Simulator testen

- 4. Geben Sie "Call FC 1" ein und betätigen Sie die [Eingabe]-Taste.
 - ⇒ Die FC-Parameter werden automatisch angezeigt und die folgenden Parameter zugeordnet:


5. Speichern Sie den OB 1 mit 🔀 bzw. mit [Strg]+[S]

9.3.3 SPS-Programm in Simulator testen

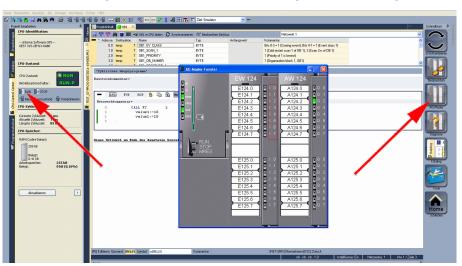
Vorgehensweise

WinPLC7 bietet Ihnen die Möglichkeit Ihr Projekt in einem Simulator zu testen.

1. Stellen Sie hierzu "Ziel: Simulator" ein.

2. Ubertragen Sie die Bausteine in den Simulator mit [Alle Bausteine in CPU laden].

- 3. Schalten Sie Ihre CPU in RUN, indem Sie unter "Projekt bearbeiten" in "CPU-Control Center" wechseln und hier auf "RUN" klicken.
 - ⇒ Die Anzeige wechselt von STOP nach RUN.
- **4.** ➤ Zur Anzeige des Prozessabbilds gehen Sie auf "Anzeige → PAA/PAE-Fenster anzeigen" oder klicken Sie auf □□□.
 - ⇒ Die verschiedenen Bereiche werden eingeblendet.


Beispiel zur Projektierung > SPS-Programm in CPU übertragen und ausführen

- **5.** Doppelklicken Sie auf das Prozessabbild und geben Sie im Register "Zeile2" die Adresse PAB 124 an. Bestätigen Sie Ihre Eingabe mit [OK]. Ein mit roter Farbe hinterlegter Wert entspricht einer logischen "1".
- 6. ▶ Öffnen Sie den OB 1.
- Ändern Sie den Wert einer Variablen, speichern Sie den OB 1 und übertragen Sie den Baustein in den Simulator.

Visualisierung über AG-Maske

Ein weiterer Bestandteil des Simulators ist die *AG-Maske*. Hier wird grafisch eine CPU dargestellt, die mit digitalen und analogen Peripheriemodulen erweitert werden kann. Sobald sich die CPU im Simulator in RUN befindet, können Sie hier mit der Maus Eingänge aktivieren und das Verhalten der Ausgänge anzeigen.

- 1. ▶ Öffnen Sie die AG-Maske über "Anzeige → AG-Maske".
 - ⇒ Eine CPU wird grafisch dargestellt.
- Öffnen Sie durch Doppelklick auf die Ausgabebaugruppe den Eigenschaften-Dialog und stellen Sie die Baugruppenadresse 124 ein.
- 3. Schalten Sie mit der Maus den Betriebsartenschalter in RUN.
 - ⇒ Ihr Programm wird im Simulator ausgeführt und dargestellt.

9.3.4 SPS-Programm in CPU übertragen und ausführen

Vorgehensweise

- 2ur Übertragung in Ihre CPU stellen Sie "Ziel: TCP/IP-Direkt" ein.
- 2. Bei Einsatz mehrerer Netzwerkkarten können sie über "Extras

 Netzwerkkarte auswählen" Ihre Netzwerkkarte bestimmen.
- Zur Vorgabe der Ethernet-Daten klicken Sie auf [...] und klicken Sie auf [Erreichbare Teilnehmer].

Beispiel zur Projektierung > SPS-Programm in CPU übertragen und ausführen

- 4. Klicken Sie auf [Teilnehmer ermitteln].
 - Nach einer gewissen Wartezeit werden alle verfügbaren Teilnehmer aufgelistet.
- **5.** Wählen Sie Ihre CPU aus, die Sie über die Hardware-Konfiguration mit TCP/IP-Adress-Parametern schon versorgt haben und klicken Sie auf [übernehmen].
- **6.** Schließen Sie den Dialog "Ethernet-Daten" mit [OK].
- 7. ► Übertragen Sie Ihr Projekt in Ihre CPU mit "AG → Alle Bausteine senden".
- 8. Schalten Sie Ihre CPU in RUN.
- 9. Offnen Sie den OB 1 durch Doppelklick
- Ändern Sie den Wert einer Variablen, speichern Sie den OB 1 und übertragen Sie den Baustein in die CPU.
 - ⇒ Gleich darauf ändert sich das Ausgabe-Verhalten gemäß Ihren Vorgaben. Mit "Baustein → Beobachten EIN/AUS" können Sie den Status Ihrer Bausteine anzeigen.