

VIPA System 500S

SPEED7 - CPU | 517-4NE02 | Handbuch

HB145D_CPU | RD_517-4NE02 | Rev. 10/23 Juni 2010

Copyright © VIPA GmbH. All Rights Reserved.

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an:

VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH

Ohmstraße 4, D-91074 Herzogenaurach, Germany

Tel.: +49 (91 32) 744 -0 Fax.: +49 9132 744 1864 EMail: info@vipa.de http://www.vipa.de

Hinweis

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

CE-Konformität

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften der folgenden Richtlinien übereinstimmen:

- 2004/108/EG Elektromagnetische Verträglichkeit
- 2006/95/EG Niederspannungsrichtlinie

Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, S7-300 und S7-400 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744 1204 EMail: documentation@vipa.de

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744 1150/1180 (Hotline)

EMail: support@vipa.de

Inhaltsverzeichnis

Über dieses Handbuch	1
Sicherheitshinweise	2
Teil 1 Grundlagen	1-1
Sicherheitshinweise für den Benutzer	1-2
Grundlagen Net-ID, Subnet-ID, Host-ID	1-3
Arbeitsweise einer CPU	
Programme einer CPU	1-7
Operanden einer CPU	1-7
CPU 517S/NET	1-9
Teil 2 Hardwarebeschreibung	2-1
Leistungsmerkmale	2-2
Aufbau	2-3
Komponenten	2-4
Technische Daten	2-10
Teil 3 Einsatz CPU 517S/NET	3-1
Übersicht	3-2
Montage	3-3
Installation des Treibers	
Richtlinie zur IP-Adressvergabe	
Spannungsversorgung anschließen	
Initialisierung der CPU-Komponente	
Zugriff intern auf PG/OP-Kanal	
Zugriff extern auf PG/OP-Kanal über Routing	
Zugriff auf integrierte Web-Seite	
Projektierung	
Einstellung der CPU-Parameter	
Projekt transferieren	
Betriebszustände	
Urlöschen	
Firmwareupdate	
Rücksetzen auf Werkseinstellung	
Speichererweiterung mit MCC	
Erweiterter Know-how-Schutz	
MMC-Cmd - Autobefehle	
VIPA-spezifische Diagnose-Einträge	
Variablen steuern und beobachten	
Teil 4 Einsatz CPU unter Profibus	
Übersicht	
Projektierung CPU mit integriertem Profibus-Master	
Einsatz als Profibus-DP-Slave	
Projekt transferieren	
Profibus-Aufbaurichtlinien	
Inbetriebnahme und Anlaufverhalten	4-11

Teil 5 Einsatz PtP-Kommunikation	5-1
Schnelleinstieg	5-2
Prinzip der Datenübertragung	5-3
Einsatz der RS485-Schnittstelle für PtP	5-4
Parametrierung	5-6
Kommunikation	5-9
Protokolle und Prozeduren	5-15
Modbus - Funktionscodes	5-19
Modbus - Beispiel zur Kommunikation	5-23
Teil 6 Einsatz Ethernet-Komunikation	6-1
Grundlagen - Industrial Ethernet in der Automatisierung	6-2
Grundlagen - ISO/OSI-Schichtenmodell	6-3
Grundlagen - Begriffe	6-6
Grundlagen - Protokolle	6-7
Grundlagen - IP-Adresse und Subnetz	6-11
Grundlagen - MAC-Adresse und TSAP	6-13
Schnelleinstieg	
Hardware-Konfiguration	
Kommunikationsverbindungen projektieren	
Kommunikationsverbindungen im Anwenderprogramm	
NCM-Diagnose - Hilfe zur Fehlersuche	
Kopplung mit Fremdsystemen	
Teil 7 Einsatz PLC-Tool	
Allgemein	
Installation und Programmstart	
Bedienung PLC-Tool	
Einsatz PLC-Tool	
Teil 8 WinPLC7	
Systemvorstellung	
Installation	
Beispiel zur Projektierung	
Anhang	A-1
Index	A-1

Über dieses Handbuch

In dem vorliegenden Handbuch finden Sie alle Angaben, die für den Einsatz der Slot-SPS CPU 517S/NET in Ihrem PC erforderlich sind. Bei der hier beschriebenen PC-Steckkarte handelt es sich um eine SPEED7 CPU 517S/NET mit integriertem Profibus-DP-Master. Die CPU wird als Ethernet-Schnittstelle im PC eingebunden und kann über die IP-Adresse angesprochen werden.

Überblick

Teil 1: Grundlagen

Im Rahmen dieser Grundlagen folgen Hinweise im Umgang und Informationen über Projektierung eines System 500S SPEED7 Systems von VIPA.

Auch finden Sie hier Grundinformationen zum Aufbau von IP-Adressen.

Teil 2: Hardwarebeschreibung

In diesem Kapitel wird näher auf die Hardware-Komponenten der CPU 517S/NET eingegangen.

Die Technischen Daten finden Sie am Ende des Kapitels.

Teil 3: Einsatz CPU 517S/NET

Kernthema dieses Kapitels ist der Einsatz der CPU 517S/NET von VIPA. Hier finden Sie alle Informationen, die für Einbau, Inbetriebnahme und Projektierung erforderlich sind.

Teil 4: Einsatz CPU unter Profibus

Inhalt dieses Kapitels ist der Einsatz der CPU 517S/NET unter Profibus. Nach einer kurzen Übersicht wird die Projektierung und Parametrierung einer CPU 517S/NET mit integriertem Profibus-Teil von VIPA gezeigt.

Weiter erhalten Sie hier Informationen, wie Sie den Profibus-Teil als DP-Master und als DP-Slave einsetzen.

Mit Hinweisen zur Inbetriebnahme und zum Anlaufverhalten endet dieser Teil.

Teil 5: Einsatz PtP-Kommunikation

In diesem Kapitel ist der Einsatz der RS485-Schnittstelle für die serielle PtP-Kommunikation beschrieben.

Sie erhalten hier alle Informationen zu den Protokollen und zur Projektierung der Schnittstelle, die für die serielle Kommunikation über RS485 erforderlich sind.

Teil 6: Einsatz TCP/IP

In diesem Kapitel ist die Kommunikation über Ethernet beschrieben. Bitte beachten Sie den Abschnitt "Schnelleinstieg", hier finden Sie in komprimierter Form alle Informationen, die für die Projektierung der CPU 517S/NET mit *CP 543* erforderlich sind. Nach dem Schnelleinstieg sind diese Punkte näher beschrieben.

Teil 7: Einsatz PLC-Tool

In diesem Teil ist der Einsatz der Bediensoftware *PLC-Tool* von VIPA näher erläutert. PLC-Tool ist Bestandteil des OPC-Server-Pakets und wird bei der Standard-Installation zusammen mit dem OPC-Server installiert.

Das OPC-Server-Paket finden Sie auf der beiliegenden CD SW-ToolDemo.

Teil 8: WinPLC7

In diesem Teil wird die Programmier- und Simulationssoftware WinPLC7 von VIPA vorgestellt. WinPLC7 eignet sich für alle mit Siemens STEP®7 programmierbaren Steuerungen.

Neben der Systemvorstellung und der Installation finden Sie hier die Grundzüge der Programmbedienungen an einem Beispielprojekt erklärt.

Nähere Informationen zum Einsatz von WinPLC7 können Sie der Online-Hilfe bzw. der Online-Dokumentation von WinPLC7 entnehmen.

Zielsetzung und Inhalt

Das Handbuch beschreibt die SPEED7 CPU 517S/NET aus dem System 500S von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.

Dieses Handbuch ist Bestandteil des Dokumentationspakets

mit der Best.-Nr.: HB145D_CPU und gültig für:

Produkt	BestNr.	ab Stand:			
		CPU-HW	CPU-FW	DPM-FW	CP-FW
CPU 517S/NET	VIPA 517-4NE02	01	V351	V326	V259

Zielgruppe

Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.

Aufbau des Handbuchs

Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.

Orientierung im Dokument

Als Orientierungshilfe stehen im Handbuch zur Verfügung:

- Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs
- Übersicht der beschriebenen Themen am Anfang jedes Kapitels
- Stichwortverzeichnis (Index) am Ende des Handbuchs

Verfügbarkeit

Das Handbuch ist verfügbar in:

- gedruckter Form auf Papier
- in elektronischer Form als PDF-Datei (Adobe Acrobat Reader)

Piktogramme Signalwörter

Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:

Gefahr!

Unmittelbar drohende oder mögliche Gefahr.

Personenschäden sind möglich.

Achtung!

Bei Nichtbefolgen sind Sachschäden möglich.

Hinweis!

Zusätzliche Informationen und nützliche Tipps

Sicherheitshinweise

Bestimmungsgemäße Verwendung

Die SPEED7-CPU ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

Gefahr!

Das Gerät ist nicht zugelassen für den Einsatz

• in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung

Zur Entsorgung des Geräts nationale Vorschriften beachten!

Teil 1 Grundlagen

Überblick

Im Rahmen dieser Grundlagen folgen Hinweise im Umgang und Informationen über Projektierung eines System 500S SPEED7 Systems von VIPA.

Auch finden Sie hier Grundinformationen zum Aufbau von IP-Adressen.

Inhalt	Thema	Seite
	Teil 1 Grundlagen	1-1
	Sicherheitshinweise für den Benutzer	
	Grundlagen Net-ID, Subnet-ID, Host-ID	1-3
	Arbeitsweise einer CPU	
	Programme einer CPU	1-7
	Operanden einer CPU	1-7
	CPU 517S/NET	1-9

Sicherheitshinweise für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen.

Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin.

Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten, die zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen.

Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen.

Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Baugruppen

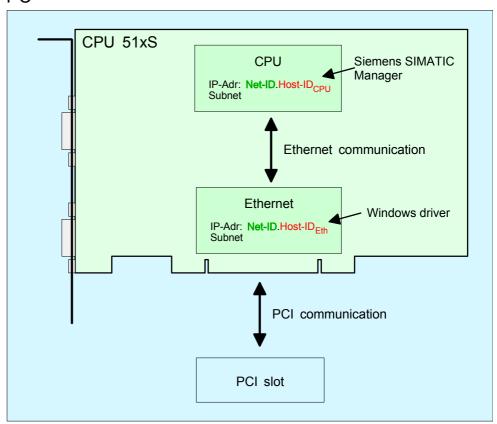
Verwenden Sie für den Versand immer die Originalverpackung.

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potentialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

Achtung!


Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Grundlagen Net-ID, Subnet-ID, Host-ID

Warum diese Grundlagen?

Die CPU 51xS PC-Steckkarte besteht aus einem CPU- und einem Ethernet-Teil, die über eine TCP-basierte Punkt-zu-Punkt-Verbindung kommunizieren. Hierzu besitzen CPU- und Ethernet-Teil jeweils eine änderbare IP-Adresse, die sich ausschließlich in der Host-ID unterscheiden dürfen.

PC

Bei Einsatz mehrerer CPU 51xS in einem PC müssen sich je CPU 51xS Steckkarte die Net-IDs unterscheiden.

Nachfolgend ist die Vorgehensweise für die Vergabe von IP-Adressen in Verbindung mit Net-ID und Host-ID aufgeführt.

Net-ID Host-ID

Jede IP-Adresse setzt sich aus einer **Net-ID** und **Host-ID** zusammen.

Die **Net**work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert.

Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.

Subnet-Maske

Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der **Subnet-Maske** weiter aufgeteilt werden, in eine **Subnet-ID** und eine *neue* **Host-ID**.

Derjenige Bereich der ursprünglichen Host-ID, welcher von Einsen der Subnet-Maske überstrichen wird, wird zur Subnet-ID, der Rest ist die neue Host-ID.

Subnet-Maske	binär alle "1'	'	binär alle "0"
IPv4 Adresse	Net-ID	Host-ID	
Subnet-Maske und IPv4 Adresse	Net-ID	Subnet-ID	neue Host-ID

Eine TCP-basierte Kommunikation per Punkt-zu-Punkt-, Hub- oder Switch-Verbindung ist nur zwischen Stationen mit identischer Network-ID und Subnet-ID möglich! Unterschiedliche Bereiche sind mit einem Router zu verknüpfen.

Über die Subnet-Maske haben Sie die Möglichkeit, die Ressourcen ihren Bedürfnissen entsprechend zu ordnen. So erhält z.B. jede Abteilung ein eigenes Subnetz und stört damit keine andere Abteilung.

Hinweis!

Bei Einsatz der CPU 51xS in Ihrem PC darf die Net-ID der CPU 51xS noch nicht anderweitig vergeben sein. Ansonsten müssen Sie eine Umbelegung der Adressen vornehmen.

Adress-Klassen

Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4Byte = 32Bit lang sind.

Klasse A	0 Network-ID (1+7 bit)			Host-ID (24 bit	t)	
Klasse B	10	N	etwork-ID (2+	14 bit)	Host-ID (16 I	oit)
Klasse C	110)	Network-ID (3	3+21 bit)		Host-ID (8 bit)
Klasse D	111	0	Multicast Gr	Multicast Gruppe		
Klasse E	111	110	Reserved	Reserved		

Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert.

Die Adressformate der 3 Klassen A,B,C unterscheiden sich lediglich dadurch, dass Netzwork-ID und Host-ID verschieden lang sind.

Private IP Netze

Zur Bildung privater IP-Netze innerhalb des Internets sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

Netzwerk Klasse	Von IP	Bis IP	Standard Subnet-Maske
Α	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>

(Die Host-ID ist jeweils unterstrichen.)

Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden.

Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = 0	Identifier dieses Netzwerks, reserviert!
Host-ID = maximal (binär komplett Einsen)	Broadcast Adresse dieses Netzwerks

Hinweis!

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnet-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

Arbeitsweise einer CPU

Allgemein

Die CPU enthält einen Standardprozessor mit internem Programmspeicher. In Verbindung mit der angekoppelten SPEED7-Technologie erhalten Sie ein leistungsfähiges Gerät zur Prozessautomatisierung. In einer CPU gibt es folgende Arbeitsweisen:

- zyklische Bearbeitung
- · zeitgesteuerte Bearbeitung
- · alarmgesteuerte Bearbeitung
- · Bearbeitung nach Priorität

zyklische Bearbeitung

Die **zyklische** Bearbeitung stellt den Hauptanteil aller Vorgänge in der CPU. In einem Zyklusdurchlauf werden die gleichen Bearbeitungsfolgen wiederholt.

zeitgesteuerte Bearbeitung

Erfordern Prozesse in konstanten Zeitabschnitten Steuersignale, so können Sie neben dem zyklischen Ablauf **zeitgesteuert** bestimmte Aufgaben durchführen z.B. zeitunkritische Überwachungsfunktionen im Sekundenraster.

alarmgesteuerte Bearbeitung

Soll auf ein Prozesssignal besonders schnell reagiert werden, so ordnen Sie diesem einen **alarmgesteuerten** Bearbeitungsabschnitt zu. Ein Alarm kann in Ihrem Programm eine Bearbeitungsfolge aktivieren.

Bearbeitung nach Priorität

Die oben genannten Bearbeitungsarten werden von der CPU nach Wichtigkeitsgrad behandelt (**Priorität**). Da auf ein Zeit- oder Alarmereignis schnell reagiert werden muss, unterbricht die CPU zur Bearbeitung dieser hochprioren Ereignisse die zyklische Bearbeitung, reagiert auf diese Ereignisse und setzt danach die zyklische Bearbeitung wieder fort. Die zyklische Bearbeitung hat daher die niedrigste Priorität.

Programme einer CPU

Übersicht

Das in jeder CPU vorhandene Programm unterteilt sich in:

- Systemprogramm
- Anwenderprogramm

Systemprogramm

Das Systemprogramm organisiert alle Funktionen und Abläufe der CPU, die nicht mit einer spezifischen Steuerungsaufgabe verbunden sind.

Anwenderprogramm

Hier finden Sie alle Funktionen, die zur Bearbeitung einer spezifischen Steuerungsaufgabe erforderlich sind. Schnittstellen zum Systemprogramm stellen die Operationsbausteine zur Verfügung.

Operanden einer CPU

Übersicht

Die CPU stellt Ihnen für das Programmieren folgende Operandenbereiche zur Verfügung:

- Prozessabbild und Peripherie
- Merker
- Zeiten und Zähler
- Datenbausteine

Prozessabbild und Peripherie

Auf das Prozessabbild der Aus- und Eingänge PAA/PAE kann Ihr Anwenderprogramm sehr schnell zugreifen. Sie haben Zugriff auf folgende Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Sie können mit Ihrem Anwenderprogramm über den Bus direkt auf Peripheriebaugruppen zugreifen. Folgende Datentypen sind möglich:

- Bytes
- Wörter
- Blöcke

Merker

Der Merkerbereich ist ein Speicherbereich, auf den Sie über Ihr Anwenderprogramm mit entsprechenden Operationen zugreifen können. Verwenden Sie den Merkerbereich für oft benötigte Arbeitsdaten.

Sie können auf folgende Datentypen zugreifen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Zeiten und Zähler

Sie können mit Ihrem Anwenderprogramm eine Zeitzelle mit einem Wert zwischen 10ms und 9990s laden. Sobald Ihr Anwenderprogramm eine Startoperation ausführt, wird dieser Zeitwert um ein durch Sie vorgegebenes Zeitraster dekrementiert, bis Null erreicht wird.

Für den Einsatz von Zählern können Sie Zählerzellen mit einem Anfangswert laden (max. 999) und diesen hinauf- bzw. herunterzählen.

Datenbausteine

Ein Datenbaustein enthält Konstanten bzw. Variablen im Byte-, Wort- oder Doppelwortformat. Mit Operanden können Sie immer auf den aktuellen Datenbaustein zugreifen.

Sie haben Zugriff auf folgende Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

CPU 517S/NET

Übersicht

Die CPU 517S/NET stellt eine vollwertige SPS-CPU in Form einer PCI-Bus-Karte für PC-basierte Anwendungen dar. Unterstützt werden die Windows®- Betriebssysteme 98, ME, NT4, 2000 und XP.

Der Leistungsumfang entspricht dem einer SPEED7 CPU aus dem System 300S von VIPA. Die Programmierung erfolgt über Standard-Programmiertools wie z.B. WinPLC7 von VIPA oder STEP®7 von Siemens.

Für die Anbindung an die Prozessebene stehen eine MPI- sowie eine Profibus-DP-Master-Schnittstelle zur Verfügung. Über eine Twisted Pair Schnittstelle erfolgt die Kommunikation zum integrierten CP 543.

Weiter befindet sich der VIPA OPC-Server im Lieferumfang.

Nach der Hardwareinstallation wird die Steckkarte vom PC als "Intel Ethernet-Schnittstelle" eingebunden. Die CPU-Komponente der CPU 517S Steckkarte kann nur betrieben werden, wenn sie extern <u>oder</u> intern mit DC 24V versorgt wird. Die externe Versorgung ermöglicht auch den Betrieb der Karte außerhalb eines PCs bzw. der Betrieb ist unabhängig vom PC. Für den Betrieb ist darauf zu achten, dass die Steckkarte über das Schirmblech geerdet ist.

Speichermanagement

Die CPU hat einen Arbeitsspeicher integriert. Hiervon werden während des Programmablaufs 50% für Programmcode und 50% für Daten verwendet. Mit einer MCC Speichererweiterungskarte haben Sie die Möglichkeit den Gesamtspeicher bis zum Maximalspeicher zu erweitern.

Integrierter Ethernet-PG/OP-Kanal

Auf der CPU befindet sich eine Ethernet-Schnittstelle für PG/OP-Kommunikation. Nur im eingebauten Zustand haben Sie über diesen PG/OP-Kanal Zugriff auf die CPU. Darüber können Sie die CPU programmieren, fernwarten oder die Web-Site abrufen. Es stehen Ihnen gleichzeitig 4 Kanäle zur Verfügung.

Integrierter Profibus-DP-Master

Die CPU hat einen Profibus-DP-Master integriert. Über den DP-Master, mit einem Datenbereich von 1kByte für Ein- und Ausgabe können Sie bis zu 124 DP-Slaves ansprechen. Die Projektierung erfolgt unter WinPLC7 von VIPA oder im Hardware-Konfigurator von Siemens. Bitte beachten Sie, dass es bei Einsatz des Siemens SIMATIC Manager zu einer Begrenzung der maximalen Anzahl von projektierbaren DP-Slaves kommen kann.

Sie können auch den Profibus-Teil als "intelligenten" DP-Slave einsetzen. Näheres hierzu finden Sie unter "Einsatz CPU unter Profibus".

Während des Betriebs blendet der DP-Master seine Datenbereiche in einen einstellbaren Adressbereich der CPU ein. Den Adressbereich geben Sie in Ihrem Projektiertool an.

Integrierter CP 543

Mit dem integrierten CP 543 steht Ihnen ein Kommunikations-Prozessor zur Verfügung. Dieser bietet 32 PG/OP-Kanäle und 16 über Siemens NetPro bzw. 64 über Anwenderprogramm projektierbare Produktiv-Verbindungen.

MPI-Schnittstelle

Auf der Slot-SPS befindet sich eine MPI-Schnittstelle. Im Auslieferungszustand ist die MPI-Adresse 2. Sie können diese jederzeit über Ihr CPU-Projektiertool ändern.

Betriebssicherheit

- Externe Spannungsversorgung der CPU (autarker Betrieb)
- ESD/Burst gemäß IEC 61000-4-2/IEC 61000-4-4 (bis Stufe 3)
- Schockfestigkeit gemäß IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)

Umgebungsbedingungen

- Betriebstemperatur: 0 ... +60°C
 Lagertemperatur: -25 ... +70°C
- Relative Feuchte: 5 ... 95% ohne Betauung
- Lüfterloser Betrieb

Kompatibilität

Die SPEED7-CPUs von VIPA sind befehlskompatibel zur Programmiersprache STEP®7 von Siemens und können unter WinPLC7 von VIPA oder im Siemens SIMATIC Manager programmiert werden. Hierbei kommt der Befehlssatz der S7-400 von Siemens zum Einsatz.

Hinweis!

Bitte verwenden Sie zur Projektierung der VIPA CPU 517S/DP immer die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) von Siemens mit einem virtuellen Ethernet-CP CP 343-1 aus dem Hardware-Katalog.

Zur Projektierung werden umfangreiche Kenntnisse im Umgang mit dem Siemens SIMATIC Manager vorausgesetzt.

Spannungsversorgung

Die CPU-Komponente der CPU 517S Steckkarte kann nur betrieben werden, wenn sie extern <u>oder</u> intern mit DC 24V versorgt wird. Eine gleichzeitige Einspeisung ist unbedingt zu vermeiden!

Für den Betrieb ist darauf zu achten, dass die Steckkarte über das Schirmblech geerdet ist.

Bitte beachten Sie beim Anschluss, dass die interne DC 24V Spannungsversorgung hardwarebedingt keine EMV-Filter zu Schutz gegen Störungen besitzt.

Bedienmöglichkeit über PLC-Tool

Zur Bedienung der CPU über den PC befindet sich das Programm "PLC-Tool" im Lieferumfang. Zur Beobachtung und Bedienung der CPU wird Ihnen auf Ihrem PC eine Bedienoberfläche dargestellt, die schematisch der Draufsicht einer CPU nachempfunden ist.

Über das PLC-Tool können Sie den LED-Status ausgeben und den Betriebszustand der CPU anzeigen bzw. ändern.

Teil 2 Hardwarebeschreibung

Überblick In diesem Kapitel wird näher auf die Hardware-Komponenten der

CPU 517S/NET eingegangen.

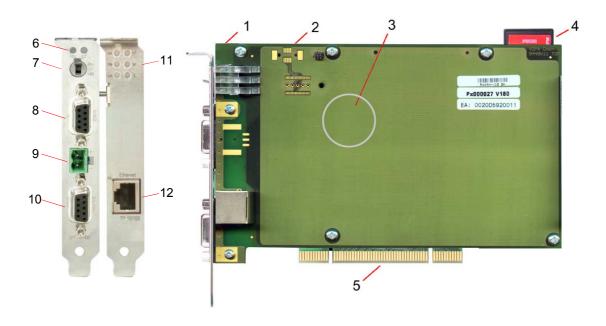
Die Technischen Daten finden Sie am Ende des Kapitels.

Inhalt	Thema		Seite
	Teil 2 H	ardwarebeschreibung	2- 1
	Leistungs	merkmale	2-2
	Aufbau		2-3
	Kompone	nten	2-4
	Technisch	ne Daten	2-10

Leistungsmerkmale

CPU 517S/NET 517-4NE02

- SPEED7-Technologie integriert
- Befehlskompatibel zu STEP®7 von Siemens
- Projektierung über den SIMATIC Manager von Siemens
- Integriertes DC 24V-Netzteil
- MPI mit max. 32 PG/OP-Verbindungen mit bis zu 12Mbit/s
- Status-LEDs für Betriebszustand und Diagnose
- Akkupufferung für RAM und Uhr
- Integrierter Profibus-DP-Master
- Integrierter CP 543 Kommunikationsprozessor
- Integrierter Arbeitsspeicher max. 2MByte erweiterbar bis 8MByte (50% Code/50% Daten)
- Speichermedien-Slot für Projektierung, Speicherupgrade und Firmwareupdate
- 2048 Zeiten, 2048 Zähler, 16384 Merker-Byte


Bestelldaten

Тур	Bestellnummer	Beschreibung
517S/NET	VIPA 517-4NE02	2MByte Arbeitsspeicher erweiterbar bis 8MByte
		(jeweils 50% Programm/50% Daten),
		externe DC 24V Stromversorgung, MPI, MMC-Slot, Echtzeit-Uhr
		Interface: Profibus-DP-Master, 12Mbit/s, bis zu 124 Slaves,
		PCI-Ethernet-Interface für PG/OP-Kommunikation, inkl.
		SW110A2LA OPC-Server (SW110A2LA bitte separat bestellen).
		Inkl. Treiber und SW860R OPC-Server (ToolDemo-CD)
		2. Slot: Ethernet-CP 543, S7-Kommunikation, RFC1006, H1, TCP/IP, UDP, bis zu 64 Verbindungen

Aufbau

CPU 517S/NET

517-4NE02

- [1] Klemme für interne DC 24V Spannungsversorgung
- [2] LEDs für Inbetriebnahme (hier von Ethernet-Teil verdeckt)
- [3] Lithiumakku für Uhr und Anwenderspeicher (hier von Ethernet-Teil verdeckt)
- [4] Steckplatz für Speichermedien (hier MMC gesteckt)
- [5] PCI-Bus-Leiste
- [6] RUN/STOP LEDs
- [7] Betriebsarten-Schalter
- [8] Profibus-DP-Master Buchse
- [9] Stecker für externe DC 24V Spannungsversorgung
- [10] MPI-Buchse
- [11] LEDs CP 543 Kommunikation
- [12] Twisted Pair Schnittstelle für CP 543 Kommunikation

Komponenten

LED-Leiste

Auf der Steckkarte befindet sich insbesondere für die Inbetriebnahme bzw. den externen Einsatz eine LED-Leiste zur Statusanzeige von CPU, Ethernet und Profibus-DP-Master. Zur Kontrolle der karteninternen Kommunikation befinden sich nahe der Steckleiste 3 LEDs die während der Kommunikation blinken bzw. leuchten.

Bei Einsatz in einem PC können Sie mit Hilfe der mitgelieferten Software PLC-Tool den Zustand der LEDs auf Ihrem PC ausgeben.

Die Verwendung und die jeweiligen Farben der LEDs finden Sie in den nachfolgenden Tabellen:

Master-Betrieb

RUN	ERR	DE	IF	Bedeutung
grün	rot	grün	rot	
0	0	0	0	Master hat keine Projektierung, d.h. die DP-Schnittstelle wird nicht verwendet.
•	0	*	0	Master befindet sich im "clear"-Zustand (sicherer Zustand). Die Eingänge der Slaves können gelesen werden. Die Ausgänge sind gesperrt.
•	0	•	0	Master befindet sich im "operate"-Zustand (CPU RUN), d.h. er tauscht Daten mit den Slaves aus. Ausgänge können angesprochen werden.
•	•	\Rightarrow	0	Es fehlt mindestens 1 Slave.
•	•	•	0	L3 Territ mindestens 1 Olave.
0	0	0	•	Initialisierungsfehler bei fehlerhafter Parametrierung.
0	•	0	•	Wartezustand auf Start-Kommando von der CPU (Zustand im Anlauf).

Slave-Betrieb

RUN grün	ERR rot	DE grün	IF rot	Bedeutung
0	0	0	0	Slave hat keine Projektierung.
\(\frac{1}{2}\)	0	0	0	Slave ist ohne Master.
\(\Delta\)	0	\Rightarrow	0	Abwechselndes Blinken bei Projektierungsfehler (config. fault).
•	0	•	0	Slave tauscht Daten mit dem Master aus.

an: ● aus: ○ blinkend: ☆

... Fortsetzung LEDs

Bezeichnung	Farbe	Bedeutung		
Ethernet				
COLL	Grün	Collision:	an: Vollduplexbetrieb aktiv	
			aus: Halbduplexbetrieb aktiv	
			blinkt: Collision detected	
SPEED	Grün	Speed:	an: 100MBit	
		-	aus: 10MBit	
LINK	Grün	Link	an: physikalische Verbindung besteht	
			aus: keine physikalische Verbindung	
CPU				
MMC	Gelb	Blinkt bei Zugriff auf MMC		
FRCE	Gelb	Leuchtet, sobald Variablen geforced (fixiert) werden		
SF	Rot	Leuchtet bei Systemfehler (Hardware-Defekt)		
PWR	Grün	CPU-Teil wird intern mit 5V versorgt		

LEDs auf Anschlussblech

Oberhalb des Betriebsartenschalters sind 2 LEDs, die den Betriebsstatus der CPU anzeigen:

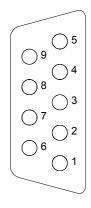
Bezeichnung	Farbe	Bedeutung
ST	Gelb	CPU befindet sich im Zustand STOP
RN	Grün	CPU befindet sich im Zustand RUN

LEDs CP 543

Die Verwendung und die jeweiligen Farben der LEDs für den integrierten CP 543 finden Sie in der nachfolgenden Tabelle:

Name	Farbe	Bedeutung
PW	grün	Signalisiert interne Spannungsversorgung des CP 543
RN	grün	RUN zeigt an, dass sich der CP mit einem Projekt im RUN befindet und die Kommunikation über projektierbare Verbindungen freigegeben ist.
ST	gelb	Leuchtet, wenn sich der CP in STOP befindet und alle projektierbaren Verbindungen gesperrt sind.
SF	rot	Leuchtet im Fehlerfall
L/A	grün	Link/Activity
		an: physikalisch verbunden aus: keine physikalische Verbindung blinkt: zeigt Ethernet-Aktivität an
S	grün	Speed:
		an: 100MBit
		aus: 10MBit.

Buchsen und Stecker


Auf der PC-Steckkarte sind folgende Buchsen nach außen geführt:

Profibus-DP-Master PBDP/PtP

Über die 9-polige RS485Schnittstelle binden Sie den integrierten Profibus-DP-Master in Profibus ein. Mit der Funktionalität *PtP* ermöglicht die RS485-Schnittstelle eine seriellePunkt-zu-Punkt-Prozessankopplung.

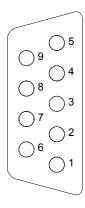
Die RS485-Buchse hat folgende Pinbelegung:

9-polige Buchse

Pin	Belegung
1	Schirm
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

Hinweis!

Beachten Sie, dass Sie die Abschlusswiderstände an den Busenden aktivieren!


MPI-Schnittstelle

MPI dient zur Anbindung an die Prozessebene. Hierbei können Programme und Daten zwischen den MPI-Teilnehmern transferiert werden. Ab Werk besitzt die Steckkarte die MPI-Adresse 2.

Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich.

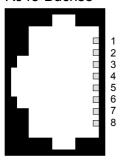
Die MPI-Buchse hat folgende Pinbelegung:

9-polige Buchse

Pin	Belegung
1	reserviert (darf nicht belegt sein)
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

CP 543

Die CPU 517S/NET besitzt einen integrierten Kommunikationsprozessor CP 543


Dieser bietet 16 projektierbare Verbindungen über Siemens NetPro, 64 Programmierbare Verbindungen über Anwenderprogramm und 32 PG/OP Verbindungen.

Die Projektierung als CP343-1EX11 erfolgt unter NetPro von Siemens.

Über die RJ45-Buchse können Sie den CP an Twisted-Pair-Ethernet anbinden.

Die Buchse hat folgende Belegung:

RJ45-Buchse

8-polige RJ45-Buchse:

Pin	Signal
1	Transmit +
2	Transmit -
3	Receive +
4	-
5	-
6	Receive -
7	-
8	-

Steckplatz für Speichermedien

Über diesen Steckplatz können Sie eine MMC (**M**ulti**m**edia **C**ard) als externes Speichermedium für Programme und Firmware oder eine konfigurierte MMC als MCC-Speichererweiterungskarte stecken. Zusätzlich kann die MCC auch als externes Speichermedium eingesetzt werden.

Beide VIPA-Speicherkarten sind mit dem PC-Format FAT16 vorformatiert und können mit einem Kartenlesegerät beschrieben werden.

Speichermanagement

Jede CPU 51xS hat einen Arbeitsspeicher integriert. Hiervon werden während des Programmablaufs 50% für Programmcode und 50% für Daten verwendet.

Sie haben die Möglichkeit den Gesamtspeicher mittels einer **M**emory **C**onfiguration **C**ard kurz MCC bis zum Maximalspeicher zu erweitern.

A

Achtung!

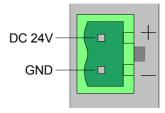
Bitte beachten Sie beim Einsatz einer Speicherkarte, dass diese mit dem FAT16 Filesystem formatiert ist. Die Speicherkarten von VIPA werden immer vorformatiert ausgeliefert.

Betriebsarten-Schalter

Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen. Die Betriebsart ANLAUF wird von der CPU automatisch zwischen STOP und RUN ausgeführt.

Mit der Tasterstellung Memory Reset (MRES) fordern Sie das Urlöschen an mit anschließendem Laden von MMC (Projekt oder Firmwareupdate).

Spannungsversorgung

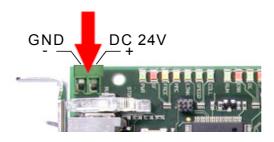

Nachdem die CPU 51xS Steckkarte im PC installiert und die Kommunikation zwischen PC und Ethernet-Komponente hergestellt ist können Sie die DC 24V Spannungsversorgung anschließen.

Die CPU-Komponente der CPU 51xS Steckkarte kann nur betrieben werden, wenn sie extern <u>oder</u> intern mit DC 24V versorgt wird. Die externe Versorgung ermöglicht auch den Betrieb der Karte außerhalb eines PCs bzw. der Betrieb ist unabhängig vom PC. Für den Betrieb ist darauf zu achten, dass die Steckkarte über das Schirmblech geerdet ist.

Hinweis!

Die CPU 51xS ist entweder extern <u>oder</u> intern mit DC 24V zu versorgen. **Eine gleichzeitige Einspeisung ist unbedingt zu vermeiden!**

Externe Spannungsversorgung Für die externe Spannungsversorgung befindet sich auf dem Anschlussblech ein Stecker, der folgende Pinbelegung hat:



Interne Spannungsversorgung An der Oberseite der PC-Steckkarte befindet sich die Anschlussklemme für die interne DC 24V Spannungsversorgung.

Bitte beachten Sie beim Anschluss Ihrer DC 24V Spannungsversorgung, dass die interne Spannungsversorgung hardwarebedingt keine EMV-Filter zum Schutz gegen Störungen besitzt (z.B. entsprechend EN 61000-4-4 [Burst], EN 61000-4-5 [Surge] oder EN 61000-4-6 [Leitungsgeführte Störgrößen, induziert durch HF-Felder]).

Bitte verwenden Sie hier eine entsprechend gefilterte Versorgungsspannung.

Die Anschlussklemme hat folgenden Pinbelegung:

Akkupufferung für Uhr und RAM

Die CPU 51xS besitzt einen internen Akku, der zur Sicherung des RAMs bei Stromausfall dient. Zusätzlich puffert der Akku die interne Uhr.

Der Akku wird direkt über die eingebaute Spannungsversorgung durch eine Ladeelektronik geladen und gewährleistet eine Pufferung für mindestens 30 Tage.

Der Akku muss fehlerfrei sein, damit die CPU automatisch wiederanläuft.

Ein Anlauf mit defektem Akku ist aber möglich, wenn manuell nach RUN geschaltet wird, oder wenn eine MMC mit einem gültigem s7prog.wld Projekt steckt und dieses Projekt einen Batteriefehler OB81 enthält.

Bei fehlerhaftem Akku sollte die CPU überprüft werden.

Setzen Sie sich hierzu mit VIPA in Verbindung!

Technische Daten

Artikelnummer	VIPA 517-4NE02
Bezeichnung	CPU 517S/NET
Technische Daten Stromversorgung	5. 5 517 5.11E1
Versorgungsspannung (Nennwert)	DC 24V
Versorgungsspannung (zulässiger Bereich)	DC 20,428,8V
Verpolschutz	ja
Stromaufnahme (im Leerlauf)	360mA
Stromaufnahme (Nennwert)	1,2A
Einschaltstrom	5A
Lade- und Arbeitsspeicher	JA .
Ladespeicher integriert	8MB
	8MB
Ladespeicher maximal	
Arbeitsspeicher integriert	2MB
Arbeitsspeicher maximal	8MB
Speicher geteilt 50% Code / 50% Daten	ja
Memory Card Slot	MMC-Card mit max. 1GB
Ausbau	
Anzahl DP-Master integriert	1
CP 543 integriert	1
Status, Alarme, Diagnosen	
Statusanzeige	ja
Alarme	nein
Prozessalarm	nein
Diagnosealarm	nein
Befehlsbearbeitungszeiten	
Bitoperation, min.	0,01µs
Wortoperation, min.	0,01µs
Festpunktarithmetik, min.	0,01µs
Gleitpunktarithmetik, min.	0,06µs
Zeiten/Zähler und deren Remanenz	
Anzahl S7-Zähler	2048
Anzahl S7-Zeiten	2048
Datenbereiche und Remanenz	
Anzahl Merker	16384Byte
Anzahl Datenbausteine	8190
max. Datenbausteingröße	64KB
max. Lokaldatengröße je Ablaufebene	510Byte
Bausteine	5.52j.c
Anzahl OBs	24
Anzahl FBs	8191
Anzahl FCs	8191
Maximale Schachtelungstiefe je Prioklasse	8
Maximale Schachtelungstiefe zusätzlich innerhalb der Fehler OB	4
Uhrzeit	7
Uhr gepuffert	ia
Uhr Pufferungsdauer (min.)	ja 6 Wochen
u i i	10s
Genauigkeit (max. Abweichung je Tag) Anzahl Betriebsstundenzähler	
	8
Uhrzeit Synchronisation	ja MagtarSlava
Synchronisation über MPI	MasterSlave
Synchronisation über Ethernet (NTP)	Slave
Adressbereich (Ein-/Ausgänge)	04000 4
Peripherieadressbereich Eingänge	8192Byte
Peripherieadressbereich Ausgänge	8192Byte

A white allowers are	VIPA 517-4NE02
Artikelnummer Drozegophild Fingënge movimel	
Prozessabbild Eingänge maximal	8192Byte
Prozessabbild Ausgänge maximal	8192Byte 65536
Digitale Eingänge	65536
Digitale Ausgänge	4096
Analoge Eingänge	
Analoge Ausgänge	4096
Kommunikationsfunktionen	1:-
PG/OP Kommunikation Globale Datenkommunikation	ja
Anzahl GD-Kreise max.	ja 16
Größe GD-Pakete max.	-
S7-Basis-Kommunikation	54Byte
S7-Basis-Kommunikation Nutzdaten je Auftrag	ja 76Puto
S7-Basis-Rommunikation Nutzdaten je Autrag S7-Kommunikation	76Byte
S7-Kommunikation als Server	ja
	ja 160Puto
S7-Kommunikation Nutzdaten je Auftrag	160Byte
Anzahl Verbindungen gesamt Funktionalität Sub-D Schnittstellen	32
Bezeichnung	X2
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	ja
MPI	ja ia
Bezeichnung	X3
Physik	RS485
Anschluss	9polige SubD Buchse
Potenzialgetrennt	ja
DP-Master	ja ja
DP-Slave	ja ja
DP-Slave Funktionalität Profibus Master	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation	ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing	ja ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation	ja ja ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation	ja ja ja ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server	ja ja ja ja ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE	ja ja ja ja ja ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max.	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Nutzdaten Eingänge je Slave, max.	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation	ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation als Server	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation als Server DPV1	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation als Server DPV1 Übertragungsgeschwindigkeit min.	ja 9,6kbit/s 12Mbit/s 32 1KB 1KB 1KB 244Byte 244Byte ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation S7-Kommunikation als Server DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit min.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation S7-Kommunikation als Server DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Übergabespeicher Eingänge, max.	ja j
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation S7-Kommunikation als Server DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Übergabespeicher Eingänge, max. Übergabespeicher Ausgänge, max. Übergabespeicher Ausgänge, max.	ja 9,6kbit/s 12Mbit/s 244Byte ja
DP-Slave Funktionalität Profibus Master PG/OP Kommunikation Routing S7-Basis-Kommunikation S7-Kommunikation S7-Kommunikation als Server SYNC/FREEZE Aktivieren/Deaktivieren von DP-Slaves DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Anzahl DP-Slaves, max. Adressbereich Eingänge, max. Adressbereich Ausgänge, max. Nutzdaten Eingänge je Slave, max. Nutzdaten Ausgänge je Slave, max. Funktionalität Profibus Slave PG/OP Kommunikation Routing S7-Kommunikation S7-Kommunikation als Server DPV1 Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit min. Übertragungsgeschwindigkeit max. Übergabespeicher Eingänge, max.	ja j

Artikelnummer	VIPA 517-4NE02
Funktionalität PCI Schnittstelle	VII / VOIT TIVEOZ
Bezeichnung	n/a
Physik	Ethernet 10/100Mbit
Anschluss	PCI-Bus
Potenzialgetrennt	nein
PG/OP Kommunikation	ja
Funktionalität RJ45 Schnittstelle	
Bezeichnung	X4
Physik	Ethernet 10/100Mbit
Anschluss	RJ45
Potenzialgetrennt	ja
PG/OP-Kommunikation	ja
Ethernet Kommunikations CP	
Anzahl projektierbarer Verbindungen, max.	16
Anzahl via NetPro projektierbarer Verbindungen, max.	16
S7-Verbinungen	USEND, URCV, BSEND, BRCV,
	GET, PUT, Verbindungsaufbau aktiv
	und passiv
Nutzdaten je S7-Verbindung, max.	32
TCP-Verbindungen	SEND, RECEIVE, FETCH PASSIV,
	WRITE PASSIV,
	Verbindungsaufbau aktiv und passiv
Nutzdaten je TCP-Verbindung, max.	64KB
ISO-Verbindungen	SEND, RECEIVE, FETCH PASSIV,
	WRITE PASSIV,
	Verbindungsaufbau aktiv und passiv
Nutzdaten je ISO-Verbindung, max.	8KB
ISO on TCP Verbindungen (RFC 1006)	SEND, RECEIVE, FETCH PASSIV,
	WRITE PASSIV,
	Verbindungsaufbau aktiv und passiv
Nutzdaten je ISO on TCP-Verbindung, max.	32KB
UDP-Verbindung	SEND und RECEIVE
Nutzdaten je UDP-Verbindung, max.	2KB
UDP-Multicast-Verbindung	SEND und RECEIVE
LIDD Due advent Ventria di una	(max. 16 Multicast Kreise)
UDP-Broadcast-Verbindung	SEND
Mechanische Daten	40 ma ma v. 40 C ma ma v. 47 4 ma ma
Abmessungen (BxHxT)	40mm x 106mm x 174mm
Gewicht	290g
Umgebungsbedingungen Patriabetemperatur	0°C hio 60°C
Betriebstemperatur	0°C bis 60°C
Lagertemperatur	-25°C bis 70°C
Zertifizierungen	in Verbereitung
Zertifizierung nach UL508	in Vorbereitung

Teil 3 Einsatz CPU 517S/NET

Überblick

Kernthema dieses Kapitels ist der Einsatz der CPU 517S/NET von VIPA. Hier finden Sie alle Informationen, die für Einbau, Inbetriebnahme und Projektierung erforderlich sind.

Inhalt	Thema	Seite
	Teil 3 Einsatz CPU 517S/NET	3-1
	Übersicht	3-2
	Montage	3-3
	Installation des Treibers	
	Richtlinie zur IP-Adressvergabe	3-5
	Spannungsversorgung anschließen	
	Initialisierung der CPU-Komponente	
	Zugriff intern auf PG/OP-Kanal	
	Zugriff extern auf PG/OP-Kanal über Routing	
	Zugriff auf integrierte Web-Seite	
	Projektierung	
	Einstellung der CPU-Parameter	
	Projekt transferieren	
	Betriebszustände	
	Urlöschen	3-43
	Firmwareupdate	3-45
	Rücksetzen auf Werkseinstellung	
	Speichererweiterung mit MCC	
	Erweiterter Know-how-Schutz	
	MMC-Cmd - Autobefehle	3-52
	VIPA-spezifische Diagnose-Einträge	3-54
	Variablen steuern und beobachten	

Übersicht

Funktionsweise Ethernet- (LAN) CPU-Komponente

Die CPU 51xS PC-Steckkarte besteht aus einer *Ethernet*- (LAN) und einer *CPU*-Komponente. Diese kommunizieren intern über eine Ethernet-Verbindung. Hierzu ist beiden Komponenten jeweils eine IP-Adresse zuzuteilen, die sich nur in der Host-ID unterscheiden dürfen. Auf diese Weise können Sie auch mehrere CPU 51xS in Ihrem PC betreiben.

Die CPU-Komponente der CPU 51xS Steckkarte kann nur betrieben werden, wenn sie extern <u>oder</u> intern mit DC 24V versorgt wird. Die externe Versorgung ermöglicht auch den Betrieb der Karte außerhalb eines PCs bzw. der Betrieb ist unabhängig vom PC. Für den Betrieb ist darauf zu achten, dass die Steckkarte über das Schirmblech geerdet ist.

Zuteilung der IP-Adress-Parameter

Die Zuteilung von IP-Adress-Parametern für die Ethernet-Komponente erfolgt über Ihr Windows Betriebssystem über die *Netzwerkumgebung*.

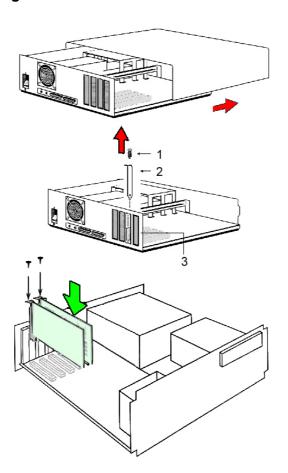
Die CPU-Komponente erhält ihre IP-Adress-Parameter vom Siemens SIMATIC Manager mittels der *Zielsystemfunktionen* oder einem *Minimalprojekt*.

Urlöschen beeinflusst die Adressen nicht. Mit *Rücksetzen auf Werkseinstellung* werden die IP-Adress-Parameter der CPU-Komponente gelöscht.

Schritte der Installation

- CPU 51xS PC-Steckkarte auf einem freien 32-Bit-PCI-Steckplatz montieren (PCI-Version 2.2, 32Bit Daten-/Adress-Bus, 3,3V Spannung).
- PC einschalten.
- Treiber für Ethernet-Komponente installieren. Diesen finden Sie auf der "ToolDemo-CD" SW900TOLA unter driver/slotplc die entsprechende CPU 51xS.
- Über die *Eigenschaften* der *Netzwerkumgebung* IP-Adresse und Subnet-Maske für die Ethernet-Komponente der Steckkarte angeben. Hierbei dürfen sich die IP-Adressen nur in der Host-ID unterscheiden.
- CPU-Komponente mit DC 24V versorgen.
- Über Siemens SIMATIC Manager der CPU-Komponente IP-Parameter zuweisen. Für die Zuweisung von IP-Adress-Parametern (Urtaufe) haben Sie folgende Möglichkeiten:
 - Zielsystem über *Ethernet-Teilnehmer bearbeiten* (CPU suchen und IP-Adresse zuweisen)
 - Hardwareprojektierung mit CP (Minimalprojekt).

Sofern in ihrem Siemens SIMATIC Manager die "Net"-Komponenten installiert sind, blendet sich die CPU 51xS in Ihrem PG/PC-Schnittstellenbereich als Intel(R) 8255xER PCI Adapter ein. Über den PG-OP-Kanal können Sie online auf die CPU zugreifen.


Auf den Folgeseiten sind die Schritte der Installation näher beschrieben.

Montage

Montage

- Beseitigen Sie eventuell vorhandene statische Aufladung, bevor Sie die VIPA-PCI-Steckkarte einbauen, indem Sie einen geerdeten Metallgegenstand berühren.
- Schalten Sie Ihren PC aus und ziehen Sie das Netzkabel.
- Entfernen Sie die Gehäuse-Abdeckung Ihres Computers gemäß den Anweisungen Ihres Herstellers.
- Suchen Sie einen freien 32-Bit-PCI-Steckplatz (in der Regel weiß oder beige). Bitte beachten Sie, dass Ihr PCI-Bus folgender Spezifikation entspricht: PCI-Version 2.2, 32Bit Daten-/Adress-Bus, 3,3V Spannung.
- Entfernen Sie die Slotabdeckung. Bei der CPU 517S/NET wird 1 PCI-Steckplatz verwendet. Hierbei ist rechts eine zusätzliche Slotabdeckung zu entfernen.
- Stecken Sie die Steckkarte, verschrauben Sie die Steckkarte mit dem PC-Gehäuse und schließen Sie das Gehäuse wieder.

Bitte beachten Sie, dass das Schirmblech der Steckkarte immer geerdet ist bzw. mit dem PC-Gehäuse verschraubt ist!

- [1] Schraube
- [2] Slotabdeckung
- [3] Slotabdeckung zusätzlich zu entfernen bei CPU 517S/NET

Hinweis!

Die Installation der CPU 51xS Steckkarte sollte nur von geübtem Fachpersonal durchgeführt werden!

Ein fehlerhafter Einbau kann zu Schäden auf der Karte und am PC führen.

Installation des Treibers

Übersicht

Zur Einbindung der Steckkarte in Ihr Betriebssystem ist ein Treiber erforderlich. Den entsprechenden Treiber finden Sie auf der beiliegenden CD SW900TOLA.

Für die Erstinbetriebnahme ist eine Spannungsversorgung der CPU-Komponente vorerst nicht erforderlich.

Anlauf ohne externe CPU-Spannungs-versorgung

- Nachdem Sie die Steckkarte montiert haben, schalten Sie den PC ein. Nach dem PC-Hochlauf wird die PCI-Steckkarte als neue Netzwerk-Hardware erkannt und hierfür der entsprechende Treiber angefordert. Den Treiber finden Sie auf der beiliegenden "ToolDemo-CD" SW900TOLA.
- Legen Sie die CD ein und navigieren Sie über driver/slotplc in das Verzeichnis der entsprechenden CPU 51xS. Hier finden Sie die Karten-Treiber für alle relevanten Betriebssysteme.
- Installieren Sie den Kartentreiber.

Die CPU 51xS Steckkarte ist jetzt in das Betriebssystem eingebunden und wird in der *Netzwerkumgebung* als zusätzliche LAN-Verbindung unter dem Gerätenamen "Intel(R) 8255 PCI Adapter" aufgeführt.

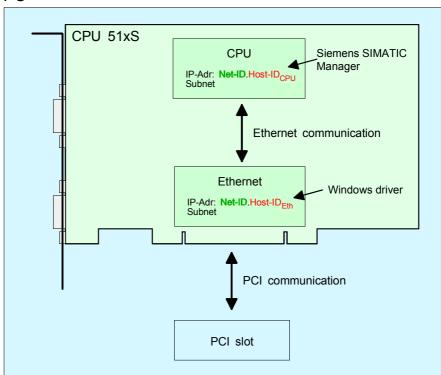
Solange die CPU-Komponente nicht mit DC 24V Spannung versorgt wird, erscheint die Meldung "Das Netzwerkkabel wurde entfernt".

IP-Adress-Parameter der Ethernet-Komponente zuweisen Nach Installation des Treibers können Sie jederzeit über die *Eigenschaften* der *Netzwerkumgebung* IP-Adresse und Subnet-Maske der Ethernet-Komponente zuweisen.

Hierbei ist zu beachten, dass sich die IP-Adresse der CPU- und Ethernet-Komponente ausschließlich in der Host-ID unterscheidet.

Hinweis!

Mehr Informationen zur IP-Adressvergabe finden Sie unter "Richtlinie zur IP-Adressvergabe" auf den Folgeseiten. Bitte beachten Sie die Richtlinien, da falsch eingestellte IP-Adress-Parameter Auswirkungen auf das ganze Firmennetz haben können.


Richtlinie zur IP-Adressvergabe

Übersicht

Die CPU 51xS PC-Steckkarte besteht aus einer CPU- und einer Ethernet-Komponente, die über eine TCP-basierte Punkt-zu-Punkt-Verbindung kommunizieren. Hierzu besitzen CPU- und Ethernet-Komponente jeweils eine änderbare IP-Adresse, die sich ausschließlich in der Host-ID unterscheiden dürfen.

Für die Erstinbetriebnahme und zum weiteren Verständnis werden fundierte Kenntnisse über die Begriffe Net-ID, Host-ID und Subnet-ID vorausgesetzt. Nachfolgend sind diese Begriffe näher erläutert.

PC

Bei Einsatz mehrerer CPU 51xS in einem PC müssen sich je CPU 51xS Steckkarte die Net-IDs unterscheiden.

Nachfolgend ist die Vorgehensweise für die Vergabe von IP-Adressen in Verbindung mit Net-ID und Host-ID aufgeführt.

Net-ID Host-ID

Jede IP-Adresse setzt sich aus einer **Net-ID** und **Host-ID** zusammen.

Die **Net**work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert.

Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.

Hinweis!

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnet-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

Subnet-Maske

Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der **Subnet-Maske** weiter aufgeteilt werden, in eine **Subnet-ID** und eine *neue* **Host-ID**.

Derjenige Bereich der ursprünglichen Host-ID, welcher von Einsen der Subnet-Maske überstrichen wird, wird zur Subnet-ID, der Rest ist die neue Host-ID.

Subnet-Maske	binär alle "1"		binär alle "0"
IPv4 Adresse	Net-ID	Host-ID	
Subnet-Maske und IPv4 Adresse	Net-ID	Subnet-ID	neue Host-ID

Eine TCP-basierte Kommunikation per Punkt-zu-Punkt-, Hub- oder Switch-Verbindung ist nur zwischen Stationen mit identischer Network-ID und Subnet-ID möglich! Unterschiedliche Bereiche sind mit einem Router zu verknüpfen. Über die Subnet-Maske haben Sie die Möglichkeit, die Ressourcen ihren Bedürfnissen entsprechend zu ordnen. So erhält z.B. jede Abteilung ein eigenes Subnetz und stört damit keine andere Abteilung.

Adress-Klassen

Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4Byte = 32Bit lang sind.

Klasse A	0	Net	twork-ID	Host-ID (24 bit)		
		(1+	7 bit)			
Klasse B	10	Ν	etwork-ID (2+	14 bit)	Host-ID (16	bit)
Klasse C	110	0	Network-ID (3	s+21 bit)		Host-ID (8 bit)
Klasse D	11	10	Multicast Gr	ирре		
Klasse E	11	110	Reserved			

Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert.

Die Adressformate der 3 Klassen A,B,C unterscheiden sich lediglich dadurch, dass Network-ID und Host-ID verschieden lang sind.

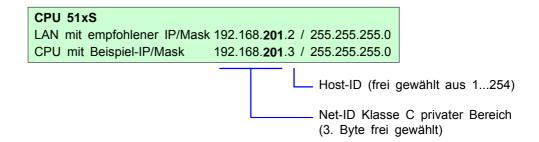
Private IP Netze

Zur Bildung privater IP-Netze innerhalb des Internets sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

Netzwerk	Von IP	Bis IP	Standard Subnet-Maske
Klasse			
Α	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>

(Die Host-ID ist jeweils unterstrichen.)

Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden.


Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = 0	Identifier dieses Netzwerks,	
	reserviert!	
Host-ID = maximal (binär komplett Einsen)	Broadcast Adresse dieses Netzwerks	

Beispiel einer Netzwerkplanung für die Inbetriebnahme Gewöhnlich besteht Ihr Gesamtsystem aus einem PC mit (mindestens einer) Netzwerkkarte und einer oder mehreren CPU 51xS Steckkarten, welche jeweils auch als Netzwerkkarte, mit der CPU als einzigem Teilnehmer, erscheinen.

In diesem Beispiel wurden für Ethernet- und CPU-Komponente IP-Adressen aus dem privaten Klasse C Netz gewählt. Unter Verwendung der Subnet-Maske 255.255.255.0 stehen 256 verschiedene Netzwerke mit je 254 Hostadressen zur Verfügung:

Damit der PC ohne Verwendung einer Routing Tabelle alle CPU 51xS Steckkarten und die dahinterliegenden CPUs ansprechen kann, ist es Voraussetzung, dass jeweils eine **eigene Net-ID** verwendet wird:

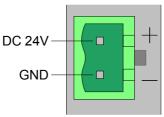
PC	
Netzwerkkarte (IP/Mask vor	n DHCP-Server)
z.B.	192.168. 1 .2 / 255.255.255.0
1. CPU 51xS	
LAN mit Beispiel-IP/Mask	192.168. 201 .2 / 255.255.255.0
CPU mit Beispiel-IP/Mask	192.168. 201 .3 / 255.255.255.0
2. CPU 51xS	
LAN mit Beispiel-IP/Mask	192.168. 202 .2 / 255.255.255.0
CPU mit Beispiel-IP/Mask	192.168. 202 .3 / 255.255.255.0
3. CPU 51xS	
LAN mit Beispiel-IP/Mask	192.168. 203 .2 / 255.255.255.0
CPU mit Beispiel-IP/Mask	192.168. 203 .3 / 255.255.255.0

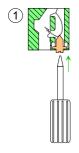
Spannungsversorgung anschließen

Spannungsversorgung anschließen

Nachdem die CPU 51xS Steckkarte im PC installiert und die Kommunikation zwischen PC und Ethernet-Komponente hergestellt ist können Sie die DC 24V Spannungsversorgung anschließen.

Die CPU-Komponente der CPU 51xS Steckkarte kann nur betrieben werden, wenn sie extern oder intern mit DC 24V versorgt wird. Die externe Versorgung ermöglicht auch den Betrieb der Karte außerhalb eines PCs bzw. der Betrieb ist unabhängig vom PC. Für den Betrieb ist darauf zu achten, dass die Steckkarte über das Schirmblech geerdet ist.

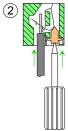


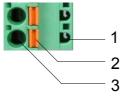

Hinweis!

Die CPU 51xS ist entweder extern oder intern mit DC 24V zu versorgen. Eine gleichzeitige Einspeisung ist unbedingt zu vermeiden!

Externe Spannungsversorgung

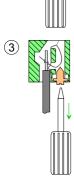
Für die externe Spannungsversorgung befindet sich auf dem Anschlussblech ein Stecker, der folgende Pinbelegung hat:




Für die Verdrahtung der Spannungsversorgung kommt eine grüne Anschlussklemme mit Federzugklemmtechnik zum Einsatz.

Die Anschlussklemme ist als Stecker ausgeführt, der im verdrahteten Zustand vorsichtig abgezogen werden kann.

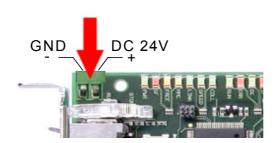
Hier können Sie Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen. Hierbei dürfen sowohl flexible Litzen ohne Aderendhülse als auch starre Leiter verwendet werden.



- Prüfabgriff für 2mm Messspitze [1]
- [2] Verriegelung (orange) für Schraubendreher
- Runde Öffnung für Drähte [3]

Die nebenstehende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- Zum Verdrahten drücken Sie mit einem geeigneten Schraubendreher, wie in der Abbildung gezeigt, die Verriegelung senkrecht nach innen und halten Sie den Schraubendreher in dieser Position.
- Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.



Interne Spannungsversorgung An der Oberseite der PC-Steckkarte befindet sich die Anschlussklemme für die interne DC 24V Spannungsversorgung.

Bitte beachten Sie beim Anschluss Ihrer DC 24V Spannungsversorgung, dass die interne Spannungsversorgung hardwarebedingt keine EMV-Filter zum Schutz gegen Störungen besitzt (z.B. entsprechend EN 61000-4-4 [Burst], EN 61000-4-5 [Surge] oder EN 61000-4-6 [Leitungsgeführte Störgrößen, induziert durch HF-Felder]).

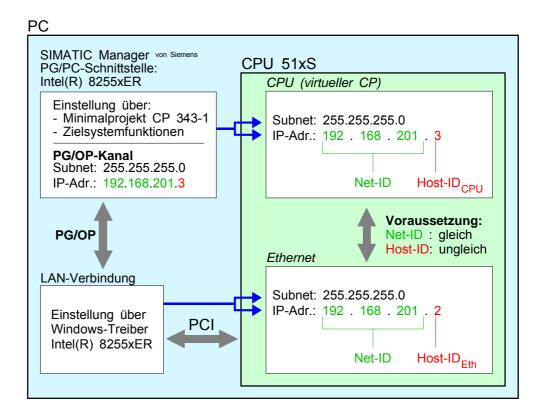
Bitte verwenden Sie hier eine entsprechend gefilterte Versorgungsspannung.

Die Anschlussklemme hat folgenden Pinbelegung:

Initialisierung der CPU-Komponente

Übersicht

Die CPU 51xS PC-Steckkarte besteht aus einer CPU- und einer Ethernet-Komponente. Zur Kommunikation besitzen beide Komponenten eine IP-Adresse, die sich nur in der Host-ID unterscheiden dürfen.


Damit Sie online auf die CPU-Komponente zugreifen können, müssen Sie dieser gültige IP-Adress-Parameter über den Siemens SIMATIC Manager zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe".

Die Initialisierung der Ethernet-Komponente erfolgt, wie schon weiter oben beschrieben, über die Netzwerkumgebung Ihres Betriebssystems.

Möglichkeiten der "Urtaufe"

Für die Zuweisung von IP-Adress-Parametern (Urtaufe) haben Sie folgende Möglichkeiten:

- Zielsystemfunktionen über *Ethernet-Teilnehmer bearbeiten* (Projektiertool und Steckkarte im gleichen PC)
- Hardwareprojektierung mit CP (Minimalprojekt)

Voraussetzung

Hierzu ist folgende Software erforderlich:

 Siemens SIMATIC Manager ab V. 5.1 und SIMATIC NET oder Siemens SIMATIC Manager ab V. 5.2 und SP1

"Urtaufe" über Zielsystemfunktionen

Die Urtaufe über die Zielsystemfunktion kann nur dann ausgeführt werden, wenn sich die CPU 51xS Steckkarte in dem PC befindet, auf dem Sie auch den Siemens SIMATIC Manager installiert haben.

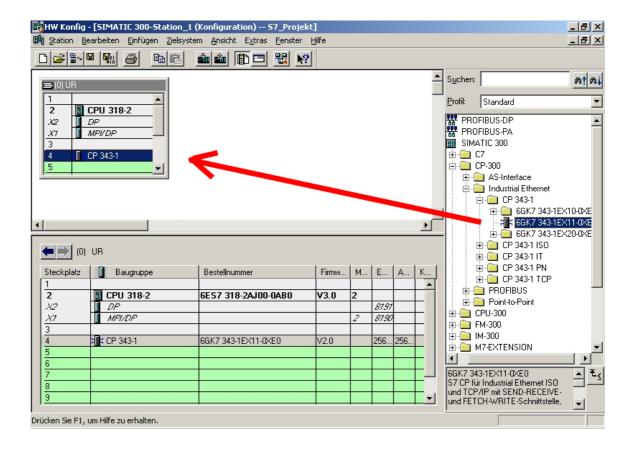
Die Urtaufe erfolgt nach folgender Vorgehensweise:

- Starten Sie den Siemens SIMATIC Manager.
- Stellen Sie über **Extras** > *PG/PC-Schnittstelle* einstellen den *Zugriffsweg* auf "Intel(R) 8255xER" ein.
- Öffnen Sie mit **Zielsystem** > *Ethernet-Teilnehmer bearbeiten* das Dialogfenster zur "Taufe" einer Station.
- Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbare CPU-Komponente zu ermitteln.

- Wählen Sie die ermittelte Baugruppe an und klicken Sie auf [OK].
- Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnet-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client-ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestich "-", 0-9, a-z, A-Z
- Bestätigen Sie Ihre Eingabe mit der Schaltfläche [IP Konfiguration zuweisen].

Direkt nach der Zuweisung ist die CPU-Komponente mit dem Siemens SIMATIC Manager über die angegebenen IP-Adress-Parameter erreichbar.

Urtaufe über Minimalprojekt


Sofern sich die CPU 51xS Steckkarte und der Siemens SIMATIC Manager nicht im gleichen PC befinden, können Sie über ein *Minimalprojekt* durch Projektierung einer CPU und eines CP IP-Adress-Parameter an die CPU-Komponente übergeben. Das Projekt können Sie über MPI oder mittels einer MMC-Speicherkarte in die CPU 51xS Steckkarte übertragen.

Die Urtaufe mittels Minimalprojekt erfolgt nach folgender Vorgehensweise:

- Starten Sie den SIMATIC Manager von Siemens und legen Sie ein neues Projekt an.
- Fügen Sie mit **Einfügen** > *Station* > *SIMATIC 300-Station* eine neue System 300-Station ein.
- Aktivieren Sie die Station "SIMATIC 300" und öffnen Sie den Hardware-Konfigurator indem Sie auf "Hardware" klicken.
- Projektieren Sie ein Rack (SIMATIC 300 \ Rack-300 \ Profilschiene).
- Da die SPEED7-CPUs als CPU 318-2 projektiert werden, projektieren Sie aus dem Hardwarekatalog die CPU 318-2 mit der Best.-Nr. 6ES7 318-2AJ00-0AB0 V3.0.

Sie finden diese unter SIMATIC 300 \ CPU 300 \ CPU 318-2.

- Projektierung Ethernet-PG/OP-Kanal als CP 343-1 (343-1EX11).
- Projektierung und Vernetzung Ethernet-CP 343 und DP-Master als CP 343-1 (343-1EX11) bzw. CP 342-5 (342-5DA02 V5.0).

Allgemein Parameter

| MAC-Adriesse einstellen / ISQ-Protokoll verwender|
| MAC-Adriesse einstellen / ISQ-Protokoll verwender|
| MAC-Adriesse | MAC-Adriesse

 Geben Sie im Dialogfenster die gewünschte IP-Adresse und Subnet-Maske an und vernetzen Sie den CP mit "Ethernet".

- Speichern und übersetzen Sie Ihr Projekt.
- Übertragen Sie Ihr Projekt via MPI oder MMC in Ihre CPU.

Projekt übertragen

Sie haben nun 2 Möglichkeiten für den Transfer Ihres Projekts in die CPU:

- Transfer über MPI
- Transfer über Speicherkarte bei Einsatz eines Kartenlesers

Transfer über MPI

- Wechseln Sie in den SIMATIC Manager von Siemens.
- Wählen Sie unter **Extras** > *PG/PC-Schnittstelle einstellen*
 - → Es öffnet sich ein Dialogfenster, in dem Sie die zu verwendende MPI-Schnittstelle konfigurieren können.
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Geben Sie im Register "Lokaler Anschluss" den gewünschten COM-Port an und stellen Sie die Übertragungsrate 38400Bit/s ein.
- Verbinden Sie Ihren PC über MPI mit Ihrer CPU und übertragen Sie Ihr Projekt.

Transfer über MMC

Als externes Speichermedium kommt eine MMC (Memory Card) zum Einsatz. Die MMC erhalten Sie von VIPA mit dem FAT16 PC-Filesystem vorformatiert.

- Legen Sie über Datei > Memory Card Datei > Neu eine wld-Datei an und ziehen Sie mit der Maus den Systemdaten-Koffer in das Fenster der wld-Datei.
- Kopieren Sie die wld-Datei mit einem Kartenleser auf die MMC und benennen Sie die Datei um in S7PROG.WLD.
- Stecken Sie die MMC in Ihre CPU und führen Sie Urlöschen durch. Hiermit werden die Daten von der MMC in das batteriegepufferte RAM der CPU übertragen.

Hinweis!

Näheres zu den Transfermethoden finden Sie im Kapitel "Projekt transferieren" weiter unten".

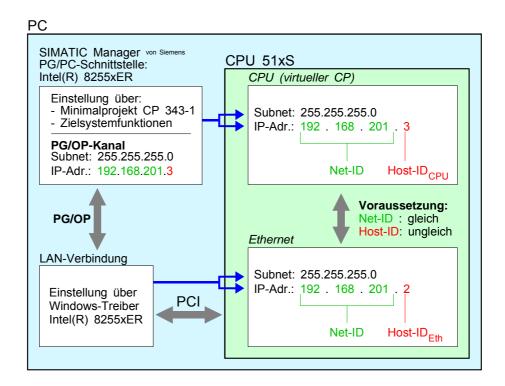
Zugriff intern auf PG/OP-Kanal

Übersicht

Jede CPU 51xS hat einen Ethernet-PG/OP-Kanal integriert. Nur im eingebauten Zustand haben Sie über diesen PG/OP-Kanal Zugriff auf die CPU. Darüber können Sie die CPU programmieren, fernwarten oder die Web-Site abrufen. Es stehen Ihnen gleichzeitig 4 Kanäle zur Verfügung.

Zugriff auf PG/OP-Kanal

Sofern die Voraussetzungen für die Kommunikation erfüllt sind, können Sie für Projekttransfer und Diagnose über die PG/PC-Schnittstelle "Intel(R) 8255xER" auf Ihre Steckkarte zugreifen.


Voraussetzung

- Die CPU 51xS Steckkarte befindet sich in dem PC, auf dem auch der Siemens SIMATIC Manager installiert ist.
- Ethernet- und CPU-Komponente sind initialisiert, d.h. beide Komponenten besitzen eine IP-Adresse, die sich nur in der Host-ID unterscheiden darf.
- Für die Hardware-Konfiguration sind der Siemens SIMATIC Manager ab V. 5.1 und SIMATIC NET bzw. V5.2 und SP1 installiert.

Vorgehensweise

- Starten Sie den Siemens SIMATIC Manager.
- Gehen Sie auf Extras > PG/PC Schnittstelle... und stellen Sie folgendes ein: "Intel(R) 8255xER"

Nun können Sie online auf den PG/OP-Kanal zugreifen.

Zugriff extern auf PG/OP-Kanal über Routing

Übersicht

Sie können von einem externen PC über Ethernet auf die CPU 51xS zugreifen. Hierzu müssen folgende Voraussetzungen erfüllt sein:

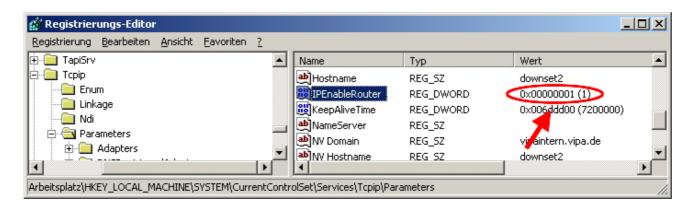
- Das Routing ist auf Ihrem PC mit CPU 51xS aktiviert.
- Die Route ist auf der CPU 51xS über eine CP343-Hardware-Konfiguration mit folgendem Parameter eingetragen:
 - Ziel-Router: IP-Adresse der Ethernet-Komponente IP_{Eth} der CPU 51xS
- Die Route ist auf dem externen PC mit folgenden Parametern eingetragen:
 - Ziel-IP: Net-ID der Ethernet-Komponente der CPU 51xS
 - IP-Maske: Subnet-Maske der CPU 51xS (default: 255.255.255.0)
 - Gateway: IP-Adresse des PCs IP_{PC} mit der CPU 51xS am Hausnetz

Achtung!

Veränderungen an den Netzwerk-Eigenschaften sollten nur von einem fachkundigen Systemadministrator vorgenommen werden, da sich diese auf Ihr Firmennetz auswirken können!

Der Einsatz unter Windows 9x bzw. Windows XP Home ist nicht zu empfehlen und wird hier nicht weiter beschrieben.

Routing aktivieren


Im weiteren Verlauf sind die Konfigurationsschritte aufgeführt. Nähere Informationen insbesondere zur Aktivierung des Routings, das betriebssystem-spezifisch ist, finden Sie in der Beschreibung zu Ihrem Betriebssystem.

Aktivierung unter Windows NT4 / 2000_{Server} / 2003_{Server}

Die Aktivierung des Routings finden Sie hier unter "Netzwerk-Eigenschaften" in den Eigenschaften zum TCP/IP-Protokoll.

Aktivierung unter Windows XP_{Professional} / 2000_{Professional}

Zur Aktivierung sind hier Einträge in der Registrierungsdatei erforderlich, die nachfolgend abgebildet sind:

Nach einem Neustart ist das Routing aktiviert.

Route eintragen

Die Angabe einer Route erfolgt ausschließlich über die "Eingabeaufforderung" Ihres Betriebssystems mittels des "Route"-Befehls. Hierzu sind folgende Parameter erforderlich:

route ADD <Ziel-IP> MASK <IP-Mask> <Gateway> METRIC <Metric> IF <IF>

mit

ADD: Befehl für das Hinzufügen einer Route

Ziel-IP: IP-Adresse des Netzes (Net-ID) der CPU 51xS

IP-Mask: Angabe der Subnet-Maske des Netzes der CPU 51xS

Gateway: IP-Adresse des Zielrechners am Hausnetz mit der gesteckten

CPU 51xS

Metric: (optional) gibt den Kostenwert für ein Ziel an

IF: (optional) Schnittstelle, die zu verwenden ist, ansonsten best

geeignete Schnittstelle verwenden

route PRINT listet alle eingetragenen Routen auf route DELETE <Ziel-IP> löscht den Eintrag wieder

Beispiel:

Sie haben folgende Konstellation und möchten mit einem PC auf die CPU zugreifen:

- Aktivieren Sie, wie weiter oben beschrieben, auf PC1 das Routing.
- Starten Sie den Hardware-Konfigurator von Siemens und projektieren Sie ein System mit CP 343.
- Geben Sie unter "Eigenschaften Ethernet-Schnittstelle" die IP-Adresse 192.168.201.5 und die Subnet-Maske 255.255.255.0 an
- Wählen Sie unter "Parameter" die Funktion "Router verwenden", geben Sie als "Gateway" die IP-Adresse 192.168.201.3 der Ethernet-Komponente Ihrer CPU 51xS an und transferieren Sie Ihr Projekt.
- Starten Sie auf PC2 die Eingabeaufforderung und geben Sie folgende Befehlszeile ein:

route add 192.168.201.0 mask 255.255.255.0 172.16.128.15

Sie können jetzt von PC2 über PC1 auf die CPU zugreifen. Die Erreichbarkeit können Sie mit der Befehlszeile ping 192.168.201.5 überprüfen.

Zugriff auf integrierte Web-Seite

Zugriff auf Web-Seite

Über den PG/OP-Kanal steht Ihnen eine Web-Seite zur Verfügung, die Sie mit einem Internet-Browser aufrufen können. Auf der Web-Seite finden Sie Informationen zu Firmwarestand, aktuelle Zyklus-Zeiten usw.

Mit dem MMC-Cmd WEBPAGE wird der aktuelle Inhalt der Web-Site auf MMC gespeichert. Nähere Informationen hierzu finden Sie unter "MMC-Cmd - Autobefehle".

Voraussetzung

Es wird vorausgesetzt, dass zwischen dem PC mit Internet-Browser und CPU 51xS Steckkarte ein Ethernet PG/OP-Kanal besteht. Dies können Sie testen über *Ping* auf die IP-Adresse der CPU-Komponente.

Web-Seite

Der Zugriff auf die Web-Site erfolgt über die IP-Adresse der CPU-Komponente. Die Web-Seite dient ausschließlich der Informationsausgabe. Die angezeigten Werte können nicht geändert werden.

CPU WITH ETHERNET-PG/OP

Slot 100

VIPA 517-4NE02 V3.5.1.4 Px000118.pkg, SERIALNUMBER 18525 SUPPORTDATA: PRODUCT V3514, HARDWARE V0110, 5448D-V10 , Hx000062.100 , Bx000227 V6514, Ax000086 V1200, fx000007.wld V1140, FlashFileSystem : V102 Memorysizes (Bytes): LoadMem : 8388608, WorkMemCode: 1048576, WorkMemData: 1048576 OnBoardEthernet: MacAddress: 0020d577485D, IP-Address : 192.168.201.3, SubnetMask : 255.255.255.0, Gateway : 192.168.201.2 Cpu state : Stop

FunctionRS485 X2/COM1: MPI

Cycletime [microseconds] :

FunctionRS485 X3/COM2: DPM-async

min=381 cur=503 ave=499 max=550

ArmLoad [percent] : cur=0, max=51

PowerCycleHxRetries: 19, 0, 0, 0, 0

Best.-Nr., Firmware-Version, Package, Serien-Nr.
Angaben für den Support:

Ethernet-PG/OP: Adressangaben

RS485-Funktion

CPU-Zykluszeit:
min= minimale
cur= aktuelle
max= maximale

CPU-Statusangabe

Fortsetzung ...

... Fortsetzung

Slot 201

VIPA 542-1DP00 V3.2.6 Px000119.pkg

SUPPORTDATA: PRODUCT V3260,
BB000554 V5260, AB000120 V4170,
ModuleType CB2C0010
Cycletime [microseconds]:
min=65535000 cur=0 ave=0 max=0 cnt=0

Zusätzliche CPU-Komponenten: Slot 201 (DP-Master): Name, Firmware-Version, Package Angaben für den Support:

Slot 206

VIPA 543-1EX71 V2.5.9 Px000059.pkg

SUPPORTDATA: Bb000165 V2590, AB000075 V1000, PRODUCT V2590, Hx000019 V1000, ModuleType ACDB0000 Address Input 1024...1039 Address Output 1024...1039 Slot 206 (CP 543): Name, Firmware-Version, Package Angaben für den Support:

BaudRate Read Model, BaudRate Write Model

Standard Bus Angaben für den Support:

Projektierung

Übersicht

Die Projektierung von CPU und DP-Master erfolgt im Siemens SIMATIC Manager. Zur Online-Parametrierung können Sie mit den *Zielsystemfunktionen* über Ethernet- bzw. MPI/Profibus auf die CPU 51xS Steckkarte zugreifen.

Sie haben aber auch die Möglichkeit Ihr Projekt auf eine MMC-Speicherkarte zu übertragen und diese in der PC-Steckkarte zu stecken. Defaultmäßig ist die CPU 51xS Steckkarte auf die MPI-Adresse 2 eingestellt.

Voraussetzungen

Für die Hardware-Konfiguration der CPU und Projektierung des integrierten Profibus-DP-Masters der CPU müssen folgende Voraussetzungen erfüllt sein:

- Für die Hardware-Konfiguration sind der Siemens SIMATIC Manager ab V. 5.1 und SIMATIC NET bzw. V5.2 und SP1 installiert.
- Kommunikationsverbindung zur Steckkarte besteht
- Bei Einsatz von Profibus-DP-Slaves der Systeme 100V, 200V und 300V von VIPA: GSD-Dateien im Hardware-Konfigurator sind eingebunden.

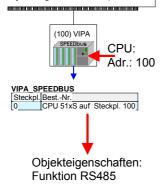
Für die Projektierung der CPU und des Profibus-DP-Masters werden fundierte Kenntnisse im Umgang mit dem SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

Hardware-Konfigurator von Siemens installieren Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog.

Für den Einsatz der Profibus-DP-Slaves der Systeme 100V, 200V und 300V von VIPA ist die Einbindung der Module über die GSD-Datei von VIPA im Hardwarekatalog erforderlich.

Schnelleinstieg

Die Projektierung der CPU 51xS erfolgt im Hardware-Konfigurator von Siemens und besteht aus folgenden Teilen:


- Projektierung als CPU 318-2 (318-2AJ00-0AB00 V3.0).
- Projektierung Ethernet-PG/OP-Kanal als CP 343-1 (343-1EX11).
- Projektierung interner CP 543 als CP343-1 (343-1EX11).
- Projektierung der CPU 51xS als DP-Slave an einem virtuellen DP-Master CP 342-5 (342-5DA02 V5.0).

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

Standard-Bus

X2 DP X1 MPI/DP 3 343-1EX11 (Ethernet-PG/OP) 343-1EX11 (für CP 543) 342-5DA02 V5.0

virtueller DP-Master für CPU (nur für VIPA-spezifische Objekteigenschaften)

- Hardware-Konfigurator von Siemens starten.
- CPU 318-2 (6ES7 318-2AJ00-0AB0/V3.0) von Siemens projektieren. Über den internen DP-Master der CPU 318-2 projektieren und vernetzen Sie den internen DP-Master Ihrer CPU. Belassen Sie MPI/DP der CPU 318-2 in der Betriebsart MPI. Die Betriebsart Profibus wird nicht unterstützt.
- Für den internen Ethernet-PG/OP-Kanal ist immer ein Siemens CP 343-1 (343-1EX11) zu platzieren.
- Den integrierten CP 543 der CPU 517S/NET <u>immer als 2. CP</u> unterhalb des zuvor platzierten Ethernet-PG/OP-Kanals als Siemens CP 343-1 (343-1EX11) projektieren.
- Projektieren Sie immer als letztes Modul den Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen Sie diesen und schalten Sie ihn in die Betriebsart DP-Master.
- Binden Sie an dieses Mastersystem beginnend mit der CPU einen "VIPA_SPEEDBUS"-Slave an. Hierbei geben Sie über die Profibus-Adresse die SPEED-Bus-Steckplatz-Nr., beginnend mit 100 für die CPU, an. Platzieren Sie auf dem Steckplatz 0 jedes Slaves das ihm zugeordnete Modul.

Nachfolgend sind diese Schritte näher aufgeführt.

Hinweis!

Näheres zur Projektierung des integrierten CP 543 finden Sie im Teil "Einsatz Ethernet".

Vorgehensweise

Die CPU 51xS ist analog zu einer CPU 318-2 von Siemens mit Profibus-DP-Master und einem gesteckten Ethernet-CP CP343-1 zu projektieren.

- Starten Sie den Hardware-Konfigurator und legen Sie ein neues Projekt System 300 an.
- Fügen Sie aus dem Hardwarekatalog eine Profilschiene ein.
- Sie finden die CPU mit Profibus-Master im Hardwarekatalog unter: Simatic300/CPU-300/CPU318-2DP/6ES7 318-2AJ00-0AB0
- Fügen Sie die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) ein.
- Geben Sie eine Profibus-Adresse für Ihren Master an (z.B. 2).
- Klicken Sie auf DP und stellen Sie in *Objekteigenschaften* die Betriebsart "DP Master" ein und bestätigen Sie Ihre Eingabe mit OK.

Konfiguration der CPU-Komponente als CP 343-1

Binden Sie, stellvertretend für die CPU-Komponente, einen CP 343-1 ein. Diesen finden Sie im Hardwarekatalog unter:

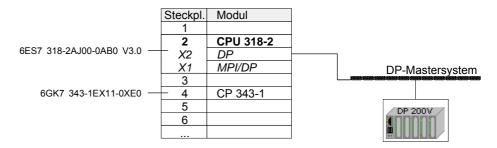
Simatic300/CP-300/Industrial Ethernet.

- Fügen Sie auf Steckplatz 4 den CP 343-1 (343-1EX11-0XE0) ein.
- Klicken Sie auf den CP und stellen Sie unter Objekteigenschaften die entsprechende IP-Adresse und Subnet-Maske ein. Geben Sie diesem die gewünschten bzw. die bei der Urtaufe vergebenen IP-Adress-Parameter.

Bitte beachten Sie, dass sich die IP-Adresse ausschließlich in der Host-ID von der IP-Adresse der Ethernet-Komponente unterscheiden darf.

Unter Verwendung dieser Adresse können Sie über die Zielsystemfunktionen auf die CPU 51xS PC-Steckkarte zugreifen.

DP-Master-System projektieren


Zur Projektierung des DP-Master-Systems sind noch folgende Schritte durchzuführen:

- Klicken Sie mit der rechten Maustaste auf DP und wählen Sie "Master-System einfügen" aus.
- Legen Sie über NEU ein neues Profibus-Subnetz an. An diesem Subnetz können Sie Ihre Profibus-Slave-Module projektieren.

DP-Slaves anbinden

- Zur Projektierung von Profibus-DP-Slaves entnehmen Sie aus dem Hardwarekatalog den entsprechenden Profibus-DP-Slave und ziehen Sie diesen auf das Subnetz Ihres Masters.
- Geben Sie dem DP-Slave eine gültige Profibus-Adresse.
- Binden Sie in der gesteckten Reihenfolge die Module Ihres DP-Slave-Systems ein und vergeben Sie die Adressen, die von den Modulen zu verwenden sind.
- Parametrieren Sie gegebenenfalls die Module.

Die nachfolgende Abbildung zeigt die Projektierung. Als Beispiel wurde im Bild darüber hinaus ein VIPA Profibus-DP-Slave platziert:

Projekt transferieren

Zur Online-Parametrierung können Sie mit den *Zielsystemfunktionen* über Ethernet- bzw. MPI/Profibus auf die PC-Steckkarte zugreifen.

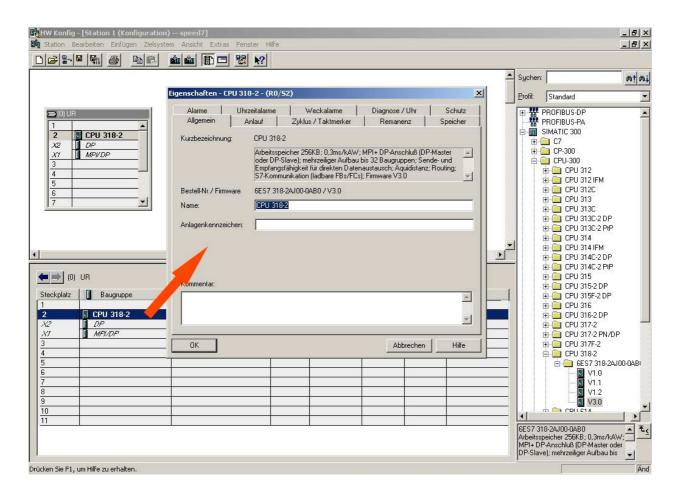
Sie haben aber auch die Möglichkeit Ihr Projekt auf eine MMC-Speicherkarte zu übertragen und diese in der PC-Steckkarte zu stecken.

Näheres zum Projekttransfer finden Sie unter "Projekt transferieren" weiter unten.

Während des Anlaufs reicht die CPU das Profibus-Projekt an den Master weiter.

Einstellung der CPU-Parameter

Übersicht


Mit Ausnahme der VIPA-spezifischen CPU-Parameter erfolgt die CPU-Parametrierung im Parameter-Dialog der Siemens CPU 318-2DP.

Die VIPA-spezifischen CPU-Parameter, wie das Verhalten der Synchronisation zwischen CPU und DP-Master, können Sie im Parameter-Dialog der SPEED-Bus-CPU angeben.

Parametrierung über Siemens CPU 318-2DP

Da die SPEED7 CPUs im Hardware-Konfigurator von Siemens als Siemens CPU 318-2DP zu projektieren sind, können Sie bei der Hardware-Konfiguration unter den "Eigenschaften" der CPU 318-2DP die Parameter für die SPEED7 CPU einstellen.

Durch Doppelklick auf die CPU 318-2DP gelangen Sie in das Parametrierfenster für die CPU. Über die Register haben Sie Zugriff auf alle Parameter Ihrer CPU.

IP-Adresse und Subnet-Maske der CPU-Komponente IP-Adresse und Subnet-Maske geben Sie über die Eigenschaften des eingebunden CP 343-1 an.

Parameter, die unterstützt werden

Die CPU wertet nicht alle Parameter aus, welche Sie bei der Hardware-Konfiguration einstellen können.

Folgende Parameter werden zur Zeit in der CPU ausgewertet:

Allgemein

Kurzbezeichnung

Da jede CPU 51xS von VIPA als CPU 318-2AJ00 von Siemens projektiert

wird, steht hier die Kurzbezeichnung CPU 318-2.

Bestell-Nr./ Firmware Bestellnummer und Firmware sind identisch zu den Angaben im Fenster

"Hardware Katalog".

Name Als *Name* steht hier die *Kurzbezeichnung* der CPU. Wenn Sie den Namen

ändern, erscheint dieser im Siemens SIMATIC Manager.

Anlagenkennzeichen Hier haben Sie die Möglichkeit für die CPU ein spezifisches Anlagenkennzeichen festzulegen. Mit dem Anlagenkennzeichen werden Teile der Anlage eindeutig nach funktionalen Gesichtspunkten gekennzeichnet. Es

ist gemäß IEC 1346-1 hierarchisch aufgebaut.

Kommentar Hier können Sie den Einsatzzweck der Baugruppe eingeben.

Anlauf

Anlauf bei Sollausbau ungleich Istausbau Wenn "Anlauf bei Sollausbau ungleich Istausbau" deaktiviert ist und mindestens eine Baugruppe nicht auf dem projektierten Steckplatz steckt, oder dort eine Baugruppe von einem anderen Typ steckt, geht die CPU in STOP.

Wenn "Anlauf bei Sollausbau ungleich Istausbau" *aktiviert* ist, läuft die CPU an, auch wenn Baugruppen nicht auf den projektierten Steckplätzen stecken oder dort Baugruppen eines anderen Typs stecken (z.B. bei

Inbetriebnahme).

Überwachungszeit für Fertigmeldung durch Baugruppen [100ms]

Maximale Dauer für die Fertigmeldung aller konfigurierten Baugruppen nach NetzEIN. Wenn nach Ablauf dieser Zeit die Baugruppen keine Fertigmeldung an die CPU senden, ist der Istausbau ungleich dem Sollausbau.

Überwachungszeit für Übertragung der Parameter an Baugruppen [100ms] Maximale Dauer für die Übertragung der Parameter an die parametrierbaren Baugruppen. Wenn nach Ablauf dieser Zeit nicht alle Baugruppen parametriert sind, ist der Istausbau ungleich dem Sollausbau.

Zyklus / Taktmerker

OB1-Prozessabbild zyklisch aktualisieren

Aktivieren Sie das Kontrollkästchen, wenn das OB1-Prozessabbild zyklisch aktualisiert werden soll. Durch das Aktualisieren verlängert sich die Zykluszeit.

Zyklusüberwachungszeit

Hier geben Sie die Zyklusüberwachungszeit in ms ein. Wenn die Zykluszeit die Zyklusüberwachungszeit überschreitet, geht die CPU in STOP.

Ursachen für eine Überschreitung:

- Kommunikationsprozesse
- Häufung von Alarmereignissen
- Fehler im CPU-Programm

Mindestzykluszeit

Mit der Mindestzykluszeit bestimmen Sie, in welchem Zeitabstand das CPU-Programm aufgerufen wird.

Ist die Zykluszeit kürzer als die angegebene Mindestzykluszeit, dann wartet die CPU so lange, bis die Mindestzykluszeit erreicht ist.

Zyklusbelastung durch Kommuni-kation

Mit diesem Parameter können Sie die Dauer von Kommunikationsprozessen, welche immer auch die Zykluszeit verlängern, in bestimmten Grenzen steuern.

Ohne zusätzliche asynchrone Ereignisse verlängert sich die OB 1-Zykluszeit um folgenden Faktor:

100 - Zyklusbelastung durch Kommunikation %

Bei Einstellung der Zyklusbelastung durch Kommunikation auf 50% kann sich eine Verdopplung der OB 1-Zykluszeit ergeben. Außerdem wird der OB 1-Zyklus zusätzlich durch asynchrone Ereignisse (z.B. Prozessalarme) verlängert.

Größe Prozessabbild der Ein-/Ausgänge

Hier können Sie die Größe des Prozessabbilds max. 2048 für die Ein-/ Ausgabe-Peripherie festlegen.

OB85-Aufruf bei Peripheriezugriffsfehler

Sie können die voreingestellte Reaktion der CPU bei Peripheriezugriffsfehlern währen der systemseitigen Aktualisierung des Prozessabbildes ändern. Jede CPU 51xS von VIPA ist so voreingestellt, dass sie bei Peripheriezugriffsfehlern keinen OB 85 aufruft und auch keinen Eintrag im Diagnosepuffer erzeugt.

Taktmerker

Aktivieren Sie dieses Kästchen, wenn Sie einen Taktmerker einsetzen und geben Sie die Nummer des Merkerbytes ein.

Hinweis!

Das gewählte Merkerbyte kann nicht für die Zwischenspeicherung von Daten genutzt werden.

Remanenz

Anzahl Merkerbytes ab MB0

Die Anzahl der remanenten Merkerbytes ab Merkerbyte 0 können Sie hier

angeben.

Anzahl S7-Timer

ab T0

Hier tragen Sie die Anzahl der remanenten S7-Timer ab T0 ein.

Anzahl S7-Zähler

ab Z0

Tragen Sie die Anzahl der remanenten S7-Zähler ab Z0 hier ein.

Bereiche Da bei jeder VIPA CPU 51xS alle Datenbausteine remanent abliegen, sind

die Einstellungen unter Bereiche irrelevant und werden ignoriert.

Speicher

Lokaldaten

(Prioritätsklassen)

In diesen Feldern können Sie für die Prioritätsklassen 1 bis 29 die Anzahl

der Lokaldaten (temporäre Daten) festlegen.

Alarme

Priorität Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende

Alarm-OB (Prozessalarm, Verzögerungsalarm, Asynchronfehleralarm)

bearbeitet werden soll. Alarme für DPV1 wird nicht unterstützt.

Mit Priorität "0" wählen Sie den entsprechenden OB ab. Bitte beachten Sie,

dass dies nicht bei jedem OB möglich ist.

Uhrzeitalarme

Priorität Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende

Uhrzeitalarm-OB bearbeitet werden soll.

Mit Priorität "0" wählen Sie den entsprechenden OB ab.

Aktiv Bei aktiviertem Kästchen, wird der Uhrzeitalarm-OB bei einem Neustart

automatisch gestartet.

Ausführung Hier wählen Sie aus, wie oft die Alarme ausgeführt werden sollen. Die

Intervalle von minütlich bis jährlich beziehen sich auf die Einstellungen

unter Startdatum und Uhrzeit.

Startdatum/Uhrzeit Hier geben Sie an, wann der Uhrzeitalarm zum ersten Mal ausgeführt

werden soll.

Teilprozessabbild Dieser Parameter wird nicht unterstützt.

Weckalarme

Priorität Hier können Sie die Prioritäten bestimmen, nach denen der entsprechende

Weckalarm-OB bearbeitet werden soll. Mit Priorität "0" wählen Sie den

entsprechenden OB ab.

Ausführung Geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs

bearbeitet werden. Startzeitpunkt ist der Betriebszustandwechsel von

STOP nach RUN.

Phasenverschiebung Geben Sie hier eine Zeit in ms an, um welche der tatsächliche Ausführungszeitpunkt des Weckalarms verzögert werden soll. Dies ist

sinnvoll, wenn mehrere Weckalarme aktiv sind. Mit der Phasen-

verschiebung können diese über den Zyklus hinweg verteilt werden.

Teilprozessabbild Wird nicht unterstützt.

Diagnose/Uhr

STOP-Ursache melden

Aktivieren Sie diesen Parameter, wenn die CPU bei Übergang nach STOP

die STOP-Ursache an PG bzw. OP melden soll.

Anzahl Meldungen im Diagnosepuffer

Hier wird die Anzahl der Diagnosen angezeigt, welche im Diagnosepuffer

(Ringpuffer) abgelegt werden können.

Synchronisationsart Legen Sie hier fest, ob die Uhr andere Uhren synchronisiert oder nicht.

- als Slave: Die Uhr wird von einer anderen Uhr synchronisiert.

- als Master: Die Uhr synchronisiert andere Uhren als Master.

- keine: Es findet keine Synchronisation statt.

Zeitintervall Bestimmen Sie hier, innerhalb welcher Zeitintervalle die Synchronisation

erfolgen soll.

Korrekturfaktor Durch Vorgabe eines Korrekturfaktors in ms können Sie die Abweichung

der Uhr innerhalb 24 Stunden ausgleichen. Geht Ihre Uhr innerhalb von 24 Stunden 1s nach, können Sie dies mit dem Korrekturfaktor "+1000" ms

ausgleichen.

Schutz

Schutzstufe

Hier können Sie eine von 3 Schutzstufen einstellen, um die CPU vor unbefugtem Zugriff zu schützen.

Schutzstufe 1 (voreingestellt):

• kein Passwort parametrierbar; keine Einschränkungen

Schutzstufe 2 mit Passwort:

• Kenntnis des Passworts: lesender und schreibender Zugriff

• Unkenntnis des Passworts: nur lesender Zugriff

Schutzstufe 3:

Kenntnis des Passworts: lesender und schreibender Zugriff

Unkenntnis des Passworts: weder lesender noch schreibender Zugriff

Parameter für DP

Über Doppelklick auf das Submodule DP gelangen Sie in den Eigenschaften-Dialog des Profibus-Teils.

Allgemein

Kurzbezeichnung Hier wird als Kurzbezeichnung "DP" für Profibus-DP aufgeführt.

Bestell-Nr. Eine Bestell-Nr. wird nicht angezeigt.

Name Hier steht die Bezeichnung "DP". Wenn Sie die Bezeichnung ändern,

erscheint die neue Bezeichnung im Siemens SIMATIC Manager.

Schnittstelle Hier wird die Profibus-Adresse eingeblendet.

Eigenschaften Über diese Schaltfläche können Sie die Eigenschaften der Profibus-DP-

Schnittstelle einstellen.

Kommentar Hier können Sie den Einsatzzweck der Profibus-Schnittstelle eingeben.

Adresse

Diagnose Geben Sie hier eine Diagnoseadresse für Profibus-DP an. Über diese

Adresse bekommt die CPU eine Rückmeldung im Fehlerfall.

Betriebsart Hier können Sie die entsprechende Betriebsart des Profibus-Teils

einstellen. Näheres hierzu finden Sie im Teil "Einsatz unter Profibus".

Konfiguration Hier können Sie in der Betriebsart "DP-Slave" Ihr Slave-System

konfigurieren. Näheres hierzu finden im Teil "Einsatz unter Profibus".

Uhr Diese Parameter werden nicht unterstützt.

Parameter für MPI/DP

Über Doppelklick auf das Submodul MPI/DP gelangen Sie in den Eigenschaften-Dialog der MPI-Schnittstelle.

Allgemein

Kurzbezeichnung Hier wird als Kurzbezeichnung "MPI/DP" für die MPI-Schnittstelle auf-

geführt.

Bestell-Nr. Hier erfolgt keine Anzeige.

Name Unter *Name* finden Sie die Bezeichnung "MPI/DP". Wenn Sie den Namen

ändern, erscheint der neue Name im Siemens SIMATIC Manager.

Typ Bitte beachten Sie, das die VIPA CPU 51xS ausschließlich den Typ "MPI"

unterstützt.

Schnittstelle Hier wird die MPI-Adresse eingeblendet.

Eigenschaften Über diese Schaltfläche können Sie die Eigenschaften der MPI-Schnitt-

stelle einstellen.

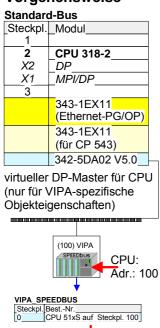
Kommentar Geben Sie hier den Einsatzzweck der MPI-Schnittstelle an.

Adressen

Diagnose Geben Sie hier eine Diagnoseadresse für die MPI-Schnittstelle an. Über

diese Adresse bekommt die CPU eine Rückmeldung im Fehlerfall.

Betriebsart Konfiguration, Uhr Diese Parameter werden nicht unterstützt.


VIPA-spezifische Parameter über SPEED7-CPU

Hierbei haben Sie Zugriff auf folgende Parameter:

- Funktion RS485 (Synchronisation DP-Master und CPU)
- Token Watch
- Anzahl Remanenzmerker
- Priorität OB 28, OB 29, OB 33, OB 34
- Ausführung OB 33, OB 34
- Phasenverschiebung OB 33, OB 34

Über eine Hardware-Konfiguration können Sie unter *Objekteigenschaften* über den Parameter "Funktion RS485" das Synchronisationsverhalten zwischen DP-Master-System und CPU vorgeben. Sie gelangen in das Parametrierfenster für die SPEED7-CPU, indem Sie auf die am SPEED-Bus-Slave eingefügte CPU 51xS doppelklicken.

Vorgehensweise

Objekteigenschaften: Funktion RS485

Projektieren Sie, wie weiter oben gezeigt, Ihr SPEED7-System. Nach der Projektierung muss sich Ihre CPU 51xS auf Steckplatz 0 des VIPA SPEED-Bus-Slaves mit Adresse 100 befinden.

Öffnen Sie durch Doppelklick auf die CPU 51xS am SPEED-Bus-Slave die *Objekteigenschaften* für die SPEED7-CPU.

Unter dem Parameter RS485 haben Sie verschiedene Einstellmöglichkeiten.

Funktion RS485

Standardmäßig wird die RS485-Schnittstelle für den Profibus-DP-Master verwendet

Mit diesem Parameter können Sie die RS485-Schnittstelle auf PtP-Kommunikation (**p**oint **t**o **p**oint) umschalten bzw. das Synchronisationsverhalten zwischen DP-Master-System und CPU vorgeben:

Deaktiviert die RS485-Schnittstelle

PtP In dieser Betriebsart wird der Profibus-DP-Master

deaktiviert und die RS485-Schnittstelle arbeitet als Schnittstelle für serielle Punkt-zu-Punkt-Kommunikation. Hier können Sie unter Einsatz von Protokollen seriell zwischen zwei Stationen

Daten austauschen.

Näheres zum "Einsatz PtP-Kommunikation" finden Sie im gleichnamigen Teil in diesem

Handbuch.

Profibus-DP async Profibus-DP-Master-Betrieb asynchron zum CPU-

Zyklus

Die RS485-Schnittstelle ist defaultmäßig auf *Profibus-DP async* eingestellt. Hier laufen CPU-Zyklus und die Zyklen aller VIPA Profibus-DP-Master an der CPU unabhängig voneinander. Die CPU wartet auf DP-Master-Eingangsdaten.

Profibus-DP syncIn Die CPU wartet auf DP-Master-Eingangs
Profibus-DP syncOut Das DP-Master-System wartet auf CPU-

Ausgangsdaten.

Profibus-DP syncInOut CPU und DP-Master-System warten aufeinander

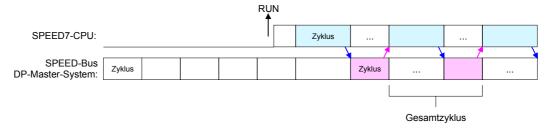
und bilden damit einen Zyklus.

Default: Profibus-DP async

Synchronisation zwischen Master-System und CPU

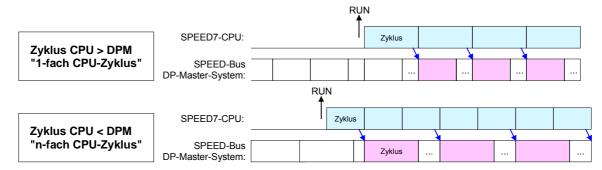
Normalerweise laufen die Zyklen von CPU und DP-Master unabhängig voneinander. Die Zykluszeit der CPU ist die Zeit, welche die CPU für einen OB1-Durchlauf und für das Lesen bzw. Schreiben der Ein- bzw. Ausgänge benötigt. Da die Zykluszeit eines DP-Masters unter anderem abhängig ist von der Anzahl der angebunden DP-Slaves und der Baud-Rate, entsteht bei jedem angebundenen DP-Master eine andere Zykluszeit. Aufgrund der Asynchronität von CPU und DP-Master ergeben sich für das Gesamtsystem relativ hohe Reaktionszeiten.

Über eine Hardware-Konfiguration können Sie, wie oben gezeigt, das Synchronisations-Verhalten zwischen allen VIPA Profibus-DP-Master an der CPU parametrieren.


Die verschiedenen Modi für die Synchronisation sind nachfolgend beschrieben.

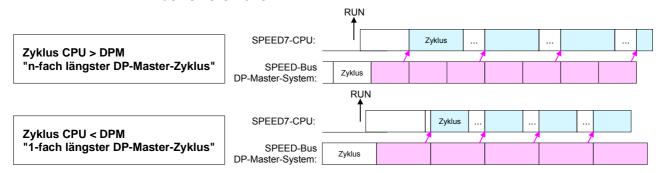
Profibus-DP SyncInOut

Im *Profibus-DP SyncInOut* warten CPU und DP-Master-System jeweils aufeinander und bilden damit einen Zyklus. Hierbei ist der Gesamtzyklus die Summe aus dem längsten DP-Master-Zyklus und CPU-Zyklus.


Durch diesen Synchronisations-Modus erhalten Sie global konsistente Ein-/Ausgabedaten, da innerhalb des Gesamtzyklus CPU und das DP-Master-System nacheinander mit den gleichen Ein- bzw. Ausgabedaten arbeiten.

Gegebenenfalls müssen Sie in diesem Modus die *Ansprechüberwachungszeit* in den Bus-Parametern erhöhen.

Profibus-DP SyncOut


In dieser Betriebsart richtet sich der Zyklus des DP-Master-Systems am SPEED-Bus nach dem CPU-Zyklus. Geht die CPU in RUN, werden die DP-Master synchronisiert. Sobald deren Zyklus durchlaufen ist, warten diese auf den nächsten Synchronisationsimpuls mit Ausgabedaten der CPU. Auf diese Weise können Sie die Reaktionszeit Ihres Systems verbessern, da Ausgangsdaten möglichst schnell an die DP-Master übergeben werden. Gegebenenfalls müssen Sie in diesem Modus die *Ansprechüberwachungszeit* in den Bus-Parametern erhöhen.

Profibus-DP SyncIn

In der Betriebsart *Profibus-DP SyncIn* wird der CPU-Zyklus auf den Zyklus des Profibus-DP-Master-Systems am SPEED-Bus synchronisiert. Hierbei richtet sich der CPU-Zyklus nach dem SPEED-Bus-DP-Master mit der längsten Zykluszeit. Geht die CPU in RUN, wird diese mit allen SPEED-Bus-DP-Master synchronisiert. Sobald die CPU ihren Zyklus durchlaufen hat, wartet diese, bis das DP-Master-System mit dem Synchronimpuls neue Eingangsdaten liefert.

Gegebenenfalls müssen Sie in diesem Modus die *Zyklusüberwachungszeit* der CPU erhöhen.

Token Watch

Hier handelt es sich um einen VIPA-internen Parameter. Hier sollten Sie

Default: Ein

nichts ändern.

Anzahl Remanenz-Merker

Geben Sie hier die Anzahl der Merker-Bytes an. Durch Eingabe von 0 wird der Wert übernommen, welchen Sie in den Parametern der Siemens CPU 318-2 unter *Remanenz > Anzahl Merker-Bytes ab MB0* angegeben haben. Ansonsten wird der hier angegebene Wert (1 ... 16384) übernommen.

Default: 0

Phasenverschiebung und Ausführung von OB33 und OB34

Die CPU stellt Ihnen zusätzliche Weckalarm-OBs zur Verfügung, welche die zyklische Programmbearbeitung in bestimmten Abständen unterbrechen. Startzeitpunkt des Zeittaktes ist der Betriebszustandswechsel von STOP nach RUN.

Um zu verhindern, dass die Weckalarme verschiedener Weckalarm-OBs zum gleichen Zeitpunkt eine Startaufforderung erhalten und dadurch möglicherweise ein Zeitfehler (Zykluszeitüberschreitung) entsteht, haben Sie die Möglichkeit, eine Phasenverschiebung bzw. eine Ausführzeit vorzugeben.

Die *Phasenverschiebung* (0 ... 60000ms) sorgt dafür, dass die Bearbeitung eines Weckalarms nach Ablauf des Zeittaktes um einen bestimmten Zeitraum verschoben wird.

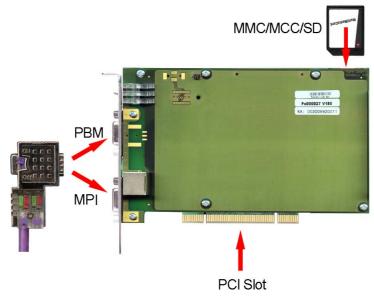
Mit der *Ausführung* (1 ... 60000ms) geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs zu bearbeiten sind.

Default: Phasenverschiebung: 0 Ausführung: OB33: 500ms OB34: 200ms

Priorität von OB28, OB29, OB33 und OB34

Die Priorität legt die Reihenfolge der Unterbrechung des entsprechenden Alarm-OBs fest.

Hierbei werden folgende Prioritäten unterstützt: 0 (Alarm-OB ist deaktiviert), 2,3,4,9,12,16,17,24


Default: 24

Projekt transferieren

Übersicht

Es bestehen folgende Möglichkeiten ein Projekt in die CPU 51x Steckkarte zu übertragen:

- intern über den PCI-SLot (Ethernet-Verbindung)
- extern über PC-Netzwerkkarte (Routing erforderlich)
- extern über RS485
- extern über Profibus (nicht Erstprojekt)
- extern über MMC-Speicherkarte

Projekt intern über PCI-Slot mit einer Ethernet-Verbindung übertragen Für diese Übertragungsart müssen sich die CPU 51xS Steckkarte und der Siemens SIMATIC Manager im gleichen PC befinden.

Sobald Ethernet- und CPU-Komponente gültige IP-Adress-Parameter erhalten haben, können Sie intern über die IP-Adresse der CPU-Komponente auf die Steckkarte zugreifen. Stellen Sie hierbei als PG/PC-Schnittstelle "Intel(R) 8255xER" ein.

Bitte führen Sie eine Hardware-Projektierung durch, in der Sie neben der CPU 318-2DP für die Kommunikationsfunktion der CPU-Komponente einen CP 343-1 projektieren. Geben Sie hier die gewünschten IP-Adress-Parameter an. Bitte beachten Sie hierbei, dass sich die IP-Adresse ausschließlich in der Host-ID von der IP-Adresse der Ethernet-Komponente unterscheidet.

Über die Zielsystemfunktionen können Sie die im CP 343-1 angegebenen IP-Adress-Parameter als Zielparameter verwenden.

Wird bei der Übertragung die über die IP-Adress-Parameter angegebene Zielstation nicht gefunden, können Sie in einem Hinweisfenster die ursprünglichen Ziel-IP-Parameter für die CPU-Komponente angeben.

Mit Bestätigung Ihrer Eingabe wird Ihr Projekt an die ursprüngliche IP-Adresse übertragen. Nach dem Neustart der CPU sind die neuen IP-Parameter aus dem Projekt aktiv.

Projekt extern über PC-Netzwerkkarte übertragen Bei dieser Übertragungsart wird vorausgesetzt, dass sich CPU 51xS Steckkarte und eine Netzwerkkarte im Ziel-PC befinden und dass die Netzwerkkarte über Ethernet mit dem Projektier-PC verbunden ist.

Damit Sie von Ihrem Projektier-PC über die Netzwerkkarte des Ziel-PCs auf die CPU 51xS Steckkarte zugreifen können, ist ein "Routing" durchzuführen. Näheres hierzu finden Sie unter "Zugriff extern auf PG/OP-Kanal über Routing" weiter oben.

Verfahren Sie nun wie bei der internen Projektübertragung. Projektieren Sie eine CPU 318-2DP und einen CP 343-1. Geben Sie diesem die gewünschten IP-Adress-Parameter. Wählen Sie hier aber unter "Parameter" die Funktion "Router verwenden" an und geben Sie als "Gateway" die IP-Adresse der Ethernet-Komponente Ihrer CPU 51xS Steckkarte an.

Über die Zielsystemfunktionen können Sie die im CP 343-1 angegebenen Parameter als Zielparameter verwenden.

Wird bei der Übertragung die über die IP-Parameter angegebene Zielstation nicht gefunden, können Sie in einem Hinweisfenster die ursprünglichen Ziel-IP-Parameter für die CPU-Komponente angeben.

Mit Bestätigung Ihrer Eingabe wird Ihr Projekt an die ursprüngliche IP-Adresse übertragen. Nach dem Neustart der CPU sind die neuen IP-Parameter aus dem Projekt aktiv.

Transfer über RS485

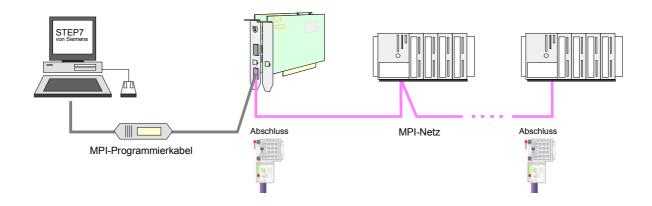
Für den Transfer über RS485 besitzt die CPU folgende 2 Schnittstellen:

- MPI-Schnittstelle unterstützt maximal 32 PG/OP-Kanäle
- PB-DP/PtP-Schnittstelle unterstützt maximal 31 PG/OP-Kanäle (ausschließlich im Profibus-DP-Master-Betrieb)

MPI-Programmier-kabel

Die MPI-Programmierkabel erhalten Sie in verschiedenen Varianten von VIPA. Der Einsatz dieser Kabel ist identisch. Die Kabel bieten einen busfähigen RS485-Anschluss für die CPU und einen RS232 bzw. USB-Anschluss für den PC.

Aufgrund des RS485-Anschlusses dürfen Sie die MPI-Programmierkabel direkt auf einen an der RS485-Buchse schon gesteckten Stecker aufstecken. Jeder Busteilnehmer identifiziert sich mit einer eindeutigen Adresse am Bus, wobei die Adresse 0 für Programmiergeräte reserviert ist.


Netz-Struktur

Der Aufbau eines MPI-Netzes ist prinzipiell gleich dem Aufbau eines 1,5Mbit/s Profibus-Netzes. Das heißt, es gelten dieselben Regeln und Sie verwenden für beide Netze die gleichen Komponenten zum Aufbau. Die einzelnen Teilnehmer werden über Busanschlussstecker und Profibus-Kabel verbunden. Defaultmäßig wird das MPI-Netz mit 187,5kbit/s betrieben. VIPA-CPUs werden mit der MPI-Adresse 2 ausgeliefert.

Abschlusswiderstand

Eine Leitung muss mit ihrem Wellenwiderstand abgeschlossen werden. Hierzu schalten Sie den Abschlusswiderstand am ersten und am letzten Teilnehmer eines Netzes oder eines Segments zu.

Achten Sie darauf, dass die Teilnehmer, an denen der Abschlusswiderstand zugeschaltet ist, während des Hochlaufs und des Betriebs immer mit Spannung versorgt sind.

Vorgehensweise Transfer über MPI-Schnittstelle

- Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPI-Buchse Ihrer CPU.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Stellen Sie im Register *MPI* die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige *Adresse* an.
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Bit/s ein.
- Mit **Zielsystem** > Laden in Baugruppe können Sie Ihr Projekt über MPI in die CPU übertragen und mit **Zielsystem** > RAM nach ROM kopieren auf einer MMC sichern, falls diese gesteckt ist.

Vorgehensweise Transfer über Profibus-Schnittstelle

- Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der DP-PB/PtP-Buchse Ihrer CPU.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
- Wählen Sie in der Auswahlliste "PC Adapter (Profibus)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Stellen Sie im Register Profibus die Übertragungsparameter Ihres Profibus-Netzes ein und geben Sie eine gültige Profibus-Adresse an. Die Profibus-Adresse muss zuvor über ein Projekt Ihrem DP-Master zugewiesen sein.
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für Ihr MPI-Programmierkabel die Übertragungsrate 38400Bit/s ein.
- Mit Zielsystem > Laden in Baugruppe können Sie Ihr Projekt über Profibus in die CPU übertragen und mit Zielsystem > RAM nach ROM kopieren auf einer MMC sichern, falls diese gesteckt ist.

Hinweis!

Ein entsprechendes Projekt mit aktiviertem Profibus muss bereits in der CPU geladen sein (nicht geeignet für Erstinbetriebnahme), ansonsten ist die CPU nach Urlöschen nicht mehr erreichbar.

Transfer über MMC

Die MMC (**Mem**ory **C**ard) dient als externes Speichermedium und Transfermedium für Programme und Firmware. Sie besitzt das PC-kompatible FAT16-Filesystem.

Es dürfen sich mehrere Projekte und Unterverzeichnisse auf einer MMC befinden. Bitte beachten Sie, dass sich Ihre aktuelle Projektierung bzw. die Datei mit dem reservierten Dateinamen im Root-Verzeichnis befindet.

Mit Urlöschen, NetzEIN oder CPU-STOP wird automatisch von der MMC gelesen. Durch Vorgabe eines reservierten Dateinamens können Sie die Funktionalität der CPU entsprechend beeinflussen.

Reservierte Dateinamen

Dateiname	Beschreibung
S7PROG.WLD	Projektdatei - wird nach Urlöschen gelesen bzw. kann über Schreibbefehl von CPU geschrieben werden.
AUTOLOAD.WLD	Projektdatei - wird nach NetzEIN gelesen.
PROTECT.WLD	Geschützte Projektdatei (siehe "Erweiterter Know-how-Schutz")
VIPA_CMD.MMC	Kommando-Datei - Datei wird einmalig bei CPU-STOP beim Stecken einer MMC oder nach NetzEIN ausgeführt (siehe "MMC-Cmd - Autobefehle").
*.pkg	Firmware-Datei - wird nach NetzEIN erkannt und kann mit einer Update-Anforderung installiert werden. (siehe "Firmwareupdate")

Transfer MMC \rightarrow CPU

Das Übertragen des Anwenderprogramms von der MMC in die CPU erfolgt je nach Dateiname nach Urlöschen oder nach PowerON. Das Blinken der LED "MCC" der CPU kennzeichnet den Übertragungsvorgang. Ein Übertragung von der MMC in die CPU erfolgt nur, wenn der Anwenderspeicher größer als das Anwenderprogramm ist. Ansonsten ist eine Speichererweiterung mittels MCC erforderlich.

Projekt-Transfer CPU → MMC

Bei einer in der CPU gesteckten MMC wird durch ein Schreibbefehl der Inhalt des batteriegepufferten RAMs als **S7PROG.WLD** auf die MMC übertragen. Den Schreibbefehl starten Sie aus dem Hardware-Konfigurator von Siemens über **Zielsystem** > *RAM nach ROM kopieren*. Während des Schreibvorgangs blinkt die "MMC"-LED. Erlischt die LED, ist der Schreibvorgang beendet.

Kontrolle des Transfervorgangs

Nach einem Schreibvorgang auf die MMC wird ein entsprechendes ID-Ereignis im Diagnosepuffer der CPU eingetragen. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf **Zielsystem** > *Baugruppenzustand*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster.

Folgende Ereignisse können beim Schreiben auf eine MMC auftreten:

Ereignis-ID	Bedeutung
0xE100	MMC-Zugriffsfehler
0xE101	MMC-Fehler Filesystem
0xE102	MMC-Fehler FAT
0xE200	MMC schreiben erfolgreich beendet

Betriebszustände

Übersicht

Die CPU kennt 4 Betriebszustände:

- Betriebszustand STOP
- Betriebszustand ANLAUF
- Betriebszustand RUN
- Betriebszustand HALT

In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organisationsbaustein als Anwenderschnittstelle aufgerufen.

Betriebszustand STOP

- Das Anwenderprogramm wird nicht bearbeitet.
- Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten.
- Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt.
- RN-LED ausST-LED an

Betriebszustand ANLAUF

- Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Die Länge des OBs ist nicht beschränkt. Auch wird der Ablauf zeitlich nicht überwacht. Im Anlauf-OB können weitere Bausteine aufgerufen werden.
- Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsausgabesperre ist aktiv.
- RN-LED blinkt
- ST-LED aus

Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebszustand RUN über.

Betriebszustand RUN

- Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können.
- Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert.
- Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle digitalen Ausgänge sind freigegeben.
- RN-LED an
- ST-LED aus

Betriebszustand HALT

Die CPU 51xS bietet Ihnen die Möglichkeit bis zu 4 Haltepunkte zur Programmdiagnose einzusetzen. Das Setzen und Löschen von Haltepunkten erfolgt in Ihrer Programmierumgebung. Sobald ein Haltepunkt erreicht ist, können Sie schrittweise Ihre Befehlszeilen abarbeiten, wobei Ein- und Ausgänge aktiviert werden können.

Voraussetzung

Für die Verwendung von Haltepunkten müssen folgende Voraussetzungen erfüllt sein:

- Das Testen im Einzelschrittmodus ist nur in AWL möglich, ggf. über
 Ansicht > AWL Ansicht in AWL ändern.
- Der Baustein muss online geöffnet und darf nicht geschützt sein.
- Der geöffnete Baustein darf im Editor nicht verändert worden sein.

Vorgehensweise zur Arbeit mit Haltepunkten

- Blenden Sie über **Ansicht** > *Haltepunktleiste* diese ein.
- Setzen Sie Ihren Cursor auf die Anweisungszeile, in der ein Haltepunkt gesetzt werden soll.
- Setzen Sie den Haltepunkt mit **Test** > *Haltepunkt* setzen. Die Anweisungszeile wird mit einem Kreisring markiert.
- Zur Aktivierung des Haltepunkts gehen Sie auf Test > Haltepunkt aktiv.
 Der Kreisring wird zu einer Kreisfläche.
- Bringen Sie Ihre CPU in RUN. Wenn Ihr Programm auf den Haltepunkt trifft, geht Ihre CPU in den Zustand HALT über, der Haltepunkt wird mit einem Pfeil markiert und die Registerinhalte werden eingeblendet.
- Nun können Sie mit **Test** > *Nächste Anweisung ausführen* schrittweise Ihren Programmcode durchfahren oder über **Test** > *Fortsetzen* Ihre Programmausführung bis zum nächsten Haltepunkt fortsetzen.
- Mit **Test** > (Alle) Haltepunkte löschen können Sie (alle) Haltepunkte wieder löschen.

Verhalten im Betriebszustand HALT

- LED RN blinkt und LED ST leuchtet.
- Die Bearbeitung des Codes ist angehalten. Alle Ablaufebenen werden nicht weiterbearbeitet.
- Alle Zeiten werden eingefroren.
- Echtzeituhr läuft weiter.
- Ausgänge werden abgeschaltet, können zu Testzwecken aber freigegeben werden.
- Passive CP-Kommunikation ist möglich.

Hinweis!

Der Einsatz von Haltepunkten ist immer möglich. Eine Umschaltung in die Betriebsart Testbetrieb ist nicht erforderlich.

Sobald Sie mehr als 3 Haltepunkte gesetzt haben, ist eine Einzelschrittbearbeitung nicht mehr möglich.

Funktionssicherheit

Die CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms) und eine parametrierbare Zykluszeitüberwachung (parametrierbar min. 1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU durchführen und diese in einen definierten STOP-Zustand versetzen.

Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende Systemeigenschaften:

Ereignis	betrifft	Effekt
$RUN \rightarrow STOP$	allgemein	BASP (B efehls- A usgabe- Sp erre) wird gesetzt.
	zentrale digitale Ausgänge	Die Ausgänge werden auf 0V gesetzt.
	zentrale analoge Ausgänge	Die Spannungsversorgung für die Ausgabe- Kanäle wird abgeschaltet.
	dezentrale Ausgänge	Die Ausgänge werden auf 0V gesetzt.
	dezentrale Eingänge	Die Eingänge werden vom Slave konstant gelesen und die aktuellen Werte zur Verfügung gestellt.
STOP → RUN bzw. Netz-Ein	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der Aufruf des OB100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen → PAE lesen → OB1.
	zentrale analoge Ausgänge	Das Verhalten der Ausgänge bei Neustart kann voreingestellt werden.
	dezentrale Eingänge	Die Eingänge werden vom Slave konstant gelesen und die aktuellen Werte zur Verfügung gestellt.
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen → OB1 → PAA schreiben.

PAE: = Prozessabbild der Eingänge PAA: = Prozessabbild der Ausgänge

Urlöschen

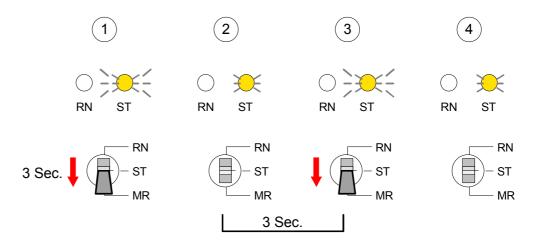
Übersicht

Beim Urlöschen werden der komplette Anwenderspeicher (RAM) und der remanente Speicherbereich gelöscht.

Ihre Daten auf dem Speichermodul (MMC, MCC) bleiben erhalten.

Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr auf Ihrer CPU befindet.

Urlöschen über Betriebsartenschalter


Voraussetzung

Ihre CPU muss sich im STOP-Zustand befinden. Stellen Sie hierzu den CPU-Betriebsartenschalter auf "STOP" \rightarrow Die ST-LED leuchtet.

Urlöschen

- Bringen Sie den Betriebsartenschalter in Stellung MR und halten Sie Ihn ca. 3 Sekunden. → Die ST-LED geht von Blinken über in Dauerlicht.
- Bringen Sie den Betriebsartenschalter in Stellung STOP und innerhalb von 3 Sekunden kurz in MR dann wieder auf STOP.
 → Die ST-LED blinkt (Urlösch-Vorgang).
- Das Urlöschen ist abgeschlossen, wenn die ST-LED in Dauerlicht übergeht → Die ST-LED leuchtet.

Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

Urlöschen über PLC-Tool

Bei Einsatz der Bediensoftware PLC-Tool von VIPA können Sie Urlöschen über die Schaltfläche [M-RES] ausführen.

Die Schaltfläche ist verfügbar sobald sich Ihre CPU in STOP befindet.

Urlöschen über SIMATIC Manager von Siemens

Voraussetzung

Ihre CPU muss sich im STOP-Zustand befinden.

Mit dem Menübefehl **Zielsystem** > *Betriebszustand* bringen Sie Ihre CPU in STOP.

Urlöschen

Über den Menübefehl **Zielsystem** > *Urlöschen* fordern Sie das Urlöschen an.

In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten.

Während des Urlöschvorgangs blinkt die ST-LED.

Geht die ST-LED in Dauerlicht über, ist der Urlöschvorgang abgeschlossen.

Automatisch nachladen

Nach dem Urlöschen versucht die CPU Parameter und Programm von der Memory Card neu zu laden. \to Die MMC-LED auf der Platine blinkt.

Nach dem Nachladen erlischt die LED MMC. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.

Firmwareupdate

Übersicht

Sie haben die Möglichkeit unter Einsatz einer MMC für die CPU ein Firmwareupdate durchzuführen.

Hierzu muss sich in der CPU beim Hochlauf eine entsprechend vorbereitete MMC befinden.

Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede update-fähige Komponente und jeden Hardware-Ausgabestand ein pkg-Dateiname reserviert, der mit "px" beginnt und sich in einer 6-stelligen Ziffer unterscheidet.

Sobald sich beim Hochlauf eine pkg-Datei auf der MMC befindet und es sich bei Firmware um eine aktuellere Firmware handelt als in den Komponenten, werden alle der pkg-Datei zugeordneten Komponenten innerhalb der CPU mit der neuen Firmware beschrieben.

Aktuelle Firmware auf www.vipa.de

Die aktuellsten Firmwarestände finden Sie auf www.vipa.de im Service-Bereich.

Beispielsweise sind für den Firmwareupdate der CPU 517-4NE02 und Ihrer Komponenten (Profibus, CP 543) für den Ausgabestand 1 folgende Dateien erforderlich:

517-4NE02, Ausgabestand 1: Px000118.zip
 Profibus-DP-Master (integriert): Px000119.zip
 Ethernet-CP 543 (integriert): Px000059.zip

Achtuna!

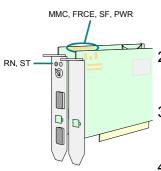
Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist.

Setzen Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung!

Bitte beachten Sie auch, dass sich die zu überschreibende Firmware-Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update. Firmwarestand des SPEED7-Systems über Web-Seite ausgeben Jede SPEED7-CPU hat eine Web-Seite integriert, die auch Informationen zum Firmwarestand der SPEED7-Komponenten bereitstellt. Über den Ethernet-PG/OP-Kanal haben Sie Zugriff auf diese Web-Seite.

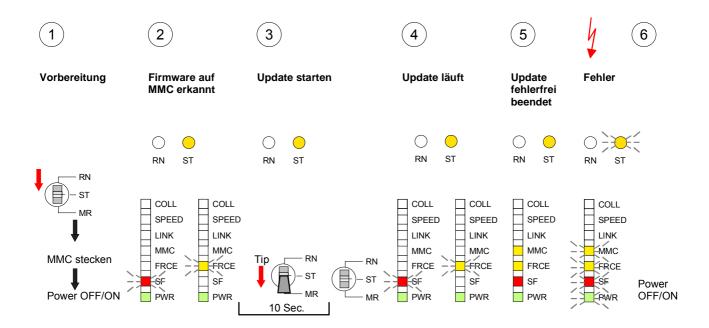
Näheres hierzu finden Sie unter "Zugriff auf integrierte Web-Site".

Firmware laden und auf Speichermedium übertragen


- Gehen Sie in den Service-Bereich von www.vipa.de.
- Navigieren Sie zu "Firmware".
- Klicken Sie auf "System 500S".
- Wählen Sie die entsprechenden Baugruppen aus und laden Sie die Firmware Px.....zip auf Ihren PC.
- Entpacken Sie die zip-Datei und kopieren Sie die extrahierte Datei auf Ihre MMC.
- Übertragen Sie auf diese Weise alle erforderlichen Firmware-Dateien auf Ihre MMC.

Achtung!

Beim Firmwareupdate wird automatisch ein Urlöschen durchgeführt. Sollte sich Ihr Programm nur im Ladespeicher der CPU befinden, so wird es hierbei gelöscht! Sichern Sie Ihr Programm, bevor Sie ein Firmwareupdate durchführen! Auch sollten Sie nach dem Firmwareupdate ein "Rücksetzen auf Werkseinstellung" durchführen (siehe Folgeseite).


Firmware von MMC in CPU übertragen

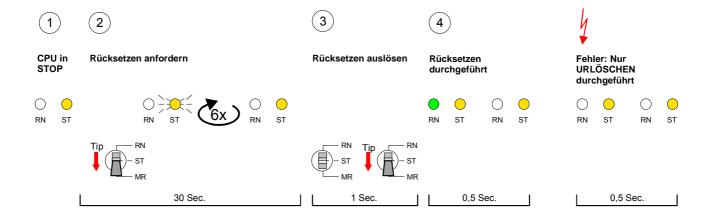
- Bringen Sie den RUN-STOP-Schalter Ihrer CPU in Stellung STOP. Schalten Sie die externe Spannungsversorgung aus. Im eingebauten Zustand erhalten Sie jetzt je nach Betriebssystem eine Meldung, dass der Verbindungspartner nicht mehr vorhanden ist. Diese Meldung können Sie ignorieren. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsversorgung ein.
- Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der internen LEDs SF und FRCE an, dass auf der MMC mindestens eine aktuellere Firmware-Datei gefunden wurde.
- Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den RUN/STOP-Schalter kurz nach MR tippen und dann den Schalter in der ST-Position belassen.
- Während des Update-Vorgangs blinken die LEDs SF und FRCE abwechselnd und die MMC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
- 5. Das Update ist fehlerfrei beendet, wenn die LEDs PWR, ST, SF, FRCE und MMC leuchten. Blinken diese schnell, ist ein Fehler aufgetreten.
- Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FRCE. Fahren Sie mit Punkt 3 fort.

Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen.

Führen Sie jetzt wie nachfolgend beschrieben ein *Rücksetzen auf Werkseinstellungen* durch. Danach ist die CPU wieder einsatzbereit.

Rücksetzen auf Werkseinstellung

Vorgehensweise


Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand.

Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 und die IP Adresse des Ethernet-PG/OP-Kanals auf 0.0.0.0 zurückgestellt wird!

Sie können auch das Rücksetzen auf Werkseinstellung mit dem MMC-Cmd FACTORY_RESET ausführen. Nähere Informationen hierzu finden Sie unter "MMC-Cmd - Autobefehle".

- 1. Bringen Sie die CPU in STOP.
- Drücken Sie den Betriebsarten-Schalter für ca. 30 Sekunden nach unten in Stellung MR. Hierbei blinkt die ST-LED. Nach ein paar Sekunden leuchtet die ST-LED. Die ST-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die ST-LED leuchtet.
- 3. Nach dem 6. mal Leuchten der ST-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig in Stellung MR zu drücken.
- 4. Zur Bestätigung des Rücksetzvorgangs leuchtet die grüne RN-LED für ca. 0,5 Sekunden auf. Leuchtet diese nicht, wurde nur urgelöscht und das Rücksetzen auf Werkseinstellung ist fehlgeschlagen. In diesem Fall können Sie den Vorgang wiederholen. Das Rücksetzen auf Werkseinstellung wird nur dann ausgeführt, wenn die ST-LED genau 6 mal geleuchtet hat.
- Am Ende des Rücksetzvorgangs leuchten die LEDs STOP, SF, FRCE und MMC. Danach ist die Spannungsversorgung aus- und wieder einzuschalten.

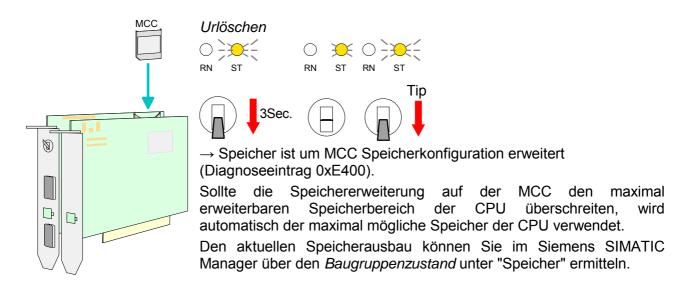
Die nachfolgende Abbildung soll die Vorgehensweise nochmals verdeutlichen:

Hinweis!

Bitte führen Sie nach einem Firmwareupdate der CPU immer ein Rücksetzen auf Werkseinstellung durch.

Speichererweiterung mit MCC

Übersicht


Bei der CPU haben Sie die Möglichkeit den Arbeitsspeicher zu erweitern.

Hierzu ist bei VIPA eine MCC-Speichererweiterungskarte verfügbar. Bei der MCC handelt es sich um eine speziell konfigurierte MMC (**M**ulti**m**edia **C**ard). Durch Stecken der MCC im MCC-Slot und anschließendem Urlöschen wird die entsprechende Speichererweiterung freigeschaltet. Es kann immer nur eine Speichererweiterung aktiviert sein.

Auf der MCC befindet sich die Datei *memory.key*. Diese Datei darf weder bearbeitet noch gelöscht werden. Sie können die MCC auch als "normale" MMC zur Speicherung Ihrer Projekte verwenden.

Vorgehensweise

Zur Erweiterung des Speichers stecken Sie die MCC in den mit "MCC" bezeichneten Kartenslot der CPU und führen Sie Urlöschen durch.

Achtung!

Bitte beachten Sie, dass, sobald Sie eine Speichererweiterung auf Ihrer CPU durchgeführt haben, die MCC gesteckt bleiben muss. Ansonsten geht die CPU nach 72h in STOP. Auch kann die MCC <u>nicht</u> gegen eine MCC mit gleicher Speicherkonfiguration getauscht werden.

Verhalten

Wurde die MCC-Speicherkonfiguration übernommen, finden Sie den Diagnoseeintrag 0xE400 im Diagnosepuffer der CPU.

Nach Ziehen der MCC erfolgt der Eintrag 0xE401 im Diagnosepuffer, die SF-LED leuchtet und nach 72h geht die CPU in STOP. Hier ist ein Anlauf erst wieder möglich nach Stecken der MCC oder nach Urlöschen.

Nach erneutem Stecken der MCC erlischt die SF-LED und 0xE400 wird im Diagnosepuffer eingetragen. Sie können jederzeit die Speicherkonfiguration Ihrer CPU auf den ursprünglichen Zustand wieder zurücksetzen, indem Sie Urlöschen ohne MCC ausführen.

Erweiterter Know-how-Schutz

Übersicht Neben dem "Standard" Know-how-Schutz besitzen die SPEED7-CPUs von

VIPA einen "erweiterten" Know-how-Schutz, der einen sicheren Baustein-

Schutz vor Zugriff Dritter bietet.

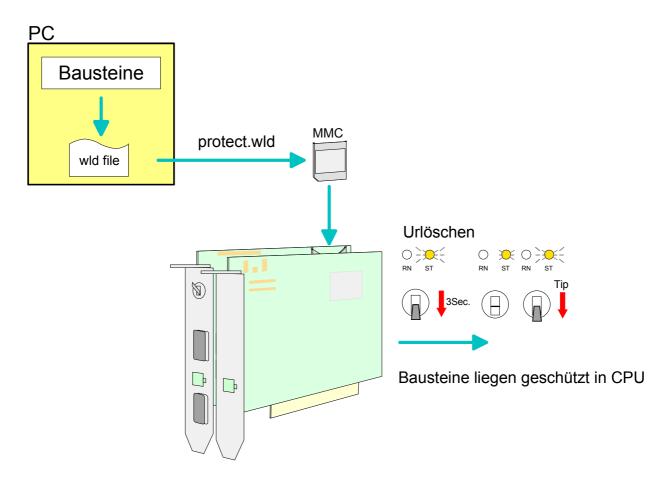
Standard-Schutz von Siemens werden auch geschützte Bausteine in

das PG übertragen, aber deren Inhalt nicht dargestellt. Durch entspre-

chende Manipulation ist der Know-how-Schutz aber nicht sichergestellt.

Erweiterter Schutz Mit dem von VIPA entwickelten "erweiterten" Know-how-Schutz besteht aber die Möglichkeit Bausteine permanent in der CPU zu speichern.

Beim "erweiterten" Schutz übertragen Sie die zu schützenden Bausteine in

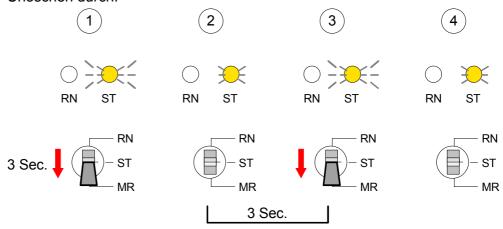

eine WLD-Datei mit Namen protect.wld. Durch Stecken der MMC und anschließendem Urlöschen werden die in protect.wld gespeicherten

Bausteine permanent in der CPU abgelegt.

Geschützt werden können OBs, FBs und FCs.

Beim Zurücklesen von geschützten Bausteinen in Ihr PG werden ausschließlich die Baustein-Header geladen. Der Source bleibt in der CPU und

somit vor dem Zugriff Dritter geschützt.


Bausteine mit protect.wld schützen

Erzeugen Sie in Ihrem Projektiertool mit **Datei** > *Memory Card Datei* > *Neu* eine WLD-Datei und benennen Sie diese um in "protect.wld".

Übertragen Sie die zu schützenden Bausteine in die Datei, indem Sie diese mit der Maus aus Ihrem Projekt in das Dateifenster von protect.wld ziehen.

protect.wld mit Urlöschen in CPU übertragen

Übertragen Sie die Datei protect.wld auf eine MMC-Speicherkarte, stecken Sie die MMC in Ihre CPU und führen Sie nach folgender Vorgehensweise Urlöschen durch:

Mit Urlöschen werden die in protect.wld enthaltenen Bausteine, permanent vor Zugriffen Dritter geschützt, in der CPU abgelegt.

Schutzverhalten

Geschützte Bausteine werden durch eine neue protect.wld überschrieben. Mit einem PG können Dritte auf geschützte Bausteine zugreifen, hierbei wird aber ausschließlich der Baustein-Header in das PG übertragen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht aus-

gelesen werden.

Geschützte Bausteine überschreiben bzw. löschen

Sie haben jederzeit die Möglichkeit geschützte Bausteine durch gleichnamige Bausteine im RAM der CPU zu überschreiben. Diese Änderung bleibt bis zum nächsten Urlöschen erhalten.

Geschützte Bausteine können nur dann vom PG dauerhaft überschrieben werden, wenn diese zuvor aus der protect.wld gelöscht wurden.

Durch Übertragen einer leeren protect.wld von der MMC können Sie in der CPU alle geschützten Bausteine löschen.

Einsatz von geschützten Bausteinen

Da beim Auslesen eines "protected" Bausteins aus der CPU die Symbol-Bezeichnungen fehlen, ist es ratsam dem Endanwender die "Bausteinhüllen" zur Verfügung zu stellen.

Erstellen Sie hierzu aus allen geschützten Bausteinen ein Projekt. Löschen Sie aus diesen Bausteinen alle Netzwerke, so dass diese ausschließlich die Variablen-Definitionen in der entsprechenden Symbolik beinhalten.

MMC-Cmd - Autobefehle

Übersicht

Durch Stecken einer MMC kann eine *Kommando-Datei* auf der MMC automatisch ausgeführt werden, sobald die CPU sich in STOP befindet.

Solange die MMC gesteckt ist wird die Kommando-Datei bei CPU-STOP einmalig bis zum nächsten NetzEIN ausgeführt.

Bei der *Kommando-Datei* handelt es sich um eine Text-Datei mit einer Befehlsabfolge, die unter dem Namen *vipa_cmd.mmc* im Root-Verzeichnis der MMC abzulegen ist. Die Datei muss mit dem 1. Befehl *CMD_START* beginnen, gefolgt von den gewünschten Befehlen (kein anderer Text) und ist immer mit dem letzten Befehl *CMD_END* abzuschließen.

Texte wie beispielsweise Kommentare nach dem letzten Befehl *CMD_END* sind zulässig, da diese ignoriert werden. Sobald eine Kommandodatei erkannt und ausgeführt wird, werden die Aktionen in der Datei Logfile.txt auf der MMC gespeichert. Zusätzlich finden Sie für jeden ausgeführten Befehl einen Diagnoseeintrag im Diagnosepuffer.

Befehle

Nachfolgend finden Sie eine Übersicht der Befehle. Bitte beachten Sie, dass Sie immer Ihre Befehlsabfolge mit *CMD_START* beginnen und mit CMD_END beenden.

Kommando	Beschreibung	Diagnoseeintrag
CMD_START	In der ersten Zeile muss CMD_START stehen.	0xE801
	Fehlt CMD_START erfolgt ein Diagnoseeintrag	0xE8FE
WAIT1SECOND	Wartet ca. 1 Sekunde.	0xE803
WEBPAGE	Speichert die Web-Site der CPU als Datei	0xE804
	"webpage.htm" auf der MMC.	
LOAD_PROJECT	Ruft die Funktion "Urlöschen mit Nachladen von der	0xE805
	MMC" auf. Durch Angabe einer wld-Datei nach dem	
	Kommando, wird diese wld-Datei nachgeladen,	
	ansonsten wird die Datei "s7prog.wld" geladen.	
SAVE_PROJECT	Speichert das Anwenderprojekt (Bausteine und Hard-	0xE806
[passwort]	warekonfiguration) auf der MMC als "s7prog.wld".	
	Falls bereits eine Datei mit dem Namen "s7prog.wld"	
	existiert, wird diese in "s7prog.old" umbenannt.	
	Sofern Ihr Projekt einen Passwortschutz hat, müssen Sie	
	an SAVE_PROJECT Ihr Passwort als Parameter	
	anfügen. Beispiel: Passwort = "vipa": SAVE_PROJECT vipa	
FACTORY RESET	Führt "Rücksetzen auf Werkseinstellung" durch.	0xE807
DIAGBUF	Speichert den Diagnosebuffer der CPU als Datei	0xE80B
DIAGBOF	"diagbuff.txt" auf der MMC.	UXEOUD
SET_NETWORK	Mit diesem Kommando können Sie die IP-Parameter für	0xE80E
	den Ethernet-PG/OP-Kanal einstellen.	
	Die IP-Parameter sind in der Reihenfolge IP-Adresse,	
	Subnetz-Maske und Gateway jeweils getrennt durch ein	
	Komma im Format von xxx.xxx.xxx einzugeben.	
	Wird kein Gateway verwendet, tragen Sie die IP-Adresse	
	als Gateway ein.	
CMD_END	In der letzten Zeile muss CMD_END stehen.	0xE802

Beispiele Nachfolgend ist der Aufbau einer Kommando-Datei an Beispielen gezeigt.

Den jeweiligen Diagnoseeintrag finden Sie in Klammern gesetzt.

Beispiel 1

CMD_START Kennzeichnet den Start der Befehlsliste (0xE801)

LOAD_PROJECT proj.wld Urlöschen und Nachladen von "proj.wld" (0xE805)

WAIT1SECOND Wartet ca. 1 Sekunde (0xE803)

WEBPAGE Web-Site als "webpage.htm" speichern (0xE804)

DIAGBUF Diagnosebuffer der CPU als "diagbuff.txt" speichern (0xE80B)

CMD_END Kennzeichnet das Ende der Befehlsliste (0xE802)

... beliebiger Text ... Texte nach dem CMD_END werden nicht mehr ausgewertet.

Beispiel 2

CMD_START Kennzeichnet den Start der Befehlsliste (0xE801)

LOAD_PROJECT proj2.wld Urlöschen und Nachladen von "proj2.wld" (0xE805)

WAIT1SECOND Wartet ca. 1 Sekunde (0xE803)
WAIT1SECOND Wartet ca. 1 Sekunde (0xE803)

SET_NETWORK 172.16.129.210,255.255.224.0,172.16.129.210 IP-Parameter

(0xE80E)

WAIT1SECOND Wartet ca. 1 Sekunde (0xE803)
WAIT1SECOND Wartet ca. 1 Sekunde (0xE803)

WEBPAGE Web-Site als "webpage.htm" speichern (0xE804)

DIAGBUF Diagnosebuffer der CPU als "diagbuff.txt" speichern (0xE80B)

CMD END Kennzeichnet das Ende der Befehlsliste (0xE802)

... beliebiger Text ... Texte nach dem CMD END werden nicht mehr ausgewertet.

Hinweis!

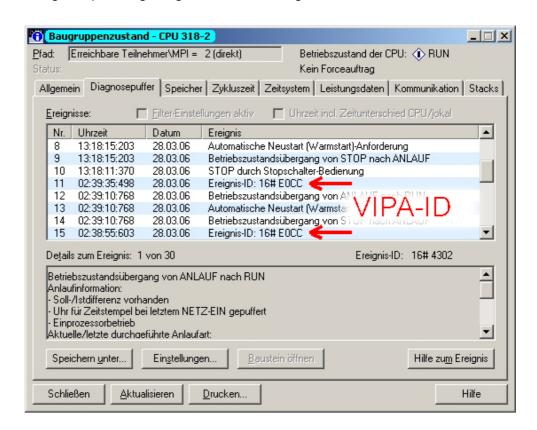
Die Parameter IP-Adresse, Subnetz-Maske und Gateway erhalten Sie von Ihrem Systemadministrator.

Wird kein Gateway verwendet, tragen Sie die IP-Adresse als Gateway ein.

VIPA-spezifische Diagnose-Einträge

Einträge im Diagnosepuffer

Sie haben die Möglichkeit im Siemens SIMATIC Manager den Diagnosepuffer der CPU auszulesen. Neben den Standardeinträgen im Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Einträge, welche ausschließlich in Form einer Ereignis-ID angezeigt werden.


Mit dem MMC-Cmd DIAGBUF wird der aktuelle Inhalt des Diagnosepuffers auf MMC gespeichert. Nähere Informationen hierzu finden Sie unter "MMC-Cmd - Autobefehle".

Hinweis!

Die CPUs von VIPA unterstützen alle Register des Baugruppenzustands. Eine nähere Beschreibung der einzelnen Register finden Sie in der Online-Hilfe Ihres Siemens SIMATIC Managers.

Anzeige der Diagnoseeinträge

Zur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATIC Manager auf **Zielsystem** > *Baugruppenzustand*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster:

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Auf der Folgeseite finden Sie eine Übersicht der VIPA-spezifischen Ereignis-IDs.

Übersicht der Ereignis-ID

Ereignis-ID	Bedeutung		
0xE003	Fehler beim Zugriff auf Peripherie		
	Zinfo1: Peripherie-Adresse		
	Zinfo2: Steckplatz		
0xE004	Mehrfach-Parametrierung einer Peripherieadresse		
	Zinfo1: Peripherie-Adresse		
	Zinfo2: Steckplatz		
0xE005	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xE006	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xE007	Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich		
0xE008	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xE009	Fehler beim Zugriff auf Standard-Rückwandbus		
0xE010	Nicht definierte Baugruppe am Rückwandbus erkannt		
	Zinfo2: Steckplatz		
	Zinfo3: Typkennung		
0xE011	Masterprojektierung auf Slave-CPU nicht möglich oder fehlerhafte		
	Slavekonfiguration		
0xE012	Fehler bei Parametrierung		
0xE013	Fehler bei Schieberegisterzugriff auf Standardbus-Digitalmodule		
0xE014	Fehler bei Check_Sys		
0xE015	Fehler beim Zugriff auf Master		
2 5040	Zinfo2: Steckplatz des Masters (32=Kachelmaster)		
0xE016	Maximale Blockgröße bei Mastertransfer überschritten		
	Zinfo1: Peripherie-Adresse		
0.5047	Zinfo2: Steckplatz		
0xE017	Fehler beim Zugriff auf integrierten Slave		
0xE018	Fehler beim Mappen der Masterperipherie		
0xE019	Fehler bei Erkennung des Standard Rückwandbus Systems		
0xE01A	Fehler bei Erkennung der Betriebsart (8 / 9Bit)		
0xE01B	Fehler - maximale Anzahl steckbarer Baugruppen überschritten		
0xE030	Fehler am Standard-Bus		
0	CDEEDZ koma might manha mantanat wandar (a. th		
0xE0B0	SPEED7 kann nicht mehr gestoppt werden (evtl. undefinierter BCD-Wert bei Timer)		
0xE0C0	Nicht genug Speicherplatz im Arbeitsspeicher für Codebaustein (Baustein zu groß)		
0xE0CC	Kommunikationsfehler MPI / Seriell		
0xE0CD	Fehler bei DPV1 Auftragsverwaltung		
0xE0CE	Fehler: Timeout beim Senden der i-Slave Diagnose		
0xE100	MMC-Zugriffsfehler		
0xE100	MMC-Fehler Filesystem		
0xE101	MMC-Fehler FAT		
0xE102	MMC Fehler beim Speichern		
0xE104	MMC schreiben beendet (Copy Ram2Rom)		
UNLIZUU	Fortsotzung		

Fortsetzung ...

... Fortsetzung

F			
Ereignis-ID	Bedeutung		
0xE210	MMC Lesen beendet (Nachladen nach Urlöschen)		
0xE21F	MMC Lesen: Fehler beim Nachladen (nach Urlöschen), Lesefehler, Speicher voll		
0.400	Spaigharanyaitarunga MCC wurda gastaald		
0xE400	Speichererweiterungs-MCC wurde gesteckt		
0xE401	Speichererweiterungs-MCC wurde gezogen		
0xE801	MMC-Cmd: CMD_START erkannt und erfolgreich ausgeführt		
0xE802	MMC-Cmd: CMD_END erkannt und erfolgreich ausgeführt		
0xE803	MMC-Cmd: WAIT1SECOND erkannt und erfolgreich ausgeführt		
0xE804	MMC-Cmd: WEBPAGE erkannt und erfolgreich ausgeführt		
0xE805	MMC-Cmd: LOAD_PROJECT erkannt und erfolgreich ausgeführt		
0xE806	MMC-Cmd: SAVE_ PROJECT erkannt und erfolgreich ausgeführt		
0xE807	MMC-Cmd: FACTORY_RESET erkannt und erfolgreich ausgeführt		
0xE80B	MMC-Cmd: DIAGBUF erkannt und erfolgreich ausgeführt		
0xE80E	MMC-Cmd: SET_NETWORK erkannt und erfolgreich ausgeführt		
0xE8FB	MMC-Cmd: Fehler: Initialisierung des Ethernet-PG/OP-Kanals mittels SET NETWORK fehlerhaft.		
0xE8FC	MMC-Cmd: Fehler: In SET_NETWORK wurden nicht alle IP-Parameter angegeben.		
0xE8FE	MMC-Cmd: Fehler: CMD_START nicht gefunden		
0xE8FF	MMC-Cmd: Fehler: Fehler beim Lesen des CMD-Files (MMC-Fehler)		
0xE901	Checksummen-Fehler		
0xEA00	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xEA01	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xEA02	SBUS: Interner Fehler (intern gestecktes Submodul nicht erkannt)		
0,102	Zinfo1: interner Steckplatz		
0xEA04	SBUS: Mehrfach-Parametrierung einer Peripherieadresse		
	Zinfo1: Peripherie-Adresse		
	Zinfo2: Steckplatz		
	Zinfo3: Datenbreite		
0xEA05	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xEA07	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!		
0xEA08	SBUS: Parametrierte Eingangsdatenbreite ungleich der gesteckten		
	Eingangsdatenbreite		
	Zinfo1: Parametrierte Eingangsdatenbreite		
	Zinfo2: Steckplatz		
	Zinfo3: Eingangsdatenbreite der gesteckten Baugruppe		
0xEA09	SBUS: Parametrierte Ausgangsdatenbreite ungleich der gesteckten Ausgangsdatenbreite		
	Zinfo1: Parametrierte Ausgangsdatenbreite		
	Zinfo2: Steckplatz		
	Zinfo3: Ausgangsdatenbreite der gesteckten Baugruppe		
I	Fortsetzung		

Fortsetzung ...

... Fortsetzung

Ereignis-ID	Bedeutung	
0xEA10	SBUS: Eingangs-Peripherieadresse außerhalb des Peripheriebereiches	
	Zinfo1: Peripherie-Adresse	
	Zinfo2: Steckplatz	
	Zinfo3: Datenbreite	
0xEA11	SBUS: Ausgangs-Peripherieadresse außerhalb des Peripheriebereiches	
OXEATT	Zinfo1: Peripherie-Adresse	
	Zinfo2: Steckplatz	
	Zinfo3: Datenbreite	
0xEA12	SBUS: Fehler beim Datensatz schreiben	
OXE/CIZ	Zinfo1: Steckplatz	
	Zinfo2: Datensatznummer	
	Zinfo3: Datensatzlänge	
0xEA14	SBUS: Mehrfach-Parametrierung einer Peripherieadresse (Diagnoseadresse)	
OXE/(TT	Zinfo1: Peripherie-Adresse	
	Zinfo2: Steckplatz	
	Zinfo3: Datenbreite	
0xEA15	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
0xEA18	SBUS: Fehler beim Mappen der Masterperipherie	
0/12/110	Zinfo2: Steckplatz des Masters	
0xEA19	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
0xEA20		
	ein Profibus-DP-Master projektiert.	
0xEA21	Fehler - Projektierung RS485-Schnittstelle X2/X3:	
	Profibus-DP-Master ist projektiert aber nicht vorhanden	
	Zinfo2: Schnittstelle x	
0xEA22	Fehler - RS485-Schnittstelle X2 - Wert ist außerhalb der Grenzen	
	Zinfo: Projektierter Wert von X2	
0xEA23	Fehler - RS485-Schnittstelle X3 - Wert ist außerhalb der Grenzen	
	Zinfo: Projektierter Wert von X3	
0xEA24	Fehler - Projektierung RS485-Schnittstelle X2/X3:	
	Schnittstelle/Protokoll ist nicht vorhanden, die Defaulteinstellungen werden	
	verwendet.	
	Zinfo2: Projektierter Wert für X2	
	Zinfo2: Projektierter Wert für X3	
0.5100		
0xEA30	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
0xEA40	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
0xEA41	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
0xEA98	Timeout beim Warten, dass ein SBUS-Modul (Server) rebootet hat	
0xEA99	Fehler beim File-Lesen über SBUS	
0/L/ (00	. 5 25 110 255511 4251 5255	
0xEE00	Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!	
OVERDO	The Tier To The To The Tier To Ditto de VII A Tier III.	

Variablen steuern und beobachten

Übersicht

Zur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie im Programmeditor des SIMATIC Manager von Siemens unter dem Menüpunkt **Test** verschiedene Testfunktionen aufrufen.

Mit der Testfunktion **Test** > *Beobachten* können die Signalzustände von Operanden und das VKE angezeigt werden.

Mit der Testfunktion **Zielsystem** > *Variablen beobachten/steuern* können die Signalzustände von Variablen geändert und angezeigt werden.

Test > Beobachten

Diese Testfunktion zeigt die aktuellen Signalzustände und das VKE der einzelnen Operanden während der Programmbearbeitung an.

Es können außerdem Korrekturen am Programm durchgeführt werden.

Hinweis!

Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein!

Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Prozessalarme unterbrochen werden. Die CPU hört an der Unterbrechungsstelle auf Daten für die Statusanzeige zu sammeln und übergibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0.

Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeit- und Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:

- das Verknüpfungsergebnis VKE
- Status / AKKU 1
- AKKU 2
- Zustandsbyte
- absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?".

Die Unterbrechung der Statusbearbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbrechungsstelle nicht mehr gültig sind.

Zielsystem > Variablen beobachten/steuern

Diese Testfunktion gibt den Zustand eines beliebigen Operanden (Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende einer Programmbearbeitung an.

Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.

Steuern von Ausgängen

Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden.

Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.

Steuern von Variablen

Folgende Variablen können geändert werden:

E, A, M, T, Z, und D.

Unabhängig von der Betriebsart der CPU 51xS wird das Prozessabbild binärer und digitaler Operanden verändert.

In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden.

Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

Teil 4 Einsatz CPU unter Profibus

Überblick

Inhalt dieses Kapitels ist der Einsatz der CPU 517S/NET unter Profibus. Nach einer kurzen Übersicht wird die Projektierung und Parametrierung einer CPU 517S/NET mit integriertem Profibus-Teil von VIPA gezeigt.

Weiter erhalten Sie hier Informationen, wie Sie den Profibus-Teil als DP-Master und als DP-Slave einsetzen.

Mit Hinweisen zur Inbetriebnahme und zum Anlaufverhalten endet dieser Teil.

InhaltThemaSeiteTeil 4Einsatz CPU unter Profibus4-1Übersicht4-2Projektierung CPU mit integriertem Profibus-Master4-3Einsatz als Profibus-DP-Slave4-5Projekt transferieren4-7Profibus-Aufbaurichtlinien4-8Inbetriebnahme und Anlaufverhalten4-11

Übersicht

Profibus-DP

Profibus ist ein international offener und serieller Feldbus-Standard für Gebäude-, Fertigungs- und Prozessautomatisierung im unteren (Sensor-/ Aktor-Ebene) bis mittleren Leistungsbereich (Prozessebene).

Profibus besteht aus einem Sortiment kompatibler Varianten. Die hier angeführten Angaben beziehen sich auf den Profibus-DP.

Profibus-DP ist besonders geeignet für die Fertigungsautomatisierung. DP ist sehr schnell, bietet "Plug and Play" und ist eine kostengünstige Alternative zur Parallelverkabelung zwischen SPS und dezentraler Peripherie.

Der Datenaustausch "Data Exchange" erfolgt zyklisch. Während eines Buszyklus liest der Master die Eingangswerte der Slaves und schreibt neue Ausgangsinformationen an die Slaves.

CPU mit DP-Master

Der Profibus-DP-Master ist mit dem Hardware-Konfigurator von Siemens zu projektieren. Hierzu ist im Hardware-Konfigurator von Siemens die Siemens-CPU 318-2AJ00 anzuwählen.

Die Übertragung Ihrer Projektierung erfolgt über MPI, MMC oder Ethernet-PG/OP-Kanal in die CPU. Diese leitet die Projektierdaten intern weiter an den Profibus Master-Teil.

Während des Hochlaufs blendet der DP-Master automatisch seine Datenbereiche im Adressbereich der CPU ein. Eine Projektierung auf CPU-Seite ist hierzu nicht erforderlich.

Als externes Speichermedium nutzt der Profibus-DP-Master zusammen mit der CPU die MMC (**M**ulti **M**edia **C**ard).

Einsatz CPU mit DP-Master

Über den Profibus-DP-Master können bis zu 124 Profibus-DP-Slaves an die CPU angekoppelt werden. Der DP-Master kommuniziert mit den DP-Slaves und blendet die Datenbereiche im Adressbereich der CPU ein. Es dürfen max. 1024Byte Eingangs- und 1024Byte Ausgangsdaten entstehen. Bei jedem NETZ EIN bzw. nach dem URLÖSCHEN holt sich die CPU vom Master die I/O-Mapping-Daten. Bei DP-Slave-Ausfall leuchtet die ER-LED und der OB 86 wird angefordert. Ist dieser nicht vorhanden, geht die CPU in STOP und BASP wird gesetzt. Sobald das BASP-Signal von der CPU kommt, stellt der DP-Master die Ausgänge der angeschlossenen Peripherie auf Null. Unabhängig von der CPU bleibt der DP-Master weiter im RUN.

DP-Slave-Betrieb

Für den Einsatz in einem übergeordneten Master-System projektieren Sie zuerst Ihr Slave-System als CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) im *Slave*-Betrieb mit konfigurierten Ein-/Ausgabe-Bereichen. Danach projektieren Sie Ihr Master-System. Binden Sie an das Master-System Ihr Slave-System an, indem Sie die "CPU 31x" aus dem Hardware-Katalog unter *Bereits projektierte Stationen* auf das Master-System ziehen und Ihr Slave-System auswählen und ankoppeln.

Projektierung CPU mit integriertem Profibus-Master

Übersicht

Zur Projektierung des integrierten Profibus-DP-Masters ist der Hardware-Konfigurator von Siemens zu verwenden. Ihre Profibus-Projekte übertragen Sie mit den "Zielsystem"-Funktionen über MPI in Ihre CPU. Diese reicht die Daten weiter an den Profibus-DP-Master.

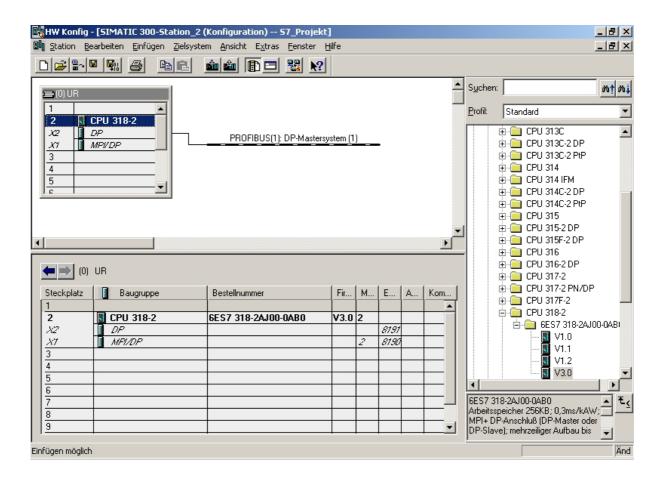
Voraussetzungen

Für die Projektierung des Profibus-DP-Masters auf einer CPU 51xS/DPM müssen folgende Voraussetzungen erfüllt sein:

- Siemens SIMATIC Manager ist installiert.
- Bei Einsatz von Profibus-DP-Slaves der Systeme 100V, 200V und 300V von VIPA: GSD-Dateien im Hardware-Konfigurator sind eingebunden.
- Transfermöglichkeit zwischen Projektiertool und CPU 51xS ist vorhanden

Hinweis!

Für die Projektierung der CPU und des Profibus-DP-Masters werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager vorausgesetzt!


Hardware-Konfigurator von Siemens installieren

Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog.

Für den Einsatz der Profibus-DP-Slaves der Systeme 100V, 200V und 300V von VIPA ist die Einbindung der Module über die GSD-Datei von VIPA im Hardwarekatalog erforderlich.

DP-Master projektieren

- Legen Sie ein neues Projekt System 300 an.
- Fügen Sie aus dem Hardwarekatalog eine Profilschiene ein.
- Sie finden die CPU mit Profibus-Master im Hardwarekatalog unter: Simatic300/CPU-300/CPU318-2DP/6ES7 318-2AJ00-0AB0
- Fügen Sie die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) ein.
- Geben Sie eine Profibus-Adresse für Ihren Master an (z.B. 2).
- Klicken Sie auf DP und stellen Sie in unter *Objekteigenschaften* die Betriebsart "DP Master" ein und bestätigen Sie Ihre Eingabe mit OK.
- Klicken Sie mit der rechten Maustaste auf "DP" und wählen Sie "Master-System einfügen" aus.
- Legen Sie über NEU ein neues Profibus-Subnetz an.

Sie haben jetzt ihren Profibus-DP-Master projektiert. Binden Sie nun Ihre DP-Slaves mit Peripherie an Ihren DP-Master an.

- Zur Projektierung von Profibus-DP-Slaves entnehmen Sie aus dem Hardwarekatalog den entsprechenden Profibus-DP-Slave und ziehen Sie diesen auf das Subnetz Ihres Masters.
- Geben Sie dem DP-Slave eine gültige Profibus-Adresse.
- Binden Sie in der gesteckten Reihenfolge die Module Ihres DP-Slave-Systems ein und vergeben Sie die Adressen, die von den Modulen zu verwenden sind.
- Parametrieren Sie die Module gegebenenfalls.

Slave-Betrieb möglich

Sie können den Profibus-Teil Ihrer SPEED7-CPU auch als DP-Slave betreiben. Die Vorgehensweise hierzu finden Sie auf der Folgeseite.

Einsatz als Profibus-DP-Slave

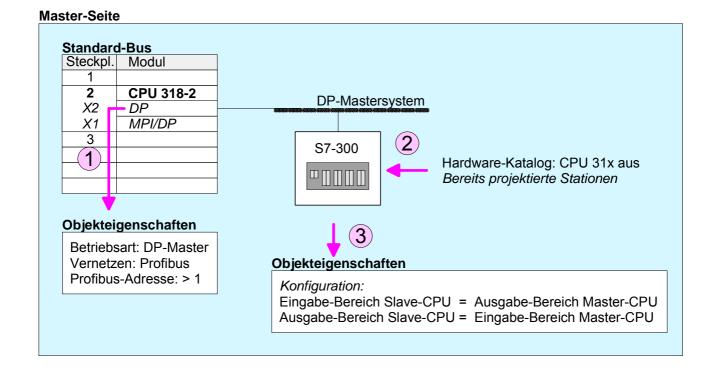
Schnelleinstieg

Der Einsatz des Profibus-Teils als "intelligenter" DP-Slave erfolgt ausschließlich an Master-Systemen, die im Siemens SIMATIC Manager projektiert werden können. Folgende Schritte sind hierzu erforderlich:

- Starten Sie den Siemens SIMATIC Manager und projektieren Sie eine CPU 318-2DP mit der Betriebsart *DP-Slave*.
- Vernetzen Sie mit Profibus und konfigurieren Sie die Ein-/Ausgabe-Bereiche für die Slave-Seite.
- Speichern und übersetzen Sie Ihr Projekt.
- Projektieren Sie als weitere Station eine CPU 318-2DP mit der Betriebsart DP-Master.
- Vernetzen Sie mit *Profibus* und konfigurieren Sie die Ein-/Ausgabe-Bereiche für die Master-Seite.
- Speichern und übersetzen Sie Ihr Projekt.

Nachfolgend sind diese Schritte näher erläutert.

Projektierung der Slave-Seite


- Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt.
- Fügen Sie eine SIMATIC 300-Station ein und bezeichnen Sie diese mit "...DP-Slave"
- Rufen Sie den Hardware-Konfigurator auf und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU:
 CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)
- Vernetzen Sie die CPU mit *Profibus*, stellen Sie eine Profibus-Adresse
 1 (vorzugsweise 3) ein und schalten Sie über *Betriebsart* den Profibus-Teil in "Slave-Betrieb".
- Bestimmen Sie über *Konfiguration* die Ein-/Ausgabe-Adressbereiche der Slave-CPU, die dem DP-Slave zugeordnet werden sollen.
- Speichern und übersetzen Sie Ihr Projekt

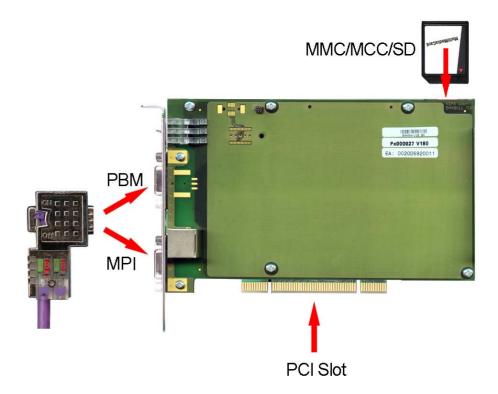
Slave-Seite Objekteigenschaften Standard-Bus Steckpl. Modul Betriebsart: DP-Slave 1 Vernetzen: Profibus 2 CPU 318-2 Profibus-Adresse: > 1 *X*2 DP X1 MPI/DP Konfiguration: 3 Eingabe-Bereich Ausgabe-Bereich

HB145D - CPU - RD 517-4NE02 - Rev. 10/23

Projektierung der Master-Seite

- Fügen Sie eine weitere SIMATIC 300-Station ein und bezeichnen Sie diese als "...DP-Master".
- Rufen Sie den Hardware-Konfigurator auf und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU:
 CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)
- Vernetzen Sie die CPU mit *Profibus*, stellen Sie eine Profibus-Adresse
 1 (vorzugsweise 2) ein und schalten Sie über *Betriebsart* den Profibus-Teil in "Master-Betrieb".
- Binden Sie an das Master-System Ihr Slave-System an, indem Sie die "CPU 31x" aus dem Hardware-Katalog unter Bereits projektierte Stationen auf das Master-System ziehen und Ihr Slave-System auswählen und ankoppeln.
- Öffnen Sie die Konfiguration unter Objekteigenschaften Ihres Slave-Systems.
- Ordnen Sie durch Doppelklick auf die entsprechende Konfigurationszeile den Slave-Ausgabedaten den entsprechenden Eingabe-Adressbereich und den Slave-Eingabe-Daten den entsprechenden Ausgabe-Adressbereich in der Master-CPU zu.
- Speichern und übersetzen Sie Ihr Projekt.

Hinweis!


Die Datenkonsistenz kann nur für eine *Einheit* gewährleistet werden! Die Einstellung "Gesamt" wird nicht unterstützt.

Projekt transferieren

Übersicht

Es bestehen folgende Möglichkeiten ein Projekt in die CPU 51xS Steckkarte zu übertragen:

- intern über den PCI-SLot (Ethernet-Verbindung)
- extern über PC-Netzwerkkarte (Routing erforderlich)
- extern über MPI
- extern über Profibus (nicht Erstprojekt)
- extern über MMC-Speicherkarte

Näheres zu den Möglichkeiten der Projektübertragung finden Sie im Teil "Einsatz CPU 51xS" unter "Projekt transferieren".

Profibus-Aufbaurichtlinien

Profibus allgemein

- Ein Profibus-DP-Netz darf nur in Linienstruktur aufgebaut werden.
- Profibus-DP besteht aus mindestens einem Segment mit mindestens einem Master und einem Slave.
- Ein Master ist immer in Verbindung mit einer CPU einzusetzen.
- Profibus unterstützt max. 124 Teilnehmer.
- Pro Segment sind max. 32 Teilnehmer zulässig.
- Die maximale Segmentlänge hängt von der Übertragungsrate ab:

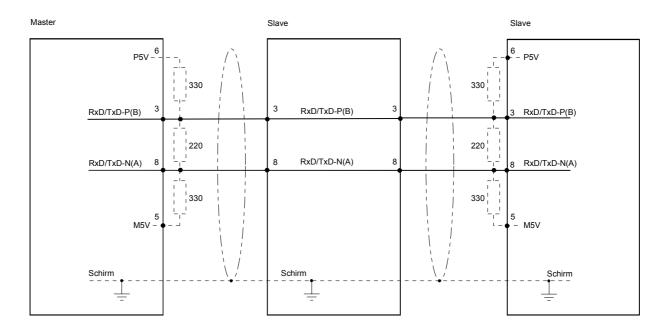
- Maximal 10 Segmente dürfen gebildet werden. Die Segmente werden über Repeater verbunden. Jeder Repeater zählt als Teilnehmer.
- Alle Teilnehmer kommunizieren mit der gleichen Übertragungsrate. Die Slaves passen sich automatisch an die Übertragungsrate an.
- Der Bus ist an beiden Enden abzuschließen.
- Master und Slaves sind beliebig mischbar.

Übertragungsmedium

Profibus verwendet als Übertragungsmedium eine geschirmte, verdrillte Zweidrahtleitung auf Basis der RS485-Schnittstelle.

Die RS485-Schnittstelle arbeitet mit Spannungsdifferenzen. Sie ist daher unempfindlicher gegenüber Störeinflüssen als eine Spannungs- oder Stromschnittstelle. Sie dürfen das Netz nur in Linienstruktur konfigurieren.

An ihrer VIPA CPU befindet sich eine mit "PBDP" bezeichnete 9polige Buchse. Über diese Buchse koppeln Sie den Profibus-Koppler als Slave direkt in Ihr Profibus-Netz ein.


Pro Segment sind maximal 32 Teilnehmer zulässig. Die einzelnen Segmente werden über Repeater verbunden. Die max. Segmentlänge ist von der Übertragungsrate abhängig.

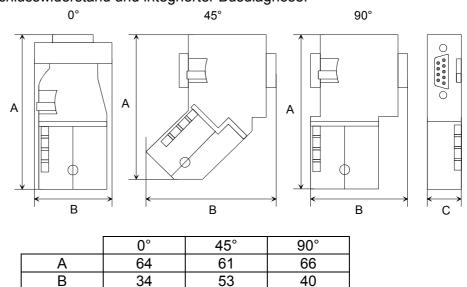
Bei Profibus-DP wird die Übertragungsrate aus dem Bereich zwischen 9,6kbit/s bis 12Mbit/s eingestellt, die Slaves passen sich automatisch an. Alle Teilnehmer im Netz kommunizieren mit der gleichen Übertragungsrate.

Die Busstruktur erlaubt das rückwirkungsfreie Ein- und Auskoppeln von Stationen oder die schrittweise Inbetriebnahme des Systems. Spätere Erweiterungen haben keinen Einfluss auf Stationen, die bereits in Betrieb sind. Es wird automatisch erkannt, ob ein Teilnehmer ausgefallen oder neu am Netz ist.

Busverbindung

In der nachfolgenden Abbildung sind die Abschlusswiderstände der jeweiligen Anfangs- und Endstation stilisiert dargestellt.

Hinweis!


Die Profibus-Leitung muss mit Ihrem Wellenwiderstand abgeschlossen werden. Bitte beachten Sie, dass Sie bei dem jeweiligen letzten Teilnehmer den Bus durch Zuschalten eines Abschlusswiderstands abschließen.

EasyConn Busanschluss-Stecker

In Systemen mit mehr als zwei Stationen werden alle Teilnehmer parallel verdrahtet. Hierzu ist das Buskabel unterbrechungsfrei durchzuschleifen.

Unter der Best.-Nr. VIPA 972-0DP10 erhalten Sie von VIPA den Stecker "EasyConn". Dies ist ein Busanschlussstecker mit zuschaltbarem Abschlusswiderstand und integrierter Busdiagnose.

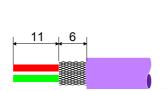
15,8

15,8

Maße in mm

C

15,8

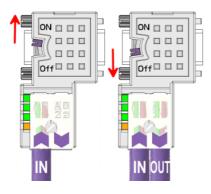


Hinweis!

Zum Anschluss des EasyConn-Steckers verwenden Sie bitte die Standard Profibus-Leitung Typ A (EN50170). Ab Ausgabestand 5 können auch hochflexible Bus-Kabel verwendet werden:

Lapp Kabel Best.-Nr.: 2170222, 2170822, 2170322.

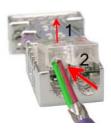
Von VIPA erhalten Sie unter der Best.-Nr. VIPA 905-6AA00 das "EasyStrip" Abisolierwerkzeug, das Ihnen den Anschluss des EasyConn-Steckers sehr vereinfacht.



Maße in mm

Leitungsabschluss mit "EasyConn"

Auf dem "EasyConn" Busanschlussstecker von VIPA befindet sich unter anderem ein Schalter, mit dem Sie einen Abschlusswiderstand zuschalten können.


Achtung!

Der Abschlusswiderstand wird nur wirksam, wenn der Stecker an einem Slave gesteckt ist und der Slave mit Spannung versorgt wird.

Hinweis!

Eine ausführliche Beschreibung zum Anschluss und zum Einsatz der Abschlusswiderstände liegt dem Stecker bei.

Montage

- Lösen Sie die Schraube.
- Klappen Sie den Kontaktdeckel auf.
- Stecken Sie beide Adern in die dafür vorgesehenen Öffnungen (Farbzuordnung wie unten beachten!).
- Bitte beachten Sie, dass zwischen Schirm und Datenleitungen kein Kurzschluss entsteht!
- Schließen Sie den Kontaktdeckel.
- Ziehen Sie die Schraube wieder fest (max. Anzugsmoment 4Nm).

Bitte beachten:

Den grünen Draht immer an A, den roten immer an B anschließen!

Inbetriebnahme und Anlaufverhalten

Anlauf im Auslieferungszustand

Im Auslieferungszustand ist die CPU urgelöscht. Nach Netz EIN ist der Profibus-Teil deaktiviert und die LEDs des Profibus-Teils sind ausgeschaltet.

Online mit Bus-Parametern ohne Slave-Projekt

Über eine Hardware-Konfiguration können Sie den DP-Master mit Busparametern versorgen. Sobald diese übertragen sind geht der DP-Master mit den Bus-Parametern online und zeigt dies über die RUN-LED an. Der DP-Master ist durch Angabe der Profibus-Adresse über Profibus erreichbar. In diesem Zustand können Sie direkt über Profibus Ihre CPU projektieren bzw. Ihr Slave-Projekt übertragen.

Slave-Projektierung

Sofern der Master gültige Projektierdaten erhalten hat, geht dieser in *Data Exchange* mit den DP-Slaves und zeigt dies über die DE-LED an.

Zustand CPU beeinflusst DP-Master

Nach Netz EIN bzw. nach der Übertragung einer neuen Hardware-Konfiguration werden automatisch die Projektierdaten und Bus-Parameter an den DP-Master übergeben.

Der DP-Master besitzt keinen Betriebsartenschalter und wird direkt über den RUN/STOP-Zustand der CPU beeinflusst.

Abhängig vom CPU-Zustand zeigt der DP-Master folgendes Verhalten:

Master-Verhalten bei CPU-RUN

- Der Master sendet an alle angebundenen Slaves das Global Control Kommando "Operate". Hierbei leuchtet die DE-LED.
- Alle angebundenen Slaves bekommen zyklisch ein Ausgangstelegramm mit aktuellen Ausgabedaten gesendet.
- Die Eingabe-Daten der DP-Slaves werden zyklisch im Eingabe-Bereich der CPU abgelegt.

Master-Verhalten bei CPU-STOP

- Der Master sendet an alle angebundenen Slaves das Global Control Kommando "Clear" und zeigt dies über eine blinkende DE-LED an.
- DP-Slaves im Fail Safe Mode bekommen die Ausgangstelegrammlänge "0" gesendet.
- DP-Slaves *ohne Fail Safe Mode* bekommen das Ausgangstelegramm in voller Länge aber mit Ausgabewerten=0 gesendet.
- Eingabe-Daten der DP-Slaves werden weiterhin zyklisch im Eingabe-Bereich der CPU abgelegt.

Teil 5 Einsatz PtP-Kommunikation

Überblick

In diesem Kapitel ist der Einsatz der RS485-Schnittstelle für die serielle PtP-Kommunikation beschrieben.

Sie erhalten hier alle Informationen zu den Protokollen und zur Projektierung der Schnittstelle, die für die serielle Kommunikation über RS485 erforderlich sind.

Inhalt	Thema	Seite
	Teil 5 Einsatz PtP-Kommunikation	5-1
	Schnelleinstieg	5-2
	Prinzip der Datenübertragung	5-3
	Einsatz der RS485-Schnittstelle für PtP	5-4
	Parametrierung	5-6
	Kommunikation	5-9
	Protokolle und Prozeduren	5-15
	Modbus - Funktionscodes	5-19
	Modbus - Beispiel zur Kommunikation	5-23

Schnelleinstieg

Allgemein

Über eine Hardware-Konfiguration können Sie den, in der CPU 51xS integrierten Profibus-Teil deaktivieren und die RS485-Schnittstelle für PtP-Kommunikation (**p**oint **to p**oint) freigeben.

Die RS485-Schnittstelle im PtP-Betrieb ermöglicht die serielle Prozessankopplung zu verschiedenen Ziel- oder Quellsystemen.

Protokolle

Unterstützt werden die Protokolle bzw. Prozeduren ASCII, STX/ETX, 3964R, USS und Modbus.

Parametrierung

Die Parametrierung erfolgt zur Laufzeit unter Einsatz des SFC 216 (SER_CFG). Hierbei sind für alle Protokolle mit Ausnahme von ASCII die Parameter in einem DB abzulegen.

Kommunikation

Mit SFCs steuern Sie die Kommunikation. Das Senden erfolgt unter Einsatz des SFC 217 (SER_SND) und das Empfangen über SFC 218 (SER_RCV).

Durch erneuten Aufruf des SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

Bei den Protokollen USS und Modbus können Sie durch Aufruf des SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm auslesen.

Die SFCs befinden sich im Lieferumfang der CPU.

Übersicht der SFCs für die serielle Kommunikation

Folgende SFCs kommen für die serielle Kommunikation zum Einsatz:

SFC		Beschreibung
SFC 216	SER_CFG	RS485 Parametrieren
SFC 217	SER_SND	RS485 Senden
SFC 218	SER_RCV	RS485 Empfangen

Prinzip der Datenübertragung

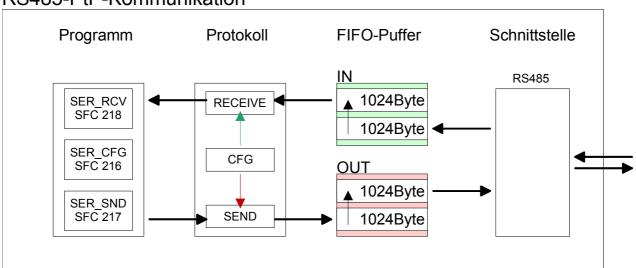
Übersicht

Die Datenübertragung wird zur Laufzeit über SFCs gehandhabt. Das Prinzip der Datenübertragung ist für alle Protokolle identisch und soll hier kurz gezeigt werden.

Prinzip

Daten, die von der CPU in den entsprechenden Datenkanal geschrieben werden, werden in einen FIFO-Sendepuffer (first in first out) mit einer Größe von 2x1024Byte abgelegt und von dort über die Schnittstelle ausgegeben.

Empfängt die Schnittstelle Daten, werden diese in einem FIFO-Empfangspuffer mit einer Größe von 2x1024Byte abgelegt und können dort von der CPU gelesen werden.


Sofern Daten mittels eines Protokolls übertragen werden, erfolgt die Einbettung der Daten in das entsprechende Protokoll automatisch.

Im Gegensatz zu ASCII- und STX/ETX erfolgt bei den Protokollen 3964R, USS und Modbus die Datenübertragung mit Quittierung der Gegenseite.

Durch erneuten Aufruf des SFC 217 SER_SND bekommen Sie über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

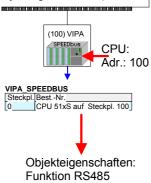
Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des SFC 218 SER_RCV auszulesen.

RS485-PtP-Kommunikation

Einsatz der RS485-Schnittstelle für PtP

Umschaltung in PtP-Betrieb

Standardmäßig wird bei der CPU die RS485-Schnittstelle X3 für den Profibus-DP-Master verwendet. Über eine Hardware-Konfiguration können Sie unter *Objekteigenschaften* über den Parameter *Funktion RS485 X3* die RS485-Schnittstellen der CPU auf PtP-Kommunikation (**p**oint **to p**oint) umschalten.


Hardware-Konfiguration

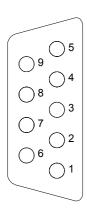
Die Hardware-Konfiguration erfolgt wie schon unter "Projektierung" beschrieben in Form eines virtuellen Profibus-Systems nach folgender Vorgehensweise:

Standard-Bus

Steckpl.	Modul
1	
2	CPU 318-2
X2	DP
X1	MPI/DP
3	
	343-1EX11
	(Ethernet-PG/OP)
	343-1EX11
	(für CP 543)
	342-5DA02 V5.0

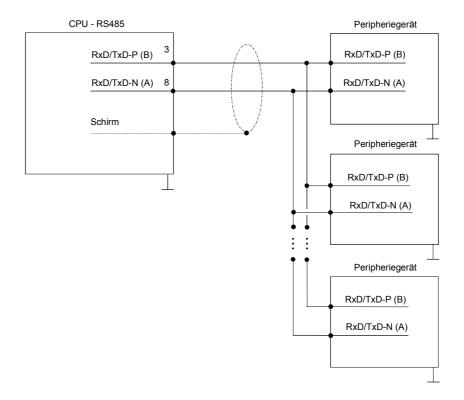
virtueller DP-Master für CPU (nur für VIPA-spezifische Objekteigenschaften)

- Hardware-Konfigurator von Siemens starten.
- CPU 318-2AJ00 (6ES7 318-2AJ00-0AB0/V3.0) von Siemens projektieren.
- Für den internen Ethernet-PG/OP-Kanal einen Siemens CP 343-1 (343-1EX11) projektieren.
- Den integrierten CP 543 der CPU 517S/NET immer als 2. CP unterhalb des zuvor platzierten Ethernet-PG/OP-Kanals als Siemens CP 343-1 (343-1EX11) projektieren.
- Projektieren Sie immer als letztes Modul einen Siemens DP-Master CP 342-5 (342-5DA02 V5.0). Vernetzen und parametrieren Sie diesen in der Betriebsart "DP-Master".
- Binden Sie das Slave-System "VIPA SPEEDbus" an.
- Stellen Sie für das Slave-System die Profibus-Adresse 100 ein.
- Platzieren Sie auf dem Steckplatz 0 die VIPA CPU 51xS aus dem Hardware-Katalog von VIPA SPEEDbus.
- Durch Doppelklick auf die eingefügte CPU 51xS gelangen Sie in den Eigenschaften-Dialog der CPU.
- Stellen Sie den Parameter Funktion RS485 X3 auf "PtP".


Sobald Sie Ihr Projekt zusammen mit Ihrem SPS-Programm in die CPU übertragen, steht Ihnen nach dem Hochlauf die RS485-Schnittstelle für PtP-Kommunikation zur Verfügung.

Eigenschaften RS485

- Logische Zustände als Spannungsdifferenz zwischen 2 verdrillten Adern
- Serielle Busverbindung in Zweidrahttechnik im Halbduplex-Verfahren
- Datenübertragung bis 500m Entfernung
- Datenübertragungsrate bis 115,2kbit/s


Anschluss RS485

9polige SubD-Buchse

Pin	RS485
1	n.c.
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

Anschluss

Parametrierung

SFC 216 (SER_CFG) Die Parametrierung erfolgt zur Laufzeit unter Einsatz des SFC 216 (SER_CFG). Hierbei sind die Parameter für STX/ETX, 3964R, USS und Modbus in einem DB abzulegen.

Name	Deklaration	Datentyp	Beschreibung
Protocol	IN	BYTE	1=ASCII, 2=STX/ETX, 3=3964R
Parameter	IN	ANY	Zeiger zu den Protokoll-Parametern
Baudrate	IN	BYTE	Nr. der Baudrate
CharLen	IN	BYTE	0=5Bit, 1=6Bit, 2=7Bit, 3=8Bit
Parity	IN	BYTE	0=None, 1=Odd, 2=Even
StopBits	IN	BYTE	1=1Bit, 2=1,5Bit, 3=2Bit
FlowControl	IN	BYTE	1 (fix)
RetVal	OUT	WORD	Rückgabewert (0 = OK)

Parameterbeschreibung

Alle Zeitangaben für Timeouts sind als Hexadezimaler Wert anzugeben. Den Hex-Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden mit der Baudrate multiplizieren.

Beispiel: Gewünschte Zeit 8ms bei einer Baudrate von 19200Baud

Berechnung: 19200Bit/s x 0,008s \approx 154Bit \rightarrow (9Ah)

Als Hex-Wert ist 9Ah vorzugeben.

Protocol

Geben Sie hier das Protokoll an, das verwendet werden soll.

Zur Auswahl stehen:

- 1: ASCII
- 2: STX/ETX
- 3: 3964R
- 4: USS Master
- 5: Modbus RTU Master
- 6: Modbus ASCII Master

Parameter (als DB)

Bei eingestelltem ASCII-Protokoll wird dieser Parameter ignoriert.

Für die Protokolle geben Sie hier einen DB an, der die Kommunikationsparameter beinhaltet und für die jeweiligen Protokolle STX/ETX, 3964R, USS und Modbus folgenden Aufbau hat:

Datenbaustein bei STX/ETX

DBB0:	STX1	BYTE	(1. Start-Zeichen in hexadezimaler Form)
DBB1:	STX2	BYTE	(2. Start-Zeichen in hexadezimaler Form)
DBB2:	ETX1	BYTE	(1. Ende-Zeichen in hexadezimaler Form)
DBB3:	ETX2	BYTE	(2. Ende-Zeichen in hexadezimaler Form)
DBW4:	TIMEOUT	WORD	(max. zeitlicher Abstand zwischen 2 Telegrammen)

Hinweis!

Das Zeichen für Start bzw. Ende sollte immer ein Wert <20 sein, ansonsten wird das Zeichen ignoriert!

Tragen Sie immer für nicht benutzte Zeichen FFh ein!

Datenbaustein bei 3964R

DBB0: Prio	BYTE	(Die Priorität beider Partner muss unter-	

schiedlich sein)

DBB1: ConnAttmptNr BYTE (Anzahl der Verbindungsaufbauversuche)
DBB2: SendAttmptNr BYTE (Anzahl der Telegrammwiederholungen)

DBW4: CharTimeout WORD (Zeichenverzugszeit)
DBW6: ConfTimeout WORD (Quittungsverzugszeit)

Datenbaustein bei USS

DBW0: Timeout WORD (Verzugszeit)

Datenbaustein bei Modbus-Master

DBW0: Timeout WORD (Antwort-Verzugszeit)

Baudrate Geschwindigkeit der Datenübertragung in Bit/s (Baud).

04h: 1200Baud 05h: 1800Baud 06h: 2400Baud 07h: 4800Baud 08h: 7200Baud 09h: 9600Baud 0Ah: 14400Baud 0Bh: 19200Baud

0Ch: 38400Baud 0Dh: 57600Baud 0Eh: 115200Baud

CharLen Anzahl der Datenbits, auf die ein Zeichen abgebildet wird.

0: 5Bit 1: 6Bit 2: 7Bit 3: 8Bit

Parity

Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle werden die Informationsbits um das Paritätsbit erweitert, das durch seinen Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt, aber nicht ausgewertet.

0: NONE 1: ODD 2: EVEN

StopBits

Die Stopbits werden jedem zu übertragenden Zeichen nachgesetzt und kennzeichnen das Ende eines Zeichens.

1: 1Bit 2: 1,5Bit 3: 2Bit

FlowControl

Der Parameter FlowControl wird ignoriert. Beim Senden ist RTS=1, beim Empfangen ist RTS=0.

RetVal SFC 216 (Fehlermeldung SER_CFG)

Rückgabewerte, die der Baustein liefert:

Fehlercode	Beschreibung	
0000h	kein Fehler	
809Ah	Schnittstelle ist nicht vorhanden bzw. Schnittstelle wird für Profibus verwendet	
8x24h	Fehler in SFC-Parameter x, mit x:	
	1: Fehler in "Protokoll"	
	2: Fehler in "Parameter"	
	3: Fehler in "Baudrate"	
	4: Fehler in "CharLength"	
	5: Fehler in "Parity"	
	6: Fehler in "StopBits"	
	7: Fehler in "FlowControl" (Parameter fehlt)	
809xh	Fehler in Wert des SFC-Parameter x, mit x:	
	1: Fehler in "Protokoll"	
	3: Fehler in "Baudrate"	
	4: Fehler in "CharLength"	
	5: Fehler in "Parity"	
	6: Fehler in "StopBits"	
8092h	Zugriffsfehler auf Parameter-DB (DB zu kurz)	
828xh	Fehler in Parameter x von DB-Parameter mit x:	
	1: Fehler im 1. Parameter	
	2: Fehler im 2. Parameter	

Kommunikation

Übersicht

Die Kommunikation erfolgt über die Sende- und Empfangsbausteine

SFC 217 (SER_SND) und SFC 218 (SER_RCV). Die SFCs befinden sich im Lieferumfang der CPU.

SFC 217 (SER_SND)

Mit diesem Baustein werden Daten über die serielle Schnittstelle gesendet.

Durch erneuten Aufruf des SFC 217 SER_SND bekommen Sie bei 3964R, USS und Modbus über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungstelegramm durch Aufruf des SFC 218 SER RCV auszulesen.

Parameter

Name	Deklaration	Datentyp	Beschreibung
DataPtr	IN	ANY	Zeiger auf Sendedaten
DataLen	OUT	WORD	Länge der Sendedaten
RetVal	OUT	WORD	Rückgabewert (0 = OK)

DataPtr

Geben Sie hier einen Bereich vom Typ Pointer für den Sendepuffer an, in den die Daten, die gesendet werden sollen, abzulegen sind. Anzugeben

sind Typ, Anfang und Länge.

Beispiel: Daten liegen in DB5 ab 0.0 mit einer Länge von 124Byte

DataPtr:=P#DB5.DBX0.0 BYTE 124

DataLen

Wort, in dem die Anzahl der gesendeten Bytes abgelegt wird.

Werden unter **ASCII** die Daten intern mittels SFC 217 schneller an die serielle Schnittstelle übertragen als sie gesendet werden können, kann aufgrund eines Pufferüberlaufs die zu sendende Datenlänge von *DataLen* abweichen. Dies sollte im Anwenderprogramm berücksichtigt werden!

Bei **STX/ETX**, **3964R**, **Modbus** und **USS** wird immer die unter DataPtr angegebene Länge oder 0 eingetragen.

RetVal SFC 217 (Fehlermeldung SER_SND)

Rückgabewerte, die der Baustein liefert:

Fehlercode	Beschreibung
0000h	Daten gesendet - fertig
1000h	Nichts gesendet (Datenlänge 0)
20xxh	Protokoll wurde fehlerfrei ausgeführt mit xx-Bitmuster für Diagnose
7001h	Daten liegen im internen Puffer - aktiv (busy)
7002h	Transfer - aktiv
80xxh	Protokoll wurde fehlerhaft ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
90xxh	Protokoll wurde nicht ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)
8x24h	Fehler in SFC-Parameter x, mit x:
	1: Fehler in "DataPtr"
	2: Fehler in "DataLen"
8122h	Fehler in Parameter "DataPtr" (z.B. DB zu kurz)
807Fh	Interner Fehler
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für Profibus verwendet
809Bh	Schnittstelle nicht konfiguriert

Protokollspezifische ASCII RetVal-Werte

I	Wert	Beschreibung
	9000h	Pufferüberlauf (keine Daten gesendet)
	9002h	Daten sind zu kurz (0Byte)

STX/ETX

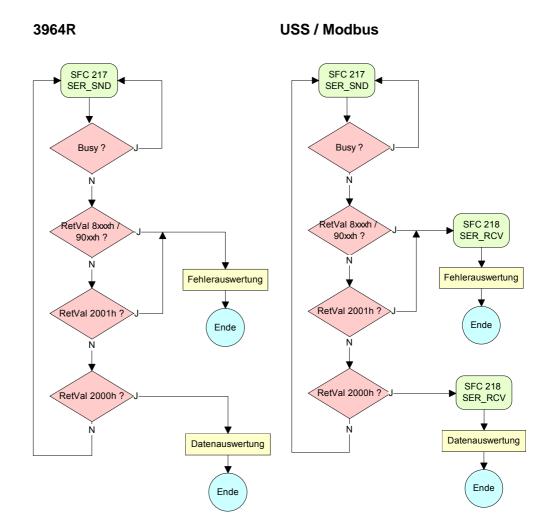
Wert	Beschreibung
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)
9004h	Unzulässiges Zeichen

3964R

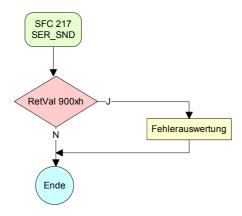
Wert	Beschreibung
2000h	Senden fertig ohne Fehler
80FFh	NAK empfangen - Fehler in der Kommunikation
80FEh	Datenübertragung ohne Quittierung der Gegenseite oder mit fehlerhafter Quittierung
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (0Byte)

... Fortsetzung RetVal SFC 217 SER_SND

USS


Fehlercode	Beschreibung
2000h	Senden fertig ohne Fehler
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FEh	Falsches Startzeichen in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Modbus RTU/ASCII Master


Fehlercode	Beschreibung
2000h	Senden fertig (positive Slave-Rückmeldung vorhanden)
2001h	Senden fertig (negative Slave-Rückmeldung vorhanden)
8080h	Empfangspuffer voll (kein Platz für Quittung)
8090h	Quittungsverzugszeit überschritten
80F0h	Falsche Checksumme in Rückantwort
80FDh	Länge der Rückantwort ist zu lang
80FEh	Falscher Funktionscode in der Rückantwort
80FFh	Falsche Slave-Adresse in der Rückantwort
9000h	Pufferüberlauf (keine Daten gesendet)
9001h	Daten sind zu lang (>1024Byte)
9002h	Daten sind zu kurz (<2Byte)

Prinzip der Programmierung

Nachfolgend soll kurz die Struktur zur Programmierung eines Sendeauftrags für die verschiedenen Protokolle gezeigt werden.

ASCII / STX/ETX

SFC 218 (SER_RCV)

Mit diesem Baustein werden Daten über die serielle Schnittstelle empfangen. Bei den Protokollen USS und Modbus können Sie durch Aufruf des SFC 218 SER_RCV nach einem SER_SND das Quittungstelegramm auslesen.

Parameter

Name	Deklaration	Datentyp	Beschreibung
DataPtr	IN	ANY	Zeiger auf Empfangspuffer
DataLen	OUT	WORD	Länge der empfangenen Daten
Error	OUT	WORD	Fehler-Nr.
RetVal	OUT	WORD	Rückgabewert (0 = OK)

DataPtr

Geben Sie hier einen Bereich vom Typ Pointer für den Empfangspuffer an, in den die Daten, die empfangen werden, abzulegen sind. Anzugeben sind Typ, Anfang und Länge.

Beispiel: Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen DataPtr:=P#DB5.DBX0.0 BYTE 124

DataLen

Wort, in dem die Anzahl der empfangenen Bytes abgelegt wird.

Bei **STX/ETX** und **3964R** wird immer die Länge der empfangenen Nutzdaten oder 0 eingetragen.

Unter **ASCII** wird hier die Anzahl der gelesenen Zeichen eingetragen. Dieser Wert kann von der Telegrammlänge abweichen.

Error

In diesem Wort erfolgt ein Eintrag im Fehlerfall. Folgende Fehlermeldungen können protokollabhängig generiert werden:

ASCII

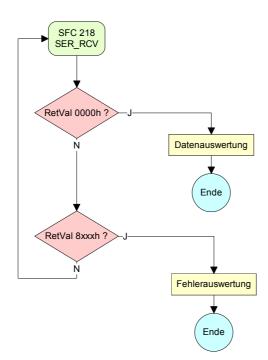
Bit	Fehler	Beschreibung
0	overrun	Überlauf, ein Zeichen konnte nicht schnell genug aus der Schnittstelle gelesen werden kann
1	framing error	Fehler, der anzeigt, dass ein definierter Bitrahmen nicht übereinstimmt, die zulässige Länge überschreitet oder eine zusätzliche Bitfolge enthält (Stopbitfehler)
2	parity	Paritätsfehler
3	overflow	Der Puffer ist voll.

STX/ETX

Bit	Fehler	Beschreibung					
0		Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.					
1	char	Es wurde ein Zeichen außerhalb des Bereichs 20h7Fh empfangen.					
3	overflow	Der Puffer ist voll.					

3964R / Modbus RTU/ASCII Master

Bi	Fehler	Beschreibung
0	overflow	Das empfangene Telegramm übersteigt die Größe des Empfangspuffers.


RetVal SFC 218 (Fehlermeldung SER_RCV)

Rückgabewerte, die der Baustein liefert:

Fehlercode	Beschreibung
0000h	kein Fehler
1000h	Empfangspuffer ist zu klein (Datenverlust)
8x24h	Fehler in SFC-Parameter x, mit x:
	1: Fehler in "DataPtr"
	2: Fehler in "DataLen"
	3: Fehler in "Error"
8122h	Fehler in Parameter "DataPtr" (z.B. DB zu kurz)
809Ah	Schnittstelle nicht vorhanden bzw. Schnittstelle wird für Profibus verwendet
809Bh	Schnittstelle ist nicht konfiguriert

Prinzip der Programmierung

Nachfolgend sehen Sie die Grundstruktur zur Programmierung eines Receive-Auftrags. Diese Struktur können Sie für alle Protokolle verwenden.

Protokolle und Prozeduren

Übersicht

Die CPU unterstützt folgende Protokolle und Prozeduren:

- ASCII-Übertragung
- STX/ETX
- 3964R
- USS
- Modbus

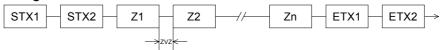
ASCII

Die Datenkommunikation via ASCII ist die einfachste Form der Kommunikation. Die Zeichen werden 1 zu 1 übergeben.

Bei ASCII werden je Zyklus mit dem Lese-SFC die zum Zeitpunkt des Aufrufs im Puffer enthaltenen Daten im parametrierten Empfangsdatenbaustein abgelegt. Ist ein Telegramm über mehrere Zyklen verteilt, so werden die Daten überschrieben. Eine Empfangsbestätigung gibt es nicht. Der Kommunikationsablauf ist vom jeweiligen Anwenderprogramm zu steuern.

STX/ETX

STX/ETX ist ein einfaches Protokoll mit Start- und Ende-Kennung. Hierbei stehen STX für **S**tart of **Tex**t und ETX für **E**nd of **Tex**t.


Die Prozedur STX/ETX wird zur Übertragung von ASCII-Zeichen eingesetzt. Sie arbeitet ohne Blockprüfung (BCC). Sollen Daten von der Peripherie eingelesen werden, muss das Start-Zeichen vorhanden sein, anschließend folgen die zu übertragenden Zeichen. Danach muss das Ende-Zeichen vorliegen.

Abhängig von der Byte-Breite können folgende ASCII-Zeichen übertragen werden: 5Bit: nicht zulässig: 6Bit: 20...3Fh, 7Bit: 20...7Fh, 8Bit: 20...FFh.

Die Nutzdaten, d.h. alle Zeichen zwischen Start- und Ende-Kennung, werden nach Empfang des Schlusszeichens an die CPU übergeben.

Beim Senden der Daten von der CPU an ein Peripheriegerät werden die Nutzdaten an den SFC 217 (SER_SND) übergeben und von dort mit angefügten Start- und Endezeichen über die serielle Schnittstelle an den Kommunikationspartner übertragen.

Telegrammaufbau:

Sie können bis zu 2 Anfangs- und Endezeichen frei definieren.

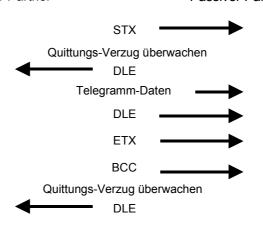
Es kann mit 1, 2 oder keiner Start- und mit 1, 2 oder keiner Ende-Kennung gearbeitet werden. Als Start- bzw. Ende-Kennung sind alle Hex-Werte von 00h bis 1Fh zulässig. Zeichen größer 1Fh werden ignoriert und nicht berücksichtigt. In den Nutzdaten sind Zeichen kleiner 20h nicht erlaubt und können zu Fehlern führen. Die Anzahl der Start- und Endezeichen kann unterschiedlich sein (1 Start, 2 Ende bzw. 2 Start, 1 Ende oder andere Kombinationen). Wird kein Ende-Zeichen definiert, so werden alle gelesenen Zeichen nach Ablauf einer parametrierbaren Zeichenverzugszeit (Timeout) an die CPU übergeben.

3964R

Die Prozedur 3964R steuert die Datenübertragung bei einer Punkt-zu-Punkt-Kopplung zwischen der CPU und einem Kommunikationspartner. Die Prozedur fügt bei der Datenübertragung den Nutzdaten Steuerzeichen hinzu. Durch diese Steuerzeichen kann der Kommunikationspartner kontrollieren, ob die Daten vollständig und fehlerfrei bei ihm angekommen sind.

Die Prozedur wertet die folgenden Steuerzeichen aus:

Negative Acknowledge


STX Start of Text
DLE Data Link Escape
ETX End of Text
BCC Block Check Character

Prozedurablauf

NAK

Passiver Partner

Sie können pro Telegramm maximal 255Byte übertragen.

Hinweis!

Wird ein "DLE" als Informationszeichen übertragen, so wird dieses zur Unterscheidung vom Steuerzeichen "DLE" beim Verbindungsauf- und -abbau auf der Sendeleitung doppelt gesendet (DLE-Verdoppelung). Der Empfänger macht die DLE-Verdoppelung wieder rückgängig.

Unter 3964R <u>muss</u> einem Kommunikationspartner eine niedrigere Priorität zugeordnet sein. Wenn beide Kommunikationspartner gleichzeitig einen Sendeauftrag erteilen, dann stellt der Partner mit niedriger Priorität seinen Sendeauftrag zurück.

USS

Das USS-Protokoll (**U**niverselle **s**erielle **S**chnittstelle) ist ein von Siemens definiertes serielles Übertragungsprotokoll für den Bereich der Antriebstechnik. Hiermit lässt sich eine serielle Buskopplung zwischen einem übergeordneten Master- und mehreren Slave-Systemen aufbauen.

Das USS-Protokoll ermöglicht durch Vorgabe einer fixen Telegrammlänge einen zeitzyklischen Telegrammverkehr.

Folgende Merkmale zeichnen das USS-Protokoll aus:

- Mehrpunktfähige Kopplung
- Master-Slave Zugriffsverfahren
- Single-Master-System
- Maximal 32 Teilnehmer
- Einfacher, sicherer Telegrammrahmen

Am Bus können 1 Master und max. 31 Slaves angebunden sein, wobei die einzelnen Slaves vom Master über ein Adresszeichen im Telegramm angewählt werden. Die Kommunikation erfolgt ausschließlich über den Master im Halbduplex-Betrieb.

Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des SFC 218 SER_RCV auszulesen.

Die Telegramme für Senden und Empfangen haben folgenden Aufbau:

Master-Slave-Telegramm

STX	LGE	ADR	Pł	ΚE	IN	ID	PV	۷E	ST	W	HS	SW	BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	

Slave-Master-Telegramm

STX	LGE	ADR	Pł	ΚE	IN	ID	PV	۷E	ZS	W	HI	W	BCC
02h			Н	L	Н	L	Н	L	Н	L	Н	L	

mit STX: Startzeichen STW: Steuerwort

LGE: Telegrammlänge ZSW: Zustandswort ADR: Adresse HSW: Hauptsollwert PKE: Parameterkennung HIW: Hauptistwert

IND: Index BCC: Block Check Character

PWE: Parameterwert

Broadcast mit gesetztem Bit 5 in ADR-Byte

Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht ist Bit 5 im ADR-Byte auf 1 zu setzen. Hierbei wird die Slave-Adr. (Bit 0 ... 4) ignoriert. Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über SFC 218 SER_RCV erforderlich. Nur Schreibaufträge dürfen als Broadcast gesendet werden.

Modbus

Das Protokoll Modbus ist ein Kommunikationsprotokoll, das eine hierarchische Struktur mit einem Master und mehreren Slaves festlegt.

Physikalisch arbeitet Modbus über eine serielle Halbduplex-Verbindung.

Es treten keine Buskonflikte auf, da der Master immer nur mit einem Slave kommunizieren kann. Nach einer Anforderung vom Master wartet dieser solange auf die Antwort des Slaves bis eine einstellbare Wartezeit abgelaufen ist. Während des Wartens ist eine Kommunikation mit einem anderen Slave nicht möglich.

Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des SFC 218 SER_RCV auszulesen.

Die Anforderungs-Telegramme, die ein Master sendet und die Antwort-Telegramme eines Slaves haben den gleichen Aufbau:

Start-	Slave-	Funktions-	Daten	Fluss-	Ende-
zeichen	Adresse	Code		kontrolle	zeichen

Broadcast mit Slave-Adresse = 0

Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht wird die Slave-Adresse 0 eingetragen.

Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über SFC 218 SER_RCV erforderlich.

Nur Schreibaufträge dürfen als Broadcast gesendet werden.

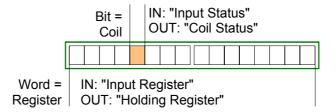
ASCII-, RTU-Modus

Bei Modbus gibt es zwei unterschiedliche Übertragungsmodi:

- ASCII-Modus: Jedes Byte wird im 2 Zeichen ASCII-Code übertragen. Die Daten werden durch Anfang- und Ende-Zeichen gekennzeichnet. Dies macht die Übertragung transparent aber auch langsam.
- RTU-Modus: Jedes Byte wird als ein Zeichen übertragen. Hierdurch haben Sie einen höheren Datendurchsatz als im ASCII-Modus. Anstelle von Anfang- und Ende-Zeichen wird eine Zeitüberwachung eingesetzt.

Die Modus-Wahl erfolgt zur Laufzeit unter Einsatz des SFC 216 SER_CFG.

Unterstützte Modbus-Protokolle


Die RS485-Schnittstelle unterstützt folgende Modbus-Protokolle:

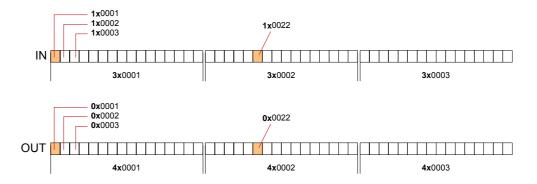
- Modbus RTU Master
- Modbus ASCII Master

Modbus - Funktionscodes

Namenskonventionen

Für Modbus gibt es Namenskonventionen, die hier kurz aufgeführt sind:

- Modbus unterscheidet zwischen Bit- und Wortzugriff;
 Bits = "Coils" und Worte = "Register".
- Bit-Eingänge werden als "Input-Status" bezeichnet und Bit-Ausgänge als "Coil-Status".
- Wort-Eingänge werden als "Input-Register" und Wort-Ausgänge als "Holding-Register" bezeichnet.

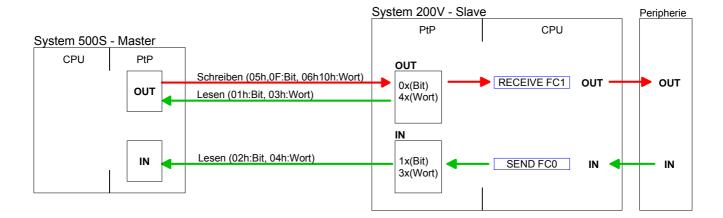

Bereichsdefinitionen

Üblicherweise erfolgt unter Modbus der Zugriff mittels der Bereiche 0x, 1x, 3x und 4x.

Mit 0x und 1x haben Sie Zugriff auf *digitale* Bit-Bereiche und mit 3x und 4x auf *analoge* Wort-Bereiche.

Da aber bei den CPs von VIPA keine Unterscheidung zwischen Digital- und Analogdaten stattfindet, gilt folgende Zuordnung:

- 0x: Bit-Bereich für Ausgabe-Daten des Masters Zugriff über Funktions-Code 01h, 05h, 0Fh
- 1x: Bit-Bereich für Eingabe-Daten des Masters Zugriff über Funktions-Code 02h
- 3x: Wort-Bereich für Eingabe-Daten des Masters Zugriff über Funktions-Code 04h
- 4x: Wort-Bereich für Ausgabe-Daten des Masters Zugriff über Funktions-Code 03h, 06h, 10h


Eine Beschreibung der Funktions-Codes finden Sie auf den Folgeseiten.

Übersicht

Mit folgenden Funktionscodes können Sie von einem Modbus-Master auf einen Slave zugreifen. Die Beschreibung erfolgt immer aus Sicht des Masters:

Code	Befehl	Beschreibung
01h	Read n Bits	n Bit lesen von Master-Ausgabe-Bereich 0x
02h	Read n Bits	n Bit lesen von Master-Eingabe-Bereich 1x
03h	Read n Words	n Worte lesen von Master-Ausgabe-Bereich 4x
04h	Read n Words	n Worte lesen von Master-Eingabe-Bereich 3x
05h	Write 1 Bit	1 Bit schreiben in Master-Ausgabe-Bereich 0x
06h	Write 1 Word	1 Wort schreiben in Master-Ausgabe-Bereich 4x
0Fh	Write n Bits	n Bit schreiben in Master-Ausgabe-Bereich 0x
10h	Write n Words	n Worte schreiben in Master-Ausgabe-Bereich 4x

Sichtweise für "Eingabe"- und "Ausgabe"-Daten Die Beschreibung der Funktionscodes erfolgt immer aus Sicht des Masters. Hierbei werden Daten, die der Master an den Slave schickt, bis zu ihrem Ziel als "Ausgabe"-Daten (OUT) und umgekehrt Daten, die der Master vom Slave empfängt als "Eingabe"-Daten (IN) bezeichnet.

Antwort des Slaves

Liefert der Slave einen Fehler zurück, wird der Funktionscode mit 80h "verodert" zurückgesendet.

Ist kein Fehler aufgetreten, wird der Funktionscode zurückgeliefert.

Slave-Antwort: Funktionscode OR 80h → Fehler

Funktionscode \rightarrow OK

Byte-Reihenfolge im Wort

Für die Byte-Reihenfolge im Wort gilt immer: 1 Wort

High- Low-Byte Byte

Prüfsumme CRC, RTU, LRC

Die aufgezeigten Prüfsummen CRC bei RTU- und LRC bei ASCII-Modus werden automatisch an jedes Telegramm angehängt. Sie werden nicht im Datenbaustein angezeigt.

Read n BitsCode 01h: n Bit lesen von Master-Ausgabe-Bereich 0x **01h, 02h**Code 02h: n Bit lesen von Master-Eingabe-Bereich 1x

Kommandotelegramm

Slave-Adresse	Funktions-	Adresse	Anzahl der	Prüfsumme
	Code	1. Bit	Bits	CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Byte	Daten 2. Byte		Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Byte	1Byte		1Wort
1	I	I	m	ax. 250Byte	1	,

Read n Words03h: n Worte lesen von Master-Ausgabe-Bereich 4x
04h: n Worte lesen von Master-Eingabe-Bereich 3x

Kommandotelegramm

Slave-Adresse	Funktions-	Adresse	Anzahl der	Prüfsumme
	Code	1.Bit	Worte	CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions- Code	Anzahl der gelesenen Bytes	Daten 1. Wort	Daten 2. Wort		Prüfsumme CRC/LRC
1Byte	1Byte	1Byte	1Wort	1Wort		1Wort
,	•		ma	ax. 125Worte	!	'

Write 1 Bit 05h

Code 05h: 1 Bit schreiben in Master-Ausgabe-Bereich 0x Eine Zustandsänderung erfolgt unter "Zustand Bit" mit folgenden Werten:

"Zustand Bit" = $0000h \rightarrow Bit = 0$ "Zustand Bit" = $FF00h \rightarrow Bit = 1$

Kommandotelegramm

Slave-Adresse	Funktions- Code	Adresse Bit		Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions-	Adresse	Zustand	Prüfsumme	
	Code	Bit	Bit	CRC/LRC	
1Byte	1Byte	1Wort	1Wort	1Wort	

Write 1 Word 06h

Code 06h: 1 Wort schreiben in Master-Ausgabe-Bereich 4x

Kommandotelegramm

Slave-Adresse	Funktions-	Adresse	Wert	Prüfsumme
	Code	Wort	Wort	CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Antworttelegramm

Slave-Adresse	Funktions- Code	Adresse Wort	Wert Wort	Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write n Bits 0Fh

Code 0Fh: n Bit schreiben in Master-Ausgabe-Bereich 0x

Bitte beachten Sie, dass die Anzahl der Bits zusätzlich in Byte anzugeben

sind.

Kommandotelegramm

Slave- Adresse	Funktions- Code	Adresse 1. Bit	Anzahl der Bits	Anzahl der Bytes	Daten 1. Byte	Daten 2. Byte		Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Byte	1Byte	1Byte	1Wort
•			•		ma	ax. 250Byte	•	

Antworttelegramm

Slave-	Funktions-	Adresse	Anzahl der	Prüfsumme
Adresse	Code	1. Bit	Bits	CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Write n Words 10h

Code 10h: n Worte schreiben in Master-Ausgabe-Bereich

Kommandotelegramm

Slave- Adresse	Funktions- Code	Adresse 1. Wort	Anzahl der Worte	Anzahl der Bytes	Daten 1. Wort	Daten 2. Wort		Prüfsumme CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Byte	1Wort	1Wort	1Wort	1Wort
	•	•	•	•	max	k. 125 Worte		

Antworttelegramm

Slave-	Funktions-	Adresse		Prüfsumme
Adresse	Code	1. Wort		CRC/LRC
1Byte	1Byte	1Wort	1Wort	1Wort

Modbus - Beispiel zur Kommunikation

Übersicht

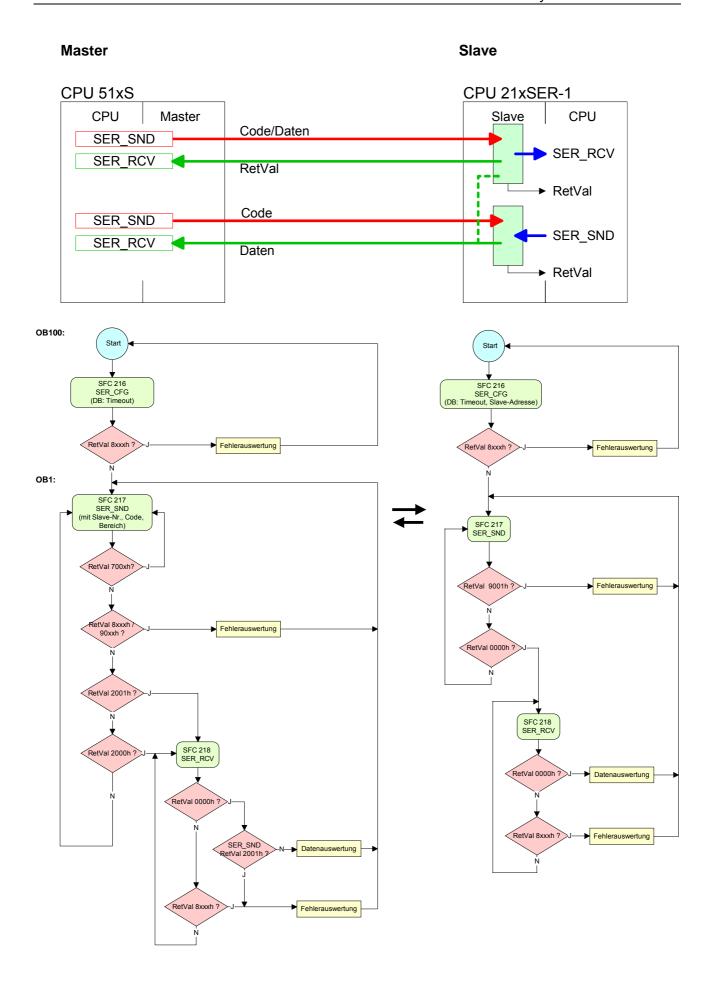
In dem Beispiel wird eine Kommunikation zwischen einem Master und einem Slave über Modbus aufgebaut.

Das System besteht aus folgenden Komponenten:

Modbus-Master (M) Modbus-Slave (S) CPU 51xS CPU 21xSER-1

Komponenten

Folgende Komponenten sind für das Beispiel erforderlich:


- CPU 51xS als Modbus RTU-Master
- CPU 21xSER-1 als Modbus RTU-Slave
- Siemens SIMATIC Manager und Möglichkeit für Projekttransfer
- Modbus-Kabel-Verbindung

Vorgehensweise

- Bauen Sie ein Modbus-System bestehend aus CPU 51xS als Modbus-Master und CPU 21xSER-1 als Modbus-Slave und Modbus-Kabel auf.
- Projektieren Sie die Master-Seite!
 Erstellen Sie hierzu ein SPS-Anwenderprogramm nach folgender Struktur:
 - OB 100: Aufruf SFC 216 (Konfiguration als Modbus RTU-Master) mit Timeout-Angabe und Fehlerauswertung.
 - OB 1: Aufruf des SFC 217 (SER_SND) wobei mit Fehlerauswertung die Daten gesendet werden. Hierbei ist das Telegramm gemäß den Modbus-Vorgaben aufzubauen. Aufruf des SFC 218 (SER_RECV) wobei mit Fehlerauswertung die Daten empfangen werden.
- Projektieren Sie die Slave-Seite!
 Das SPS-Anwenderprogramm auf der Slave-Seite sollte folgenden Aufbau haben:
 - OB 100: Aufruf SFC 216 (Konfiguration als Modbus RTU-Slave) mit Timeout-Angabe und Modbus-Adresse im DB und Fehlerauswertung
 - OB 1: Aufruf des SFC 217 (SER_SND) für den Datentransport von der Slave-CPU in den Ausgangs-Puffer.

 Aufruf des SFC 218 (SER_RECV) für den Datentransport vom Eingangspuffer in die CPU. Für beide Richtungen ist eine entsprechende Fehlerauswertung vorzusehen.

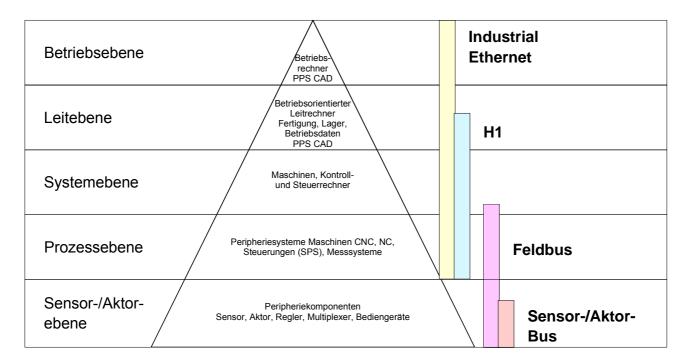
Auf der Folgeseite ist die Struktur für die jeweiligen SPS-Programme für Master- und Slave-Seite dargestellt.

Teil 6 Einsatz Ethernet-Komunikation

Überblick

In diesem Kapitel ist die Kommunikation über Ethernet beschrieben. Bitte beachten Sie den Abschnitt "Schnelleinstieg", hier finden Sie in komprimierter Form alle Informationen, die für die Projektierung der CPU 517S/NET mit *CP 543* erforderlich sind. Nach dem Schnelleinstieg sind diese Punkte näher beschrieben.

Inhalt	Thema	Seite	
	Teil 6 Einsatz Ethernet-Komunikation	6-1	
	Grundlagen - Industrial Ethernet in der Automatisierung	6-2	
	Grundlagen - ISO/OSI-Schichtenmodell	6-3	
	Grundlagen - Begriffe	6-6	
	Grundlagen - Protokolle	6-7	
	Grundlagen - IP-Adresse und Subnetz	6-11	
	Grundlagen - MAC-Adresse und TSAP		
	Schnelleinstieg	6-14	
	Hardware-Konfiguration	6-18	
	Kommunikationsverbindungen projektieren		
	Kommunikationsverbindungen im Anwenderprogramm		
	NCM-Diagnose - Hilfe zur Fehlersuche	6-37	
	Kopplung mit Fremdsystemen		


Grundlagen - Industrial Ethernet in der Automatisierung

Übersicht

Der Informationsfluss in einem Unternehmen stellt sehr unterschiedliche Anforderungen an die eingesetzten Kommunikationssysteme. Je nach Unternehmensbereich hat ein Bussystem unterschiedlich viele Teilnehmer, es sind unterschiedlich große Datenmengen zu übertragen, die Übertragungsintervalle variieren.

Aus diesem Grund greift man je nach Aufgabenstellung auf unterschiedliche Bussysteme zurück, die sich wiederum in verschiedene Klassen einteilen lassen.

Eine Zuordnung verschiedener Bussysteme zu den Hierarchieebenen eines Unternehmens zeigt das folgende Modell:

Industrial Ethernet

Physikalisch ist Industrial Ethernet ein elektrisches Netz auf Basis einer geschirmten Twisted Pair Verkabelung oder ein optisches Netz auf Basis eines Lichtwellenleiters.

Ethernet ist definiert durch den internationalen Standard IEEE 802.3. Der Netzzugriff bei Industrial Ethernet entspricht dem in der IEEE 802.3 festgelegten CSMA/CD-Verfahren (Carrier Sense Multiple Access/Collision Detection - Mithören bei Mehrfachzugriff/ Kollisionserkennung): Jeder Teilnehmer "hört" ständig die Busleitung ab und empfängt die an ihn adressierten Sendungen.

Ein Teilnehmer startet eine Sendung nur, wenn die Leitung frei ist. Starten zwei Teilnehmer gleichzeitig eine Sendung, so erkennen sie dies, stellen die Sendung ein und starten nach einer Zufallszeit erneut.

Durch Einsatz von Switches wird eine kollisionsfreie Kommunikation zwischen den Teilnehmern gewährleistet.

Grundlagen - ISO/OSI-Schichtenmodell

Übersicht

Das ISO/OSI-Schichtenmodell basiert auf einem Vorschlag, der von der International Standards Organization (ISO) entwickelt wurde. Es stellt den ersten Schritt zur internationalen Standardisierung der verschiedenen Protokolle dar. Das Modell trägt den Namen ISO-OSI-Schichtenmodell. OSI steht für Open System Interconnection, die Kommunikation offener Systeme. Das ISO/OSI-Schichtenmodell ist keine Netzwerkarchitektur, da die genauen Dienste und Protokolle, die in jeder Schicht verwendet werden, nicht festgelegt sind. Sie finden in diesem Modell lediglich Informationen über die Aufgaben, welche die jeweilige Schicht zu erfüllen hat.

Jedes offene Kommunikationssystem basiert heutzutage auf dem durch die Norm ISO 7498 beschriebenen ISO/OSI Referenzmodell. Das Referenzmodell strukturiert Kommunikationssysteme in insgesamt 7 Schichten, denen jeweils Teilaufgaben in der Kommunikation zugeordnet sind. Dadurch wird die Komplexität der Kommunikation auf verschiedene Ebenen verteilt und somit eine größere Übersichtlichkeit erreicht.

Folgende Schichten sind definiert:

Schicht	Funktion
Schicht 7	Application Layer (Anwendung)
Schicht 6	Presentation Layer (Darstellung)
Schicht 5	Session Layer (Sitzung)
Schicht 4	Transport Layer (Transport)
Schicht 3	Network Layer (Netzwerk)
Schicht 2	Data Link Layer (Sicherung)
Schicht 1	Physical Layer (Bitübertragung)

Je nach Komplexität der geforderten Übertragungsmechanismen kann sich ein Kommunikationssystem auf bestimmte Teilschichten beschränken. Auf der Folgeseite finden Sie eine nähere Beschreibung der Schichten.

Schichten

Schicht 1 Bitübertragungsschicht (physical layer)

Die Bitübertragungsschicht beschäftigt sich mit der Übertragung von Bits über einen Kommunikationskanal. Allgemein befasst sich diese Schicht mit den mechanischen, elektrischen und prozeduralen Schnittstellen und mit dem physikalischen Übertragungsmedium, das sich unterhalb der Bitübertragungsschicht befindet:

- Wie viel Volt entsprechen einer logischen 0 bzw. 1?
- Wie lange muss die Spannung für ein Bit anliegen?
- Pinbelegung der verwendeten Schnittstelle.

Schicht 2 Sicherungsschicht (data link layer)

Diese Schicht hat die Aufgabe, die Übertragung von Bitstrings zwischen zwei Teilnehmern sicherzustellen. Dazu gehören die Erkennung und Behebung bzw. Weitermeldung von Übertragungsfehlern, sowie die Flusskontrolle.

Die Sicherungsschicht verwandelt die zu übertragenden Rohdaten in eine Datenreihe. Hier werden Rahmengrenzen beim Sender eingefügt und beim Empfänger erkannt. Dies wird dadurch erreicht, dass am Anfang und am Ende eines Rahmens spezielle Bitmuster gesetzt werden. In der Sicherungsschicht wird häufig noch eine Flussregelung und eine Fehlererkennung integriert.

Die Datensicherungsschicht ist in zwei Unterschichten geteilt, die LLC- und die MAC-Schicht.

Die MAC (**M**edia **A**ccess **C**ontrol) ist die untere Schicht und steuert die Art, wie Sender einen einzigen Übertragungskanal gemeinsam nutzen

Die LLC (Logical Link Control) ist die obere Schicht und stellt die Verbindung für die Übertragung der Datenrahmen von einem Gerät zum anderen her.

Schicht 3 Netzwerkschicht (network layer)

Die Netzwerkschicht wird auch Vermittlungsschicht genannt.

Die Aufgabe dieser Schicht besteht darin, den Austausch von Binärdaten zwischen nicht direkt miteinander verbundenen Stationen zu steuern. Sie ist für den Ablauf der logischen Verknüpfungen von Schicht 2-Verbindungen zuständig. Dabei unterstützt diese Schicht die Identifizierung der einzelnen Netzwerkadressen und den Auf- bzw. Abbau von logischen Verbindungskanälen. IP basiert auf Schicht 3.

Eine weitere Aufgabe der Schicht 3 besteht in der priorisierten Übertragung von Daten und die Fehlerbehandlung von Datenpaketen. IP (Internet Protokoll) basiert auf Schicht 3.

Schicht 4 Transportschicht (transport layer)

Die Aufgabe der Transportschicht besteht darin, Netzwerkstrukturen mit den Strukturen der höheren Schichten zu verbinden, indem sie Nachrichten der höheren Schichten in Segmente unterteilt und an die Netzwerkschicht weiterleitet. Hierbei wandelt die Transportschicht die Transportadressen in Netzwerkadressen um.

Gebräuchliche Transportprotokolle sind: TCP, SPX, NWLink und NetBEUI.

Schichten Fortsetzung ...

Schicht 5 Sitzungsschicht (session layer)

Die Sitzungsschicht wird auch Kommunikationssteuerungsschicht genannt. Sie erleichtert die Kommunikation zwischen Service-Anbieter und Requestor durch Aufbau und Erhaltung der Verbindung, wenn das Transportsystem kurzzeitig ausgefallen ist.

Auf dieser Ebene können logische Benutzer über mehrere Verbindungen gleichzeitig kommunizieren. Fällt das Transportsystem aus, so ist es die Aufgabe, gegebenenfalls eine neue Verbindung aufzubauen.

Darüber hinaus werden in dieser Schicht Methoden zur Steuerung und Synchronisation bereitgestellt.

Schicht 6 Darstellungsschicht (presentation layer)

Auf dieser Ebene werden die Darstellungsformen der Nachrichten behandelt, da bei verschiedenen Netzsystemen unterschiedliche Darstellungsformen benutzt werden.

Die Aufgabe dieser Schicht besteht in der Konvertierung von Daten in ein beiderseitig akzeptiertes Format, damit diese auf den verschiedenen Systemen lesbar sind.

Hier werden auch Kompressions-/Dekompressions- und Verschlüsselungs-/ Entschlüsselungsverfahren durchgeführt.

Man bezeichnet diese Schicht auch als Dolmetscherdienst. Eine typische Anwendung dieser Schicht ist die Terminalemulation.

Schicht 7 Anwendungsschicht (application layer)

Die Anwendungsschicht stellt sich als Bindeglied zwischen der eigentlichen Benutzeranwendung und dem Netzwerk dar. Sowohl die Netzwerk-Services wie Datei-, Druck-, Nachrichten-, Datenbank- und Anwendungs-Service als auch die zugehörigen Regeln gehören in den Aufgabenbereich dieser Schicht.

Diese Schicht setzt sich aus einer Reihe von Protokollen zusammen, die entsprechend den wachsenden Anforderungen der Benutzer ständig erweitert werden.

Grundlagen - Begriffe

Netzwerk (LAN)

Ein Netzwerk bzw. LAN (Local Area Network) verbindet verschiedene Netzwerkstationen so, dass diese miteinander kommunizieren können.

Netzwerkstationen können PCs, IPCs, TCP/IP-Baugruppen, etc. sein.

Die Netzwerkstationen sind, durch einen Mindestabstand getrennt, mit dem Netzwerkkabel verbunden. Die Netzwerkstationen und das Netzwerkkabel zusammen bilden ein Gesamtsegment. Alle Segmente eines Netzwerks bilden das Ethernet (Physik eines Netzwerks).

Twisted Pair

Früher gab es das Triaxial- (Yellow Cable) oder Thin Ethernet-Kabel (Cheapernet). Mittlerweile hat sich aber aufgrund der Störfestigkeit das Twisted Pair Netzwerkkabel durchgesetzt. Die CPU hat einen Twisted-Pair-Anschluss.

Das Twisted Pair Kabel besteht aus 8 Adern, die paarweise miteinander verdrillt sind. Aufgrund der Verdrillung ist dieses System nicht so störanfällig wie frühere Koaxialnetze. Verwenden Sie für die Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen.

Abweichend von den beiden Ethernet-Koaxialnetzen, die auf einer Bus-Topologie aufbauen, bildet Twisted Pair ein Punkt-zu-Punkt-Kabelschema.

Das hiermit aufzubauende Netz stellt eine Stern-Topologie dar. Jede Station ist einzeln direkt mit dem Sternkoppler (Hub/Switch) zu einem Ethernet verbunden.

Hub (Repeater)

Ein Hub ist ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Seine Aufgabe ist dabei, die Signale in beide Richtungen zu regenerieren und zu verstärken. Gleichzeitig muss er in der Lage sein, segmentübergreifende Kollisionen zu erkennen, zu verarbeiten und weiter zu geben. Er kann nicht im Sinne einer eigenen Netzwerkadresse angesprochen werden, da er von den angeschlossenen Stationen nicht registriert wird. Er bietet Möglichkeiten zum Anschluss an Ethernet oder zu einem anderen Hub bzw. Switch.

Switch

Ein Switch ist ebenfalls ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Mehrere Stationen bzw. Hubs werden über einen Switch verbunden. Diese können dann, ohne das restliche Netzwerk zu belasten, über den Switch miteinander kommunizieren. Eine intelligente Hardware analysiert für jeden Port in einem Switch die eingehenden Telegramme und leitet diese kollisionsfrei direkt an die Zielstationen weiter, die am Switch angeschlossen sind. Ein Switch sorgt für die Optimierung der Bandbreite in jedem einzeln angeschlossenen Segment eines Netzes. Switches ermöglichen exklusiv nach Bedarf wechselnde Verbindungen zwischen angeschlossenen Segmenten eines Netzes.

Grundlagen - Protokolle

Übersicht

In Protokollen ist ein Satz an Vorschriften oder Standards definiert, der es Kommunikationssystemen ermöglicht, Verbindungen herzustellen und Informationen möglichst fehlerfrei auszutauschen. Ein allgemein anerkanntes Protokoll für die Standardisierung der kompletten Kommunikation stellt das ISO/OSI-Schichtenmodell dar (siehe "ISO/OSI-Schichtmodell" weiter oben).

Folgende Protokolle kommen in der CPU zum Einsatz:

- Siemens S7-Verbindungen
- TCP/IP
- UDP
- RFC1006 (ISO-ON-TCP)
- ISO-Transport (ehemals H1)

Nachfolgend sind diese Protokolle kurz aufgeführt:

Siemens S7-Verbindungen

Mit der Siemens S7-Kommunikation können Sie auf Basis von Siemens STEP®7 größere Datenmengen zwischen SPS-Systemen übertragen. Hierbei sind die Stationen über Ethernet zu verbinden.

Neben den Kommunikationsverbindungen können Sie unter Einsatz von Remote-Funktionen mit dem entsprechenden Funktionsbaustein eine CPU mit einer anderen CPU steuern und diese beispielsweise in STOP schalten.

Voraussetzung für die Siemens S7-Kommunikation ist eine projektierte Verbindungstabelle, in der die Kommunikationsverbindungen definiert werden. Hierzu können Sie beispielsweise WinPLC7 von VIPA oder NetPro von Siemens verwenden.

Eigenschaften

- Eine Kommunikationsverbindung ist durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert.
- Die Quittierung der Datenübertragung erfolgt vom Partner auf Schicht 7 des ISO/OSI-Schichtenmodells.
- Zur Datenübertragung auf SPS-Seite sind für Siemens S7-Verbindungen die FB/SFB-VIPA-Hantierungsbausteine zu verwenden.

Hinweis!

Näheres zum Einsatz der FB/SFB-VIPA-Hantierungsbausteine in Verbindung mit Siemens S7-Verbindungen finden Sie im Handbuch "Operationsliste" zu Ihrer CPU.

TCP/IP

TCP/IP-Protokolle stehen auf allen derzeit bedeutenden Systemen zur Verfügung. Dies gilt am unteren Ende für einfache PCs, über die typischen Mini-Rechner, bis hinauf zu Großrechnern. Durch die weite Verbreitung von Internetzugängen und -anschlüssen wird TCP/IP sehr häufig für den Aufbau heterogener Systemverbunde verwendet.

Hinter TCP/IP, das für die Abkürzungen Transmission Control Protocol und Internet Protocol steht, verbirgt sich eine ganze Familie von Protokollen und Funktionen.

TCP und IP sind nur zwei der für den Aufbau einer vollständigen Architektur erforderlichen Protokolle. Die Anwendungsschicht stellt Programme wie "FTP" und "Telnet" auf PC-Seite zur Verfügung.

Die Anwendungsschicht des Ethernet CP ist mit dem Anwenderprogramm unter Verwendung der Standardhantierungsbausteine definiert. Diese Anwendungsprogramme nutzen für den Datenaustausch die Transportschicht mit den Protokollen TCP oder UDP, die wiederum mit dem IP-Protokoll der Internetschicht kommunizieren.

IΡ

Das IP (Internet **P**rotokoll) deckt die Netzwerkschicht (Schicht 3) des ISO/OSI-Schichtmodells ab.

Die Aufgabe des IP besteht darin, Datenpakete von einem Rechner über mehrere Rechner hinweg zum Empfänger zu senden. Diese Datenpakete sind sogenannte Datagramme. Das IP gewährleistet weder die richtige Reihenfolge der Datagramme, noch die Ablieferung beim Empfänger.

Zur eindeutigen Unterscheidung zwischen Sender und Empfänger kommen 32Bit-Adressen (IP-Adressen) zum Einsatz, die bei *IPv4* in vier Oktetts (genau 8Bit) geschrieben werden, z.B. 172.16.192.11. Diese Internetadressen werden weltweit eindeutig vergeben, so dass jeder Anwender von TCP/IP mit allen anderen TCP/IP Anwendern kommunizieren kann. Ein Teil der Adresse spezifiziert das Netzwerk, der Rest dient zur Identifizierung der Rechner im Netzwerk. Die Grenze zwischen Netzwerkanteil und Host-Anteil ist fließend und hängt von der Größe des Netzwerkes ab.

Um IP-Adressen zu sparen, werden sogenannte *NAT-Router* eingesetzt, die eine einzige offizielle IP-Adresse besitzen und das Netzwerk hinter diesem Rechner abschotten. Somit können im privaten Netzwerk dann beliebige IP-Adressen vergeben werden.

TCP

Das TCP (Transmission Control Protokoll) setzt direkt auf dem IP auf, somit deckt das TCP die Transportschicht (Schicht 4) auf dem ISO/OSI-Schichtenmodell ab. TCP ist ein verbindungsorientiertes End-to-End-Protokoll und dient zur logischen Verbindung zwischen zwei Partnern.

TCP gewährleistet eine folgerichtige und zuverlässige Datenübertragung. Hierzu ist ein relativ großer Protokoll-Overhead erforderlich, der folglich die Übertragung verlangsamt. Jedes Datagramm wird mit einem mindestens 20Byte langen Header versehen. In diesem Header befindet sich auch eine Folgenummer, mit der die richtige Reihenfolge erkannt wird. So können in einem Netzwerkverbund die einzelnen Datagramme auf unterschiedlichen Wegen zum Ziel gelangen.

Bei TCP-Verbindungen wird die Gesamtdatenlänge nicht übermittelt. Aus diesem Grund muss der Empfänger wissen, wie viele Bytes zu einer Nachricht gehören. Zur Übertragung von Daten mit variabler Länge können Sie die Längenangabe den Nutzdaten voranstellen und diese Längenangabe entsprechend auf der Gegenseite auswerten.

Eigenschaften TCP/IP

- Zur Adressierung werden neben der IP-Adresse Ports verwendet. Eine Port-Adresse sollte im Bereich 2000...65535 liegen. Ferne und lokale Ports dürfen bei nur einer Verbindung identisch sein.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) erforderlich.

UDP

Das UDP (**U**ser **D**atagramm **P**rotocol) ist ein verbindungsloses Transportprotokoll. Es wurde im RFC768 (**R**equest **f**or **C**omment) definiert. Im Vergleich zu TCP hat es wesentlich weniger Merkmale.

Die Adressierung erfolgt durch Portnummern.

UDP ist ein schnelles ungesichertes Protokoll, da es sich weder um fehlende Datenpakete kümmert, noch um die Reihenfolge der Pakete.

ISO-on-TCP RFC1006

Da der TCP-Transportdienst streamorientiert ist, bedeutet dies, dass einzelne vom Anwender zusammengestellte Datenpakete nicht unbedingt in der gleichen Paketierung beim Teilnehmer ankommen. Je nach Datenvolumen können Pakete zwar in der gleichen Reihenfolge aber anders paketiert ankommen, so dass der Empfänger die einzelnen Paketgrenzen nicht mehr erkennen kann. Beispielsweise werden 2x 10Byte-Pakete geschickt, die auf der Gegenseite als 20Byte-Paket ankommen. Aber gerade die richtige Paketierung ist für die meisten Anwendungen unerlässlich.

Dies bedeutet, dass oberhalb von TCP ein zusätzliches Protokoll erforderlich ist. Diese Aufgabe erfüllt der Protokollaufsatz RFC1006 (ISO-on-TCP). Der Protokollaufsatz beschreibt die Arbeitsweise einer ISO Transportschnittstelle (ISO 8072) auf der Basis des Transportinterfaces TCP (RFC793).

Das dem RFC1006 zugrunde liegende Protokoll ist in seinen wesentlichen Teilen identisch zu TP0 (Transport Protokoll, Class 0) in ISO 8073.

Da RFC1006 als Protokollaufsatz zu TCP gefahren wird, erfolgt die Dekodierung im Datenteil des TCP-Pakets.

Eigenschaften

- Im Gegensatz zu TCP wird hier der Empfang eines Telegramms bestätigt.
- Zur Adressierung werden neben der IP-Adresse anstelle von Ports TSAPs verwendet. Die TSAP-Länge kann 1 ... 16 Zeichen betragen. Die Eingabe kann im ASCII- oder Hex-Format erfolgen. Ferne und lokale TSAPs dürfen bei nur 1 Verbindung identisch sein.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG RECV (FC 6) erforderlich.
- Im Gegensatz zu TCP können über RFC1006 unterschiedliche Telegrammlängen empfangen werden.

ISO-Transport (ehemals H1)

Der ISO-Transportdienst (ISO 8073 Class 4) entspricht dem Transport-Layer (Schicht 4) des ISO/OSI-Schichtmodells. ISO-Transport-Verbindungen ermöglichen die programm- und ereignisgesteuerte Kommunikation über Industrial Ethernet. Hierbei können Datenblöcke bidirektional ausgetauscht werden.

Die ISO-Transport-Verbindung bietet Dienste für die gesicherte Übertragung von Daten über projektierte Verbindungen. Sie können große Datenmengen geblockt übertragen.

Die Übertragungssicherheit ist durch die automatische Wiederholung, durch zusätzliche Blockprüfmechanismen und durch die Empfangsquittierung auf der Empfängerseite sehr hoch. ISO-Transport-Verbindungen werden ausschließlich über Industrial Ethernet übertragen und sind optimiert für den Einsatz in einer abgeschlossenen Fertigungsebene.

Eigenschaften

- ISO-Transport-Verbindungen eigenen sich ausschließlich für das Industrial Ethernet
- Der Empfang der Daten wird von der Gegenseite bestätigt. Hierbei können unterschiedliche Telegrammlängen verarbeitet werden.
- Die Adressierung erfolgt über MAC-Adresse (Ethernet-Adresse) und TSAPs (Transport Service Access Point).
- Die Datenübertragung kann mittels der Dienste SEND/RECEIVE und FETCH/WRITE erfolgen.
- Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) erforderlich.

Grundlagen - IP-Adresse und Subnetz

Aufbau IP-Adresse

Industrial Ethernet unterstützt ausschließlich *IPv4*. Unter *IPv4* ist die IP-Adresse eine 32-Bit-Adresse, die innerhalb des Netzes eindeutig sein muss und sich aus 4 Zahlen zusammensetzt, die jeweils durch einen Punkt getrennt sind. Jede IP-Adresse besteht aus einer **Net-ID** und **Host-ID** und

Die IP-Adressen werden vom Netzwerkadministrator vergeben.

Net-ID Host-ID

Die **Net**work-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das Netz administriert.

Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.

Subnet-Maske

Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der **Subnet-Maske** weiter aufgeteilt werden, in eine **Subnet-ID** und eine *neue* **Host-ID**.

Derjenige Bereich der ursprünglichen Host-ID, welcher von Einsen der Subnet-Maske überstrichen wird, wird zur Subnet-ID, der Rest ist die neue Host-ID.

Subnet-Maske	binär alle "1'	'	binär alle "0"
IPv4 Adresse	Net-ID Host-ID		
Subnet-Maske und IPv4 Adresse	Net-ID	Subnet-ID	neue Host-ID

Subnetz

Eine TCP-basierte Kommunikation per Punkt-zu-Punkt-, Hub- oder Switch-Verbindung ist nur zwischen Stationen mit identischer Network-ID und Subnet-ID möglich! Unterschiedliche Bereiche sind mit einem Router zu verknüpfen.

Über die Subnet-Maske haben Sie die Möglichkeit, die Ressourcen ihren Bedürfnissen entsprechend zu ordnen. So erhält z.B. jede Abteilung ein eigenes Subnetz und stört damit keine andere Abteilung.

Adresse bei Erstinbetriebnahme

Bei der Erstinbetriebnahme der CPU besitzen der Ethernet-PG/OP-Kanal und der CP-Teil <u>keine</u> IP-Adresse. Für die Adresszuweisung haben Sie folgende Möglichkeiten:

- Im Siemens SIMATIC Manager die PG/PC-Schnittstelle auf "TCP/IP...RFC1006" einstellen, über "Ethernet-Adresse vergeben..." den entsprechenden CP suchen und diesem IP-Parameter zuweisen. Nach der Zuweisung werden die IP-Parameter sofort ohne CPU-Neustart übernommen.
- Über ein "Minimalprojekt" dem CP IP-Adresse und Subnet-Maske zuweisen und das Projekt über MMC oder MPI in die CPU übertragen. Nach dem Neustart der CPU und nach Umstellen der PG/PC-Schnittstelle auf "TCP/IP ... RFC1006" können Sie nun online über den gewünschten CP Ihre CPU projektieren.

Adress-Klassen

Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4 Byte = 32Bit lang sind.

Klasse A	0 Network-ID (1+7bit)			Host-ID (24bit)		
Klasse B	10 Network-ID (2+		twork-ID (2+	14bit)	Host-ID (16b	oit)
Klasse C	110	110 Network-ID (3		+21bit)		Host-ID (8bit)
Klasse D	1110	C	Multicast Gruppe			
Klasse E	1111	10	Reserviert			

Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert.

Die Adressformate der 3 Klassen A,B,C unterscheiden sich lediglich dadurch, dass Network-ID und Host-ID verschieden lang sind.

Private IP Netze

Zur Bildung privater IP-Netze sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

Netzwerk	von IP	bis IP	Standard Subnet-Maske
Klasse			
Α	10. <u>0.0.0</u>	10. <u>255.255.255</u>	255. <u>0.0.0</u>
В	172.16. <u>0.0</u>	172.31. <u>255.255</u>	255.255. <u>0.0</u>
С	192.168.0. <u>0</u>	192.168.255. <u>255</u>	255.255.255. <u>0</u>

(Die Host-ID ist jeweils unterstrichen.)

Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden.

Reservierte Host-IDs

Einige Host-IDs sind für spezielle Zwecke reserviert.

Host-ID = "0"		Identifier dieses Netzwerks, reserviert!		
Host-ID = maximal (binär komplett "1")	Broadcast Adresse dieses Netzwerks		

Hinweis!

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnet-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

Grundlagen - MAC-Adresse und TSAP

MAC-Adresse

Für jeden CP ist eine eindeutige MAC-Adresse (**M**edia **A**ccess **C**ontrol) erforderlich. In der Regel ist die MAC-Adresse vom Hersteller auf die Baugruppe aufgedruckt und ist bei der Projektierung des CPs einzugeben. Die MAC-Adresse hat eine Länge von 6Byte.

Im Auslieferungszustand spezifizieren die ersten drei Byte den Hersteller. Diese Bytes werden vom IEEE-Komitee vergeben. Die letzten 3 Bytes können vom Hersteller vergeben werden.

In einem Netz dürfen nicht mehrere Stationen mit der gleichen MAC-Adresse existieren. Sie können jederzeit die MAC-Adresse ändern. Eine gültige MAC-Adresse erhalten Sie von Ihrem Netzwerkadministrator.

Broadcast-Adresse

Die MAC-Adresse, bei der alle Bits auf 1 gesetzt sind, lautet:

FF-FF-FF-FF-FF

Diese Adresse wird als Broadcast-Adresse verwendet und adressiert alle Teilnehmer im Netz.

Adresse bei Erstinbetriebnahme

Bei der Erstinbetriebnahme besitzt der CP 343 der CPU eine eindeutige MAC-Adresse. Diese finden Sie auf einem Aufkleber unterhalb der Frontklappe.

Hinweis!

Bitte beachten Sie, dass Sie für die Netzwerk-Konfiguration im Siemens SIMATIC Manager in den Eigenschaften der Ethernet-Schnittstelle des CP eine gültige MAC-Adresse angeben und das ISO-Protokoll aktivieren müssen!

TSAP

TSAP steht für **T**ransport **S**ervice **A**ccess **P**oint. ISO-Transport-Verbindungen unterstützen TSAP-Längen von 1...16Byte. Sie können den TSAP im ASCII-Format oder hexadezimal eingeben.

Adressparameter

Eine ISO-Transport-Verbindung wird durch den lokalen und fernen Verbindungsendpunkt spezifiziert.

Teilnehmer A				Teilnehmer B
ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
lokaler TSAP	\leftarrow	Verbindung	\leftarrow	ferner TSAP
MAC-Adresse A				MAC-Adresse B

Die TSAPs einer ISO-Transport-Verbindung müssen wie folgt übereinstimmen:

Ferner TSAP (im CP) = lokaler TSAP (in Ziel-Station) Lokaler TSAP (im CP) = ferner TSAP (in Ziel-Station)

Schnelleinstieg

Übersicht

Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzen der Ethernet PG/OP-Kanal und der CP 543 <u>keine</u> IP-Adresse. Die CPs sind lediglich über ihre MAC-Adresse erreichbar. Mittels der MAC-Adressen, die sich auf Aufkleber unterhalb der Frontklappe befinden in der Reihenfolge Adresse PG/OP-Kanal und darunter Adresse CP 543, können Sie dem CP IP-Adressparameter zuweisen. Die Zuweisung erfolgt hier direkt über die Hardware-Konfiguration im Siemens SIMATIC Manager.

Die Projektierung der CPU 517S/NET mit CP 543 sollte nach folgender Vorgehensweise erfolgen:

- Montage und Inbetriebnahme
- Hardware-Konfiguration (Einbindung CP in CPU)
- **CP-Projektierung** über NetPro (Verbindung zum Ethernet)
- **SPS-Programmierung** über Anwender-Programm (Verbindung zur SPS)
- Transfer des Gesamtprojekts in die CPU

Hinweis

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, ist die CPU 517S/NET von VIPA als

CPU 318-2 (6ES7 318-2AJ00-0AB0)

zu projektieren!

Den internen Ethernet-PG/OP-Kanal der CPU 517S/NET projektieren Sie virtuell auf Steckplatz 4 als CP343-1 (343-1EX11) von Siemens. Der CP 543 der CPU ist immer unterhalb des zuvor projektierten PG/OP-Kanals ebenfalls als CP343-1 (343-1EX11) zu projektieren.

Montage und Inbetriebnahme

- Installieren Sie Ihre CPU 517S/NET Steckkarte in einem freien PCI-Slot.
- Schließen Sie die externe Spannungsversorgung an und beachten Sie, dass Ihr PC mit dem Netzwerk verbunden ist.
- Schalten Sie die Spannungsversorgung ein.
 - → Nach kurzer Hochlaufzeit befindet sich der CP im Leerlauf. Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzt der CP keine IP-Adresse. Zur Kontrolle können Sie den CP jetzt über die MAC-Adresse erreichen. Die MAC-Adresse finden Sie auf einem Aufkleber auf der Steckkarte.

IP-Adress-Parameter zuweisen

Gültige IP-Adress-Parameter erhalten Sie von Ihrem Systemadministrator. Für die Zuweisung der IP-Adress-Parameter wie IP-Adresse, Subnet-Maske usw. haben Sie folgende Möglichkeiten:

- Online mit dem Siemens SIMATIC Manager über "Ethernet-Adresse vergeben".
- Über ein Minimalprojekt mit IP-Adresse und IP-Parameter, das über MMC bzw. MPI in die CPU übertragen wird. Nach dem Neustart der CPU und nach Umstellen der PG/PC-Schnittstelle auf "TCP/IP... RFC1006" können Sie nun online über den CP Ihre CPU projektieren.

Adressierung mit "Ethernet-Teilnehmer bearbeiten" Nachfolgend ist die Vorgehensweise im Siemens SIMATIC Manager ab Version V 5.3 & SP3 beschrieben:

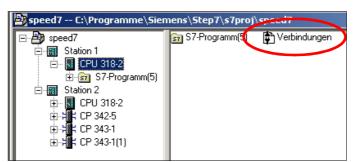
- Starten Sie den Siemens SIMATIC Manager.
- Stellen Sie über **Extras** > *PG/PC-Schnittstelle einstellen* auf "TCP/IP... RFC1006" ein.
- Öffnen Sie mit **Zielsystem** > *Ethernet-Teilnehmer bearbeiten* das gleichnamige Dialogfenster.
- Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf einem Aufkleber unterhalb der Frontklappe des CPs.
- Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.
- Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnet-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client -ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestrich "-", 0-9, a-z, A-Z
- Bestätigen Sie Ihre Eingabe mit der Schaltfläche [... zuweisen].

Direkt nach der Zuweisung ist der CP über die angegebenen IP-Parameter online erreichbar.

Adressierung über Projekt

- Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt.
- Fügen Sie mit **Einfügen** > *Station* > *SIMATIC 300-Station* eine neue System 300 Station ein.
- Aktivieren Sie die Station "SIMATIC 300" und öffnen Sie den Hardware-Konfigurator indem Sie auf "Hardware" klicken.
- Projektieren Sie ein Rack (SIMATIC 300 \ Rack-300 \ Profilschiene).
- Projektieren Sie stellvertretend für Ihre CPU 517S/NET die Siemens CPU 318-2 mit der Best.-Nr. 6ES7 318-2AJ00-0AB0 V.3.0., zu finden unter SIMATIC 300 \ CPU 300 \ CPU 318-2 \ 318-2AJ00-0AB00. Parametrieren Sie ggf. die CPU 318-2.
- Zur Projektierung des PG/OP-Kanals projektieren Sie direkt unterhalb der reell gesteckten Module als virtuelles Modul einen CP 343-1 (343-1EX11) von Siemens.
- Geben Sie in den CP-Eigenschaften die gewünschte IP-Adresse und Subnet-Maske an.
- Projektieren Sie den integriertem CP 343 als 2. CP ebenfalls als CP 343-1 (343-1EX11) unter Angabe einer weiteren IP-Adresse, Subnet-Maske und Gateway.
- Speichern und übersetzen Sie Ihr Projekt.

Hier endet das Projekt. Nach der Übertragung dieses Projekts in die CPU können Sie über die im Projekt angegebene IP-Adresse und Subnet-Maske auf den CP zugreifen.

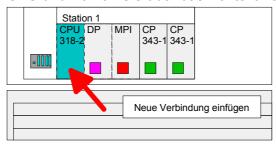

Einsatz von ISO-Transportverbindungen

Für den Einsatz von ISO-Transportverbindungen müssen Sie diese in dem oben aufgeführten Projekt in den Ethernet-Eigenschaften des CP freigeben.

Hier haben Sie auch die Möglichkeit für Ihren CP eine MAC-Adresse zu vergeben. Bei jedem Neustart der CPU wird die neue MAC-Adresse an den CP übertragen.

Verbindungen mit NetPro projektieren

Die Vernetzung zwischen den Stationen erfolgt mit der grafischen Benutzeroberfläche NetPro. Starten Sie NetPro, indem Sie in Ihrem Projekt auf ein Netz klicken bzw. im CPU-Verzeichnis auf Verbindungen.



Stationen vernetzen

Zur Projektierung von Verbindungen werden vernetzte Stationen vorausgesetzt. Zur Vernetzung von Stationen gehen Sie mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Die Verbindung wird grafisch über eine Linie dargestellt.

Verbindungen projektieren

Klicken Sie zur Projektierung neuer Verbindungen auf die entsprechende CPU und wählen Sie über das Kontextmenü "Neue Verbindung einfügen".

Über das Dialogfenster können Sie die Parameter für eine Verbindung vorgeben. Die Parameter ID und LADDR sind für den Einsatz der AG_SEND- bzw. AG_RECV-Bausteine (FC 5 bzw. FC 6) erforderlich.

Bei Einsatz von Siemens S7-Verbindungen ist der Parameter *ID* an den entsprechenden FB/SFB-VIPA-Hantierungsbaustein zu übergeben.

Aus Wegewahl immer 2. CP verwenden

Bitte beachten Sie, dass Sie für die Kommunikation immer den 2. CP aus der Wegewahl verwenden. Als 1. CP finden Sie stets den Ethernet PG/OP-Kanal, der keine projektierbare Verbindungen unterstützt.

Verbindungen speichern und übersetzen

Speichern und übersetzen Sie Ihr Projekt und beenden Sie NetPro.

Damit die CP-Projektierdaten in den Systemdaten abgelegt werden, müssen Sie in den der Hardware-Konfiguration des CP unter *Objekteigenschaften* im Bereich *Optionen* die Option "Projektierungsdaten in der CPU speichern" aktivierten (Standardeinstellung).

SPS-Anwenderprogramm

Zur Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein Anwenderprogramm in der CPU erforderlich. Hierbei kommen ausschließlich die VIPA Hantierungsbausteine zum Einsatz, welche Sie als Bibliothek von VIPA beziehen können. Nähere Informationen zum Einsatz der Bausteine finden Sie im Handbuch "Operationsliste" Ihrer CPU.

Je nach Verbindungstyp stehen Ihnen Bausteine für Siemens S7-Verbindungen und Send/Receive-Verbindungen zur Verfügung.

Projekt-Transfer

Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 517S/NET" unter "Projekt transferieren".

Auf den Folgeseiten sind die in diesem Schnelleinstieg aufgeführten Schritte näher erläutert.

Hardware-Konfiguration

Übersicht

Zur Hardware-Konfiguration setzen Sie den Hardware-Konfigurator von Siemens ein. Hier geben Sie unter anderem die IP-Adresse des CPs an und projektieren die Hardware-Komponenten Ihrer SPS.

Da im Auslieferungszustand weder der Ethernet-PG/OP-Kanal noch der CP 543 eine IP-Adresse besitzen, können Sie ausschließlich über MPI oder MMC Ihre CPU projektieren.

Für den Zugriff auf Ihre CPU über den Ethernet-PG/OP-Kanal bzw. den CP 543 ist es erforderlich, dass sich in der CPU eine Hardware-Projektierung befindet, in der IP-Adresse und Subnet-Maske für Ethernet-PG/OP bzw. CP 543 definiert sind.

Voraussetzung

Bitte beachten Sie, dass zur Hardware-Konfiguration die folgenden Software-Pakete installiert sein müssen:

- Siemens SIMATIC Manager V. 5.2 oder höher
- SIMATIC NET

Hinweis!

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

Hinweis!

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, ist die CPU 51xS von VIPA als

CPU 318-2DP (6ES7 318-2AJ00-0AB0)

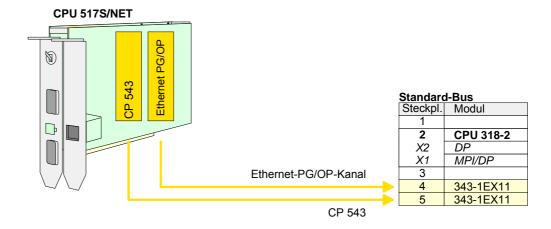
zu projektieren!

Den internen Ethernet-PG/OP-Kanal projektieren Sie virtuell auf Steckplatz 4 als CP343-1 (343-1EX11) von Siemens. Der CP 543 der CPU 517S/NET ist auf Steckplatz 5 ebenfalls als CP343-1 (343-1EX11) zu projektieren.

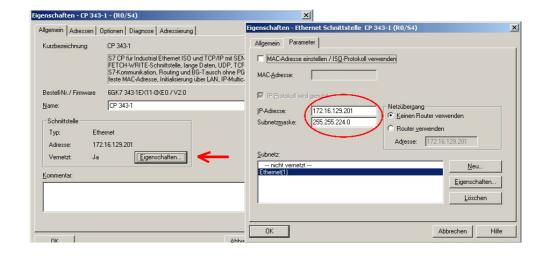
Schritte der Projektierung

Nachfolgend wird die Vorgehensweise der Projektierung im Hardware-Konfigurator von Siemens an einem abstrakten Beispiel gezeigt.

Die Projektierung gliedert sich in folgende 2 Teile:


- Projektierung der CPU
- Projektierung interner Ethernet-PG/OP-Kanal und CP 543

Projektierung der CPU


- Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU:
 CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)

Projektierung Ethernet-PG/OP-Kanal und CP

Für den internen Ethernet-PG/OP-Kanal ist auf Steckplatz 4 und für den CP 543 auf Steckplatz 5 ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu platzieren.

Öffnen Sie durch Doppelklick auf den CP 343-1EX11 das Eigenschaften-Fenster und geben Sie für die CPs unter "Eigenschaften" IP-Adresse, Subnet-Maske und Gateway an und wählen Sie das gewünschte Subnetz aus.

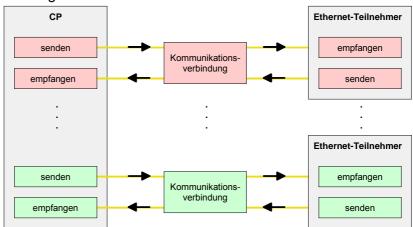
Speichern und übersetzen Sie Ihr Projekt.

Kommunikationsverbindungen projektieren

Übersicht

Die Projektierung von Verbindungen, d.h. die "Vernetzung" zwischen den Stationen erfolgt in NetPro von Siemens. NetPro ist eine grafische Benutzeroberfläche zur Vernetzung von Stationen.

Eine Kommunikationsverbindung ermöglicht die programmgesteuerte Kommunikation zwischen zwei Teilnehmern am Industrial Ethernet. Die Kommunikationspartner können hierbei im selben Projekt oder - bei Multiprojekten - in den zugehörigen Teilprojekten verteilt angeordnet sein.


Kommunikationsverbindungen zu Partnern außerhalb eines Projekts werden über das Objekt "In unbekanntem Projekt" oder mittels Stellvertreterobjekten wie "Andere Stationen" oder Siemens "SIMATIC S5 Station" projektiert.

Unter Einsatz von Hantierungsbausteinen wie FB 55 - IP_CONFIG haben Sie die Möglichkeit Kommunikationsverbindungen programmgesteuert einzurichten. Näheres hierzu finden Sie im Handbuch "Operationsliste" zu Ihrer CPU.

Eigenschaften einer Kommunikationsverbindung

Folgende Eigenschaften zeichnen eine Kommunikationsverbindung aus:

- Eine Station führt immer einen aktiven Verbindungsaufbau durch.
- Bidirektionaler Datentransfer (Senden und Empfangen auf einer Verbindung).
- Beide Teilnehmer sind gleichberechtigt, d.h. jeder Teilnehmer kann ereignisabhängig den Sende- bzw. Empfangsvorgang anstoßen.
- Mit Ausnahme der UDP-Verbindung wird bei einer Kommunikationsverbindung die Adresse des Kommunikationspartners über die Projektierung festgelegt. Hierbei ist immer von einer Station der Verbindungsaufbau aktiv durchzuführen.

Voraussetzung

- Siemens SIMATIC Manager Siemens V. 5.2 oder h\u00f6her und SIMATIC NET sind installiert.
- Der CP wurde bei der Hardware-Konfiguration projektiert, in die Hardware-Konfiguration eingetragen und mit dem Ethernet-Subnetz vernetzt.
- Der CP besitzt als Busteilnehmer eine IP-Adresse bzw. für ISO-Transportverbindungen eine MAC-Adresse.

Hinweis!

Alle Stationen außerhalb des aktuellen Projekts müssen mit Stellvertreterobjekten, wie z.B. Siemens "SIMATIC S5" oder "Andere Station" oder mit dem Objekt "In unbekanntem Projekt" projektiert sein.

Sie können aber auch beim Anlegen einer Verbindung den Partnertyp "unspezifiziert" anwählen und die erforderlichen Remote-Parameter im Verbindungsdialog direkt angeben.

Arbeitsumgebung von NetPro

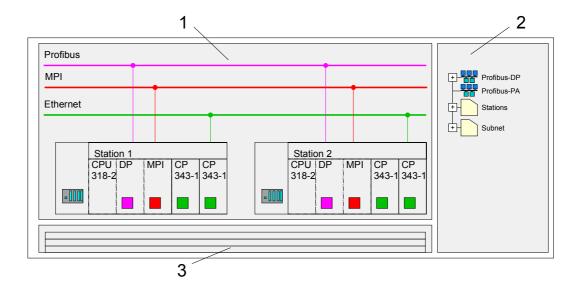
Zur Projektierung von Verbindungen werden fundierte Kenntnisse im Umgang mit NetPro von Siemens vorausgesetzt! Nachfolgend soll lediglich der grundsätzliche Einsatz von NetPro gezeigt werden. Nähre Informationen zu NetPro finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation.

NetPro starten Sie, indem Sie im Siemens SIMATIC Manager auf ein "Netz" klicken oder innerhalb Ihrer CPU auf "Verbindungen".

Die Arbeitsumgebung von NetPro hat folgenden Aufbau:

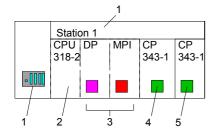
1 Grafische Netzansicht

Hier werden alle Stationen und Netzwerke in einer grafischen Ansicht dargestellt. Durch Anwahl der einzelnen Komponenten können Sie auf die jeweiligen Eigenschaften zugreifen und ändern.


2 Netzobjekte

In diesem Bereich werden alle verfügbaren Netzobjekte in einer Verzeichnisstruktur dargestellt. Durch Ziehen eines gewünschten Objekts in die Netzansicht können Sie weitere Netzobjekte einbinden und im Hardware-Konfigurator öffnen.

3 Verbindungstabelle


In der Verbindungstabelle sind alle Verbindungen tabellarisch aufgelistet. Diese Liste wird nur eingeblendet, wenn Sie die CPU einer verbindungsfähigen Baugruppe angewählt haben.

In dieser Tabelle können Sie mit dem gleichnamigen Befehl neue Verbindungen einfügen.

SPS-Stationen

Für jede SPS-Station und ihre Komponente haben Sie folgende grafische Darstellung. Durch Anwahl der einzelnen Komponenten werden Ihnen im Kontext-Menü verschiedene Funktionen zu Verfügung gestellt:

1 Station

Dies umfasst eine SPS-Station mit Rack, CPU und Kommunikationskomponenten. Über das Kontext-Menü haben Sie die Möglichkeit eine aus den *Netzobjekten* eingefügte Station im Hardware-Konfigurator mit den entsprechenden Komponenten zu projektieren. Nach der Rückkehr in NetPro werden die neu projektierten Komponenten dargestellt.

2 CPU

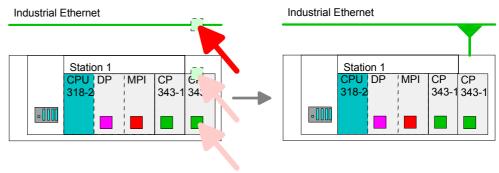
Durch Klick auf die CPU wird die Verbindungstabelle angezeigt. In der Verbindungstabelle sind alle Verbindungen aufgelistet, die für die CPU projektiert sind.

3 Interne Kommunikationskomponenten

Hier sind die Kommunikationskomponenten aufgeführt, die sich in Ihrer CPU befinden. Da die NET-CPU als CPU 318-2 projektiert wird, wird bei den internen Komponenten kein CP angezeigt.

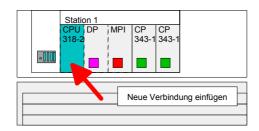
Aus diesem Grund ist der CP, der sich in der NET-CPU befindet, als externer CP hinter den reell gesteckten Modulen zu projektieren. Die CPs werden dann auch in NetPro als externe CPs (4, 5) in der Station eingeblendet.

4 Ethernet-PG/OP-Kanal


In der Hardware-Konfiguration ist der interne Ethernet-PG/OP-Kanal immer als 1. CP zu projektieren. Dieser CP dient ausschließlich der PG/OP-Kommunikation. Produktiv-Verbindungen sind nicht möglich.

5 CP 343

In der Hardware-Konfiguration ist der interne *CP 343* immer als 2. CP nach dem Ethernet-PG/OP-Kanal zu projektieren.


Stationen vernetzen

NetPro bietet Ihnen die Möglichkeit die kommunizierenden Stationen zu vernetzen. Die Vernetzung können Sie über die Eigenschaften in der Hardware-Konfiguration durchführen oder grafisch unter NetPro. Gehen Sie hierzu mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Daraufhin wird Ihr CP über eine Linie mit dem gewünschten Netz verbunden.

Verbindungen projektieren

Zur Projektierung von Verbindungen blenden Sie die Verbindungsliste ein, indem Sie die entsprechende CPU anwählen. Rufen Sie über das Kontext-Menü Neue Verbindung einfügen auf:

Verbindungspartner (Station Gegenseite)

Es öffnet sich ein Dialogfenster in dem Sie den *Verbindungspartner* auswählen und den *Verbindungstyp* einstellen können.

Spezifizierte Verbindungspartner

Jede im Siemens SIMATIC Manager projektierte Station wird in die Liste der Verbindungspartner aufgenommen. Durch Angabe einer IP-Adresse und Subnet-Maske sind diese Stationen eindeutig *spezifiziert*.

Unspezifizierte Verbindungspartner

Hier kann sich der Verbindungspartner im aktuellen Projekt oder in einem unbekannten Projekt befinden. Verbindungs-Aufträge in ein unbekanntes Projekt sind über einen eindeutigen Verbindungs-Namen zu definieren, der für die Projekte in beiden Stationen zu verwenden ist. Aufgrund dieser Zuordnung bleibt die Verbindung selbst unspezifiziert.

Alle Broadcast-Teilnehmer

Ausschließlich bei UDP-Verbindungen können Sie hier an alle erreichbaren Broadcast-Teilnehmer senden. Der Empfang von Nutzdaten ist nicht möglich. Über einen Port und eine Broadcast-Adresse bei Sender und Empfänger werden die Broadcast-Teilnehmer spezifiziert.

Standardmäßig werden Broadcasts, die ausschließlich der Ethernet-Kommunikation dienen, wie z.B. ARP-Requests (Suche MAC <> IP-Adresse), empfangen und entsprechend bearbeitet. Zur Identifikation der Broadcast-Teilnehmer im Netz ist bei der Projektierung einer Broadcast-Verbindung eine gültige Broadcast-Adresse als Partner-IP vorzugeben. Zusätzlich zur Broadcast-Adresse müssen Sie für Sender und Empfänger einen gemeinsamen Port angeben.

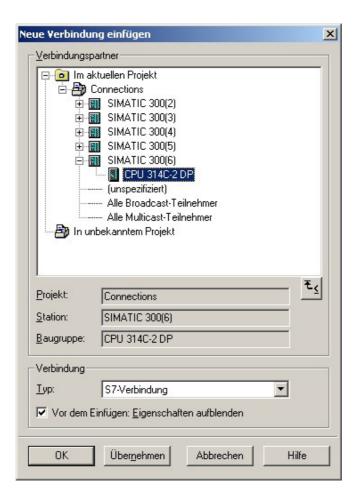
Alle Multicast-Teilnehmer

Durch Anwahl von *Alle Multicast-Teilnehmer* bestimmen Sie, dass UDP-Telegramme an Teilnehmern einer Multicast-Gruppe zu senden bzw. von diesen zu empfangen sind. Im Gegensatz zu Broadcast ist hier der Empfang möglich. Durch Angabe <u>eines</u> Ports und <u>einer</u> Multicast-Gruppe für Sender und Empfänger sind die Multicast-Teilnehmer zu spezifizieren.

Die maximale Anzahl der Multicast-Kreise, die vom CP unterstützt werden, ist identisch mit der maximalen Anzahl an Verbindungen.

Verbindungstypen

Für die Kommunikation stehen Ihnen folgende Verbindungstypen zur Verfügung:


- Siemens S7-Verbindung, Send/Receive-Verbindungen (TCP, ISOon-TCP und ISO-Transport) zur gesicherten Datenübertragung von Datenblöcke zwischen zwei Ethernet-Teilnehmern
- **UDP** zur ungesicherten Datenübertragung von Datenblöcken zwischen zwei Ethernet-Teilnehmer

Eigenschaften-Dialog öffnen

Wählen Sie den Verbindungspartner und den Verbindungstyp und klicken Sie auf [OK].

Sofern aktiviert, öffnet sich ein Eigenschaften-Dialog der entsprechenden Verbindung als Bindeglied zu Ihrem SPS-Anwenderprogramm.

Auf den Folgeseiten sind die relevanten Parameter der verschiedenen Verbindungstypen kurz beschrieben. Mehr Informationen hierzu finden Sie in der Online-Hilfe von Siemens NetPro bzw. von VIPA WinPLC7.

Verbindungen speichern und übersetzen

Nachdem Sie auf diese Weise alle Verbindungen projektiert haben, können Sie Ihr Projekt "Speichern und übersetzen" und NetPro beenden.

Damit die CP-Projektierdaten in den Systemdaten abgelegt werden, müssen Sie in der Hardware-Konfiguration des CP unter *Objekteigenschaften* im Bereich *Optionen* die Option "Projektierungsdaten in der CPU speichern" aktivieren (Standardeinstellung).

Siemens S7-Verbindung

Für Siemens S7-Verbindungen sind für den Datenaustausch die FB/SFB-VIPA-Hantierungsbausteine zu verwenden, deren Gebrauch im Handbuch "Operationsliste" Ihrer CPU näher beschrieben ist.

Bei Siemens S7-Verbindungen werden Kommunikationsverbindungen durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert.

Eine Verbindung wird durch den *lokalen* und *fernen* Verbindungsendpunkt spezifiziert. Bei Siemens S7-Verbindungen müssen die verwendeten TSAPs kreuzweise übereinstimmen.

Folgende Parameter definieren einen Verbindungsendpunkt:

Station A	_			Station B
ferner TSAP	\rightarrow	Siemens	\rightarrow	lokaler TSAP
lokaler TSAP	\leftarrow	S7-Verbindung	\leftarrow	ferner TSAP
ID A				ID B

Kombinationsmöglichkeiten Die nachfolgende Tabelle zeigt die Kombinationsmöglichkeiten bei Siemens S7-Verbindungen unter Einsatz der FB/SFB-VIPA-Hantierungsbausteine. Eine nähere Beschreibung der Hantierungsbausteine finden Sie im Handbuch Operationsliste Ihrer CPU.

Verbindungspartner	Verbindungsaufbau	Verbindung
spezifiziert in NetPro (im aktuellen Projekt)	aktiv/passiv	spezifiziert
unspezifiziert in NetPro	aktiv	spezifiziert
(im aktuellen Projekt)	passiv	unspezifiziert
unspezifiziert in NetPro (in unbekanntem Projekt)	aktiv/passiv	spezifiziert (Verbindungsname in einem anderen Projekt)

Nachfolgend sind alle relevanten Parameter für eine Siemens S7-Verbindung beschrieben:

Lokaler Verbindungsendpunkt Hier können Sie angeben, wie Ihre Verbindung aufgebaut werden soll. Da der Siemens SIMATIC Manager die Kommunikationsmöglichkeiten anhand der Endpunkte identifizieren kann, sind manche Optionen schon vorbelegt und können nicht geändert werden.

Aktiver Verbindungsaufbau Für die Datenübertragung muss eine Verbindung aufgebaut sein. Durch Aktivierung der Option *Aktiver Verbindungsaufbau* übernimmt die lokale Station den Verbindungsaufbau.

Bitte beachten Sie, dass nicht jede Station aktiv eine Verbindung aufbauen kann. In diesem Fall hat diese Aufgabe die Gegenstation zu übernehmen.

Einseitig

Im aktivierten Zustand sind nur einseitige Kommunikationsbausteine wie PUT und GET im Anwenderprogramm der CPU zur Nutzung dieser Verbindung möglich. Hier dient der Verbindungspartner als Server, der weder aktiv senden noch aktiv empfangen kann.

Bausteinparameter

Lokale ID Die ID ist das Bindeglied zu Ihrem SPS-Programm. Die ID muss identisch

sein mit der ID in der Aufrufschnittstelle des FB/SFB-VIPA-Hantierungs-

bausteins.

[Vorgabe] Sobald Sie auf [Vorgabe] klicken, wird die ID auf die vom System

generierte ID zurückgesetzt.

Verbindungsweg

In diesem Teil des Dialogfensters können Sie den Verbindungsweg zwischen der lokalen Station und dem Verbindungspartner einstellen. Abhängig von der Vernetzung der Baugruppen werden Ihnen die möglichen Schnittstellen zur Kommunikation in einer Auswahlliste

aufgeführt.

[Adressdetails] Über diese Schaltfläche gelangen Sie in das Dialogfeld zur Anzeige und

Einstellung der Adressinformationen für den lokalen bzw. den

Verbindungspartner.

TSAP Bei einer Siemens S7-Verbindung wird der TSAP automatisch generiert

aus den Verbindungsressourcen (einseitig/zweiseitig) und Ortsangabe

(Rack/Steckplatz bzw. einer systeminternen ID bei PC-Stationen).

Verbindungsressource Die Verbindungsressource ist Teil des TSAP der lokalen Station bzw. des Partners. Nicht jede Verbindungsressource ist für jeden Verbindungstyp verwendbar. Je nach Verbindungspartner und -Typ wird bei der Projektierung der Wertebereich eingeschränkt bzw. die Verbindungsressource fest

vorgegeben.

Betriebsart

Bei Einsatz von Siemens S7-Verbindungen bestimmen Sie die Betriebsart durch Einsatz der FB/SFB-VIPA-Hantierungsbausteine in Ihrem Anwenderprogramm. Für den Einsatz dieser Bausteine sind immer projektierte Kommunikationsverbindungen auf der aktiven Seite erforderlich. Nähere Informationen zum Gebrauch dieser Bausteine finden Sie im Handbuch "Operationsliste" Ihrer CPU.

Folgende Bausteine können Sie für Siemens S7-Verbindung verwenden:

FB/SFB	Bezeichnung	Beschreibung
FB/SFB 8	USEND	Unkoordiniertes Senden
FB/SFB 9	URCV	Unkoordiniertes Empfangen
FB/SFB 12	BSEND	Blockorientiertes Senden
FB/SFB 13	BRCV	Blockorientiertes Empfangen
FB/SFB 14	GET	Remote CPU lesen
FB/SFB 15	PUT	Remote CPU schreiben
FB 55	IP_CONFIG	Programmierbare Verbindungen

Send/Receive-Verbindungen

Für diese Verbindungen sind für den Datenaustausch auf SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und AG_RECV (FC 6) zu verwenden.

Send/Receive-Verbindungen umfassen folgende Verbindungen:

- TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-on-TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-Transport (SEND-RECEIVE, FETCH-WRITE PASSIV)
- UDP (SEND-RECEIVE)

Hier definieren folgende Parameter einen Verbindungsendpunkt:

ferner Port	\rightarrow	TCP-	\rightarrow	lokaler Port
lokaler Port	\leftarrow	Verbindung	\leftarrow	ferner Port
IP-Adresse A				IP-Adresse B
ferner TSAP	\rightarrow	ISO-on-TCP-	\rightarrow	lokaler TSAP
lokaler TSAP	\leftarrow	Verbindung	\leftarrow	ferner TSAP
IP-Adresse A				IP-Adresse B
ferner TSAP	\rightarrow	ISO-Transport-	\rightarrow	lokaler TSAP
lokaler TSAP	\leftarrow	Verbindung	\leftarrow	ferner TSAP
MAC Adresse A				MAC-Adresse B
ferner Port	\rightarrow	UDP-	\rightarrow	lokaler Port
lokaler Port	\leftarrow	Verbindung	\leftarrow	ferner Port
IP-Adresse A				IP-Adresse B

Kombinationsmöglichkeiten

Die nachfolgende Tabelle zeigt die Kombinationsmöglichkeiten mit den verschiedenen Betriebsarten:

Verbindungspartner	Verbindungstyp	Verbindungsaufbau	Verbindung	Betriebsart	
spezifiziert in NetPro (im aktuellen Projekt)	TCP / ISO-on-TCP / ISO-Transport	aktiv/passiv	spezifiziert	SEND/RECEIVE	
	UDP	-			
unspezifiziert in NetPro (im aktuellen Projekt)	TCP / ISO-on-TCP /	aktiv	spezifiziert	SEND/RECEIVE	
	ISO-Transport	passiv	teilspezifiziert (Port/TSAP)	SEND/RECEIVE FETCH PASSIV	
			unspezifiziert	WRITE PASSIV	
	UDP	-	spezifiziert	SEND/RECEIVE	
unspezifiziert in NetPi (in unbekannten Projekt)	TCP / ISO-on-TCP /	aktiv spezifiziert (Verbindungs-		SEND/RECEIVE	
	ISO-Transport	passiv	name in einem anderen Projekt)	SEND/RECEIVE FETCH PASSIV WRITE PASSIV	
	UDP	-		SEND/RECEIVE	
Alle Broadcast-Teilnehmer	UDP	-	spezifiziert (Port, Broadcast-Adr.)	SEND	
Alle Multicast-Teilnehmer	UDP	-	spezifiziert (Port, Multicast- Gruppe)	SEND/RECEIVE	

Auf den Folgeseiten sind alle relevanten Parameter für die verschiedenen Verbindungstypen beschrieben.

Allgemein

In diesem Register werden die allgemeinen Verbindungsparameter angezeigt, die den lokalen Verbindungsendpunkt identifizieren.

ID

Dieser Eintrag ist identisch mit dem Eintrag in der Verbindungsliste. Sie können diesen Wert jederzeit ändern. Bitte beachten Sie, dass Sie hierbei auch den ID-Parameter Ihrer Aufrufschnittstelle im FC anpassen.

Hinweis!

Wird ein CP durch einen anderen ersetzt, muss dieser mindestens die gleichen Dienste bereitstellen und mindestens den gleichen Versionsstand haben. Nur so ist gewährleistet, dass die über den CP projektierten Verbindungen konsistent erhalten bleiben und genutzt werden können.

Name

Dieses Feld beinhaltet den Namen der Verbindung. Dieser wird vom System generiert und kann jederzeit geändert werden.

Über CP [Wegewahl]

Hier wird dargestellt über welchen lokalen CP die Verbindung aufgebaut werden soll. Mit der Schaltfläche [Wegewahl] können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll. Verwenden Sie für projektierbare Verbindungen nicht den 1. CP der Wegewahl. Als 1. CP finden Sie immer den Ethernet-PG/OP-Kanal, der keine projektierbaren Verbindungen unterstützt.

Aktiver Verbindungsaufbau Im aktivierten Zustand baut die lokale Station aktiv die Verbindung zum Partner auf. Hierbei ist im Register "Adressen" der Verbindungspartner zu spezifizieren. Bei einer unspezifizierten Verbindung erfolgt der Verbindungsaufbau passiv.

Bausteinparameter

Hier werden Ihnen die Parameter *ID* und *LADDR* für Ihr Anwenderprogramm angezeigt. Beides sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 und FC 6 (AG_SEND, AG_RECEIVE) anzugeben sind. Bitte hier immer die VIPA FCs verwenden, welche Sie als Bibliothek von VIPA beziehen können.

Adressen

Im Register Adressen werden die relevanten lokalen und fernen Adressinformationen als Vorschlagswerte angezeigt. Je nach Kommunikationsart können Sie Adressinformationen unspezifiziert lassen.

Port

Ports bzw. Port-Adressen definieren den Zugangspunkt zum Anwenderprogramm innerhalb der Station/CPU. Diese müssen eindeutig sein. Eine Port-Adresse sollte im Bereich 2000...65535 liegen. Ferne und lokale Ports dürfen nur bei einer Verbindung identisch sein.

TSAP

ISO-on-TCP und ISO-Transport unterstützen TSAP-Längen (Transport Service Accesss Point) von 1...16 Byte. Sie können den TSAP im ASCII-oder im hexadezimalen Format eingeben. Die Längenberechnung erfolgt automatisch.

Optionen

Abhängig von der Spezifikation des Verbindungspartners können Sie hier die Betriebsart einstellen bzw. anzeigen lassen.

Betriebsart

SEND/RECEIVE

Die SEND/RECEIVE-Schnittstelle ermöglicht die programmgesteuerte Kommunikation über eine projektierte Verbindung zu beliebigen Fremdstationen. Die Datenübertragung erfolgt hierbei durch Anstoß durch Ihr Anwenderprogramm. Als Schnittstelle dienen Ihnen FC5 und FC6, die Bestandteil der VIPA-Baustein-Bibliothek sind.

Hiermit wird Ihre Steuerung in die Lage versetzt, abhängig von Prozessereignissen Nachrichten zu versenden.

FETCH/WRITE PASSIV

Mit den FETCH/WRITE-Diensten haben Fremdsysteme direkten Zugriff auf Speicherbereiche der CPU. Es handelt sich hierbei um "passive" Kommunikationsverbindungen, die zu projektieren sind. Die Verbindungen werden "aktiv" vom Verbindungspartner (z.B. Siemens-S5) aufgebaut.

FETCH PASSIV (Daten anfordern)

Mit FETCH kann ein Fremdsystem Daten anfordern.

WRITE PASSIV (Daten schreiben)

Hiermit kann ein Fremdsystem in den Datenbereich der CPU schreiben.

Übersicht

Hier werden alle in dieser Station projektierten Verbindungen mit ihren Partnern angezeigt. Die Angaben dienen der Information und können nicht geändert werden.

Hinweis!

Durch entsprechende Verschiebe- bzw. Lösch-Aktivitäten im Siemens SIMATIC Manager können Verbindungen ihre Zuordnung zum CP verlieren. Bei diesen Verbindungen wird in der Übersicht die ID mit einem "!" markiert.

Kommunikationsverbindungen im Anwenderprogramm

Übersicht

Für die Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein SPS-Anwenderprogramm in der CPU erforderlich. Hierbei kommen ausschließlich die VIPA Hantierungsbausteine zum Einsatz, welche Sie als Bibliothek von VIPA beziehen können.

Nähere Informationen zum Einsatz der Bausteine finden Sie im Handbuch "Operationsliste" Ihrer CPU.

Je nach Verbindungstyp stehen Ihnen Bausteine für Siemens S7-Verbindungen und Send/Receive-Verbindungen zur Verfügung.

Nachfolgend ist der Vorgehensweise beim Einsatz dieser 2 Verbindungstypen beschrieben.

Anwenderprogramm bei Siemens S7-Verbinungen

Mit der Siemens S7-Kommunikation können Sie größere Datenmengen zwischen SPS-Systemen auf Basis von Siemens STEP®7 übertragen. Hierbei sind die Stationen über Ethernet zu verbinden.

Unter Einsatz von Remote-Funktionen können Sie mit dem entsprechenden Funktionsbaustein eine CPU mit einer anderen CPU steuern und beispielsweise die CPU in STOP schalten.

Die Kommunikationsverbindungen sind statisch, d.h. sie sind über eine Verbindungstabelle zu projektieren.

Kommunikationsfunktionen

Bei den SPEED7-CPUs von VIPA gibt es folgende 2 Möglichkeiten für den Einsatz der Kommunikationsfunktionen:

- Siemens S7-300-Kommunikationsfunktionen
 Durch Einbindung der Funktionsbausteine FB 8 ... FB 55 von VIPA können Sie auf die Siemens S7-300-Kommunikationsfunktionen zugreifen.
- Siemens S7-400-Kommunikationsfunktionen

Für die Siemens S7-400-Kommunikationsfunktionen verwenden Sie die SFB 8 ... SFB 15, die im Betriebssystem der CPU integriert sind. Hierzu kopieren Sie die Schnittstellenbeschreibung der SFBs aus der Siemens Standard-Bibliothek in das Verzeichnis "Bausteine", generieren für jeden Aufruf einen Instanzen-Datenbaustein und rufen den SFB mit dem zugehörigen Instanzen -Datenbaustein auf.

Projektierung

Voraussetzung für die Siemens S7-Kommunikation ist eine projektierte Verbindungstabelle, in der die Kommunikationsverbindungen definiert werden. Hierzu können Sie beispielsweise WinPLC7 von VIPA oder NetPro von Siemens verwenden. Eine Kommunikationsverbindung ist durch eine Verbindungs-ID für jeden Kommunikationspartner spezifiziert. Die *lokale ID* verwenden Sie für die Parametrierung des FB/SFB der SPS, von der aus die Verbindung betrachtet wird und die *Partner-ID* für die Parametrierung des FB/SFB in der Partner-SPS.

Funktionsbausteine

Folgende Bausteine können Sie für Siemens S7-Verbindung verwenden. Nähere Informationen zum Einsatz der Bausteine finden Sie im Handbuch "Operationsliste" Ihrer CPU.

FB/SFB	Bezeichnung	Beschreibung
FB/SFB 8	USEND	Unkoordiniertes Senden Mit dem FB/SFB 8 USEND können Daten an einen remoten Partner-FB/SFB vom Typ URCV (FB/SFB 9) gesendet werden, wobei darauf zu achten ist, dass der Parameter <i>R_ID</i> bei beiden FB/SFBs identisch ist. Der Sendevorgang wird mit einer positiven Flanke am Steuereingang <i>REQ</i> gestartet und verläuft ohne Koordination mit dem Partner-FB/SFB.
FB/SFB 9	URCV	Unkoordiniertes Empfangen Mit dem FB/SFB 9 URCV können Daten asynchron von einem remoten Partner-FB/SFB vom Typ USEND (FB/SFB 8) empfangen werden, wobei darauf zu achten ist, dass der Parameter <i>R_ID</i> bei beiden FB/SFBs identisch ist. Der Baustein ist empfangsbereit, wenn am Eingang <i>EN_R</i> eine logische 1 anliegt. Mit <i>EN_R</i> =0 kann ein laufender Auftrag abgebrochen werden.
FB/SFB 12	BSEND	Blockorientiertes Senden Mit dem FB/SFB 12 BSEND können Daten an einen remoten Partner-FB/SFB vom Typ BRCV (FB/SFB 13) gesendet werden. Der zu sendende Datenbereich wird segmentiert. Jedes Segment wird einzeln an den Partner gesendet. Das letzte Segment wird vom Partner bereits bei seiner Ankunft quittiert, unabhängig vom zugehörigen Aufruf des FB/SFB BRCV. Aufgrund der Segmentierung können Sie mit einem Sendeauftrag bis zu 65534Byte große Daten übertragen.
FB/SFB 13	BRCV	Blockorientiertes Empfangen Mit dem FB/SFB 13 BRCV können Daten von einem remoten Partner-FB/SFB vom Typ BSEND (FB/SFB 12) empfangen werden, wobei darauf zu achten ist, dass der Parameter <i>R_ID</i> bei beiden FB/SFBs identisch ist. Nach jedem empfangenen Datensegment wird eine Quittung an den Partner-FB/SFB geschickt, und der Parameter <i>LEN</i> aktualisiert.
FB/SFB 14	GET	Remote CPU lesen Mit dem FB/SFB 14 GET können Daten aus einer remoten CPU ausgelesen werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.
FB/SFB 15	PUT	Remote CPU schreiben Mit dem FB/SFB 15 PUT können Daten in eine remote CPU geschrieben werden, wobei sich die CPU im Betriebszustand RUN oder STOP befinden kann.
FB 55	IP_CONFIG	Programmierbare Verbindungen Dieser Baustein ermöglicht programmgesteuert die flexible Übergabe von Datenbausteinen mit Projektdaten an einen CP.

Anwenderprogramm bei Send/Receive-Verbindungen

SEND/RECEIVE-Verbindungen umfassen folgende Verbindungen:

- TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-on-TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)
- ISO-Transport (SEND-RECEIVE, FETCH-WRITE PASSIV)
- UDP (SEND-RECEIVE)

Für die Kommunikation zwischen CPU und CP stehen Ihnen folgende FCs zur Verfügung:

AG SEND (FC 5)

Dieser Baustein übergibt die Nutzdaten aus dem über *SEND* angegebenen Datenbereich an den über *ID* und *LADDR* spezifizierten CP. Als Datenbereich können Sie einen PA-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übertragen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

AG_RECV (FC 6)

Der Baustein übernimmt vom CP die Nutzdaten und legt sie in dem über *RECV* definieren Datenbereich ab. Als Datenbereich können Sie einen PE-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übernommen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

Hinweis!

Bitte beachten Sie, dass Sie in Ihrem Anwenderprogramm für die Kommunikation mit VIPA-CPs ausschließlich die SEND/RECV-FCs von VIPA einsetzen dürfen. Bei Wechsel zu VIPA-CPs in einem schon bestehenden Projekt können die bestehenden AG_SEND/AG_LSEND bzw. AG_RECV/AG_LRECV durch AG_SEND bzw. AG_RECV von VIPA ohne Anpassung ersetzt werden. Da sich der CP automatisch an die Länge der zu übertragenden Daten anpasst ist die L-Variante von SEND bzw. RECV bei VIPA nicht erforderlich.

Statusanzeigen

Der CP bearbeitet Sende- und Empfangsaufträge unabhängig vom CPU-Zyklus und benötigt hierzu eine Übertragungszeit. Die Schnittstelle mit den FC-Bausteinen zum Anwenderprogramm wird hierbei über Quittungen synchronisiert.

Für die Statusauswertung liefern die Kommunikationsbausteine Parameter zurück, die Sie in Ihrem Anwenderprogramm direkt auswerten können.

Diese Statusanzeigen werden bei jedem Baustein-Aufruf aktualisiert.

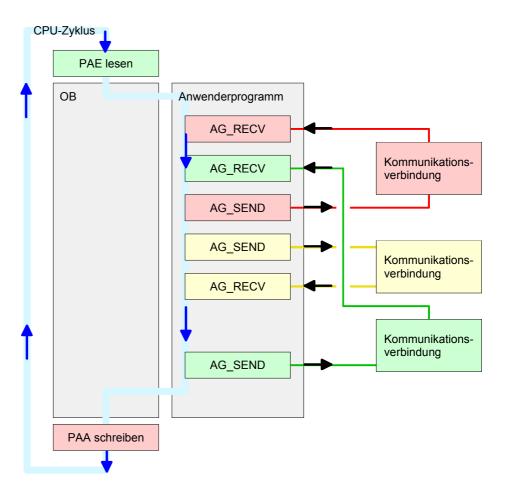
Einsatz unter hoher Kommunikationslast

Verwenden Sie keine zyklischen Aufrufe der Kommunikationsbausteine im OB 1. Dies führt zu einer ständigen Kommunikation zwischen CPU und CP. Programmieren Sie stattdessen Ihre Kommunikationsbausteine in einem Zeit-OB, deren Zykluszeit größer ist als die des OB 1 bzw. ereignisgesteuert.

Aufruf FC schneller als CP-Übertragungszeit

Wird ein Baustein im Anwenderprogramm erneut aufgerufen, bevor die Daten vollständig gesendet oder empfangen wurden, wird an der Schnittstelle der FC-Bausteine wie folgt verfahren:

AG_SEND


Es wird kein Auftrag entgegen genommen, bis die Datenübertragung über die Verbindung vom Partner quittiert wurde. Solange erhalten Sie die Meldung "Auftrag läuft", bis der CP den nächsten Auftrag für die gleiche Verbindung übernehmen kann.

AG_RECV

Der Auftrag wird mit der Meldung "Es liegen noch keine Daten vor" quittiert, solange der CP die Empfangsdaten noch nicht vollständig empfangen hat.

AG_SEND, AG_RECV im Anwenderprogramm

Eine mögliche Ablaufsequenz für die FC-Bausteine zusammen mit den Organisations- und Programmbausteinen im CPU-Zyklus ist nachfolgend dargestellt:

Die FC-Bausteine mit zugehöriger Kommunikationsverbindung sind farblich zusammengefasst. Hier können Sie auch erkennen, dass Ihr Anwenderprogramm aus beliebig vielen Bausteinen bestehen kann. Somit können Sie ereignis- bzw. programmgesteuert an beliebiger Stelle im CPU-Zyklus mit AG SEND Daten senden bzw. mit AG RECV Daten empfangen.

Sie können die Bausteine für **eine** Kommunikationsverbindung auch mehrmals in einem Zyklus aufrufen.

AG_SEND (FC 5) Mit AG_SEND werden die zu sendenden Daten an den CP übertragen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung		
ACT	Input	BOOL	Aktivierung des Senders 0: Aktualisiert die DONE, ERROR und STATUS 1: Der unter SEND mit der Länge LEN abgelegte Datenbereich wird gesendet		
ID	Input	INT	Verbindungsnummer 1 16 (identisch mit ID aus NetPro)		
LADDR	Input	WORD	Logische Basisadresse des CPs (identisch mit LADDR aus NetPro)		
SEND	Input	ANY	Datenbereich		
LEN	Input	INT	Anzahl der Bytes, die aus dem Datenbereich zu übertragen sind		
DONE	Output	BOOL	Zustandsparameter für den Auftrag 0: Auftrag läuft 1: Auftrag fertig ohne Fehler		
ERROR	Output	BOOL	Fehleranzeige 0: Auftrag läuft (bei DONE = 0) 0: Auftrag fertig ohne Fehler (bei DONE = 1) 1: Auftrag fertig mit Fehler		
STATUS	Output	WORD	Statusanzeige, die in Verbindung mit DONE und ERROR zurückgeliefert wird. Näheres hierzu finden Sie in der nachfolgenden Tabelle.		

AG_RECV (FC 6) Mit AG_RECV werden die Daten, die der CP empfangen hat, in die CPU übertragen.

Parameter

Parameter	Deklaration	Datentyp	Beschreibung
ID	Input	INT	Verbindungsnummer 1 16 (identisch mit ID aus NetPro)
LADDR	Input	WORD	Logische Basisadresse des CPs
			(identisch mit LADDR aus NetPro)
RECV	Input	ANY	Datenbereich für die empfangenen Daten
NDR	Output	BOOL	Zustandsparameter für den Auftrag
			0: Auftrag läuft
			1: Auftrag fertig Daten wurden ohne Fehler übernommen
ERROR	Output	BOOL	Fehleranzeige
			0: Auftrag läuft (bei NDR = 0)
			0: Auftrag fertig ohne Fehler (NDR = 1)
			1: Auftrag fertig mit Fehler
STATUS	Output	WORD	Statusanzeige, die in Verbindung mit NDR und ERROR
			zurückgeliefert wird. Näheres hierzu finden Sie in der
			nachfolgenden Tabelle.
LEN	Output	INT	Anzahl der Bytes, die empfangen wurden

DONE, ERROR, STATUS

In der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der CP nach einem SEND-Auftrag bzw. RECV-Auftrag zurückliefern kann.

Ein "-" bedeutet, dass diese Meldung für den entsprechenden SEND- bzw. RECV-Auftrag nicht existiert.

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Bedeutung
1	-	0	0000h	Auftrag fertig ohne Fehler.
-	1	0	0000h	Neue Daten wurden ohne Fehler übernommen.
0	-	0	0000h	Kein Auftrag in Bearbeitung.
-	0	0	8180h	Es liegen noch keine Daten vor.
0	0	0	8181h	Auftrag läuft.
0	0	1	8183h	Für diesen Auftrag gibt es keine CP-Projektierung.
0	-	1	8184h	Es ist ein Systemfehler aufgetreten.
-	0	1	8184h	Es ist ein Systemfehler aufgetreten
				(Quelldatenbereich fehlerhaft).
0	-	1	8185h	Parameter LEN größer als Quell-Bereich SEND
	0	1	8185h	Ziel-Puffer (RECV) ist zu klein.
0	0	1	8186h	Parameter ID ungültig (nicht im Bereich 116)
0	-	1	8302h	Keine Empfangsressourcen bei Ziel-Station,
				Empfänger-Station kann empfangene Daten nicht
				schnell genug verarbeiten bzw. hat keine
				Empfangsressourcen bereitgestellt.
0	0 - 1 8304h		8304h	Die Verbindung ist nicht aufgebaut. Der Sendeauftrag
				sollte erst nach einer Wartezeit >100 ms erneut
				abgesetzt werden.
-	0	1	8304h	Die Verbindung ist nicht aufgebaut. Der
				Empfangsauftrag sollte erst nach einer Wartezeit >
		4	00441	100ms erneut abgesetzt werden.
0	-	1	8311h	Zielstation ist unter der angegebenen Ethernet-Adresse
		4	00401-	nicht erreichbar.
0	-	1	8312h	Ethernet-Fehler im CP
0		1	8F22h	Quell-Bereich ungültig, wenn beispielsweise Bereich im
	0	1	00006	DB nicht vorhanden Parameter LEN < 0.
_	0	ı	8F23h	Quell-Bereich ungültig, wenn beispielsweise Bereich im
		1	0F24b	DB nicht vorhanden Parameter LEN < 0. Bereichsfehler beim Lesen eines Parameters.
0	-	1	8F24h	Bereichsfehler beim Schreiben eines Parameters. Bereichsfehler beim Schreiben eines Parameters.
0	0	1	8F25h 8F28h	Ausrichtungsfehler beim Lesen eines Parameters.
	0	1	8F29h	Ausrichtungsfehler beim Schreiben eines Parameters.
_	0	1	8F30h	Parameter liegt im schreibgeschützten 1. akt. DB.
-	0	1	8F31h	Parameter liegt im schreibgeschützten 2. akt. DB.
0	0	1	8F32h	Parameter enthält zu große DB-Nummer.
0	0	1	8F33h	DB-Nummer Fehler
0	0	1	8F3Ah	Bereich nicht geladen (DB)

Fortsetzung ...

... Fortsetzung

DONE (SEND)	NDR (RECV)	ERROR	STATUS	Bedeutung	
0	(KECV)	1	8F42h	Quittungavorzug heim Legen eines Deremeters aus	
U	0 - 1 054211		004211	Quittungsverzug beim Lesen eines Parameters aus	
	•	4	05401	dem Peripheriebereich.	
-	0	1	8F43h	Quittungsverzug beim Schreiben eines Parameters in	
				den Peripheriebereich.	
0	-	1	8F44h	Adresse des zu lesenden Parameters in der	
				Zugriffsspur gesperrt.	
-	0	1	8F45h	Adresse des zu schreibenden Parameters in der	
				Zugriffsspur gesperrt.	
0	0	1	8F7Fh	Interner Fehler z.B. unzulässige ANY-Referenz z.B.	
				Parameter LEN = 0 .	
0	0	1	8090h	Baugruppe mit dieser Baugruppen-Anfangsadresse	
				nicht vorhanden oder CPU in STOP.	
0	0	1	8091h	Baugruppen-Anfangsadresse nicht auf Doppel-Wort-	
				Raster.	
0	0	1	8092h	In ANY-Referenz ist eine Typangabe ungleich BYTE	
				angegeben.	
-	0	1	80A0h	Negative Quittung beim Lesen von Baugruppe.	
0	0	1	80A4h	reserviert	
0	0	1	80B0h	Baugruppe kennt den Datensatz nicht.	
0	0	1	80B1h	Die Längenangabe (im Parameter LEN) ist falsch.	
0	0	1	80B2h	reserviert	
0	0	1	80C0h	Datensatz kann nicht gelesen werden.	
0	0	1	80C1h	Der angegebene Datensatz ist gerade in Bearbeitung.	
0	0	1	80C2h	Es liegt ein Auftragsstau vor.	
0	0	1	80C3h	Die Betriebsmittel (Speicher) der CPU sind temporär	
				belegt.	
0	0	1	80C4h	h Kommunikationsfehler (tritt temporär auf; daher ist eine	
				Wiederholung im Anwenderprogramm sinnvoll.)	
0	0	1	80D2h	Baugruppen-Anfangsadresse ist falsch.	

Status-Parameter bei Neuanlauf

Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 8180h (bei AG_RECV)
 ERROR = 8181h (bei AG_SEND)

Projekt-Transfer

Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU ..." unter "Projekt transferieren".

NCM-Diagnose - Hilfe zur Fehlersuche

Checkliste zur Fehlersuche

Diese Seite soll Ihnen bei der Fehlersuche dienen. Die nachfolgende Checkliste soll Ihnen helfen, einige typische Problemstellungen und deren mögliche Ursachen zu erkennen:

Frage	Abhilfe bei "nein"
CPU im Run?	DC 24V-Spannungsversorgung überprüfen.
	RUN/STOP-Schalter in Stellung RUN bringen.
	SPS-Programm überprüfen und neu übertragen.
AG_SEND, AG_RECV im Anwender-programm?	Für den Datentransfer zwischen CP und CPU sind diese 2 Bausteine im Anwenderprogramm erforderlich. Auch bei einer passiven Verbindung sind beide Bausteine aufzurufen.
Kann CP verbinden?	Ethernetleitung überprüfen (bei Punkt-zu-Punkt- Verbindung ist ein gekreuztes Ethernetkabel zu verwenden).
	IP-Adresse überprüfen.
Können Daten	Port-Nr. für Lesen und Schreiben überprüfen.
transferiert werden?	Die Quell- und Zielbereiche überprüfen.
	Prüfen, ob der 2. CP in der Wegewahl angewählt ist.
	Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer vergrößern.
Wird der komplette Datenblock bei ISO-on-	Überprüfen Sie den LEN-Parameter bei AG_SEND.
TCP gesendet?	Den mit dem ANY-Pointer angegebenen Empfangs- bzw. Sendepuffer auf die erforderliche Größe einstellen.

Siemens NCM S7-Diagnose

Der CP unterstützt das Siemens NCM-Diagnosetool. Das NCM-Diagnosetool ist Bestandteil des Siemens SIMATIC Managers. Dieses Tool liefert dynamisch Informationen zum Betriebszustand der Kommunikationsfunktionen von online geschalteten CPs.

Folgende Diagnose-Funktionen stehen Ihnen zur Verfügung:

- Betriebszustand an Ethernet ermitteln
- Im CP den Diagnosepuffer auslesen
- Verbindungen diagnostizieren

Auf den Folgeseiten finden Sie eine Kurzbeschreibung der NCM-Diagnose. Näheres zum Funktionsumfang und zum Einsatz des Siemens NCM-Diagnose-Tools finden Sie in der entsprechenden Online-Hilfe bzw. Dokumentation von Siemens.

NCM-Diagnose starten

Für den Aufruf des Diagnose-Tools haben Sie folgende 2 Möglichkeiten:

- Über Windows-START-Menü > SIMATIC ... NCM S7 > Diagnose
- Innerhalb der Projektierung bzw. Hardware-Konfiguration über das Register "Diagnose" im "Eigenschaften"-Dialog mit [Ausführen] die Diagnose aufrufen.

Aufbau

Die Arbeitsumgebung des Diagnose-Tools hat folgenden Aufbau:

Im *Navigationsbereich* auf der linken Seite finden Sie die hierarchisch geordneten Diagnoseobjekte. Je nach CP-Typ und projektierter Verbindungen haben Sie eine angepasste Objektstruktur im Navigationsbereich.

Im *Inhaltsbereich* auf der rechten Seite finden Sie immer das Ergebnis der von Ihnen angewählten Navigationsfunktion im *Navigationsbereich*.

Keine Diagnose ohne Verbindung

Für eine Diagnose ist immer eine Online-Verbindung zu dem zu diagnostizierenden CP erforderlich. Klicken Sie hierzu in der Symbolleiste auf

Es öffnet sich folgendes Dialogfenster:

Stellen Sie unter *Zielstation* folgende Parameter ein:

Anschluss...: Ind. Ethernet TCP/IP

Teilnehmer-Adr.: Tragen Sie hier die IP-Adresse des CPs ein

Baugruppenträger/Steckplatz:

Geben Sie hier den *Baugruppenträger* und *Steckplatz* des *CP 343* an, den Sie an 2. Stelle projektiert haben.

Stellen Sie Ihre PG/PC-Schnittstelle auf TCP/IP...RFC1006 ein. Mit [OK] starten Sie die Online-Diagnose.

Diagnosepuffer auslesen

Der CP besitzt einen Diagnosepuffer. Dieser hat die Architektur eines Ringspeichers. Hier können bis zu 100 Diagnosemeldungen festgehalten werden. In der NCM-Diagnose können Sie über das Diagnoseobjekt *Diagnosepuffer* die CP-Diagnosemeldungen anzeigen und auswerten.

Über einen Doppelklick auf eine Diagnosemeldung hält die NCM-Diagnose weitere Informationen bereit.

Vorgehensweise bei der Diagnose

Sie führen eine Diagnose aus, indem Sie ein Diagnoseobjekt im Navigationsbereich anklicken. Weitere Funktionen stehen Ihnen über das Menü und über die Symbolleiste zur Verfügung.

Hinweis!

Überprüfen Sie immer anhand der Checkliste am Kapitelanfang die Voraussetzungen für eine funktionsfähige Kommunikation.

Für den gezielten Diagnoseeinsatz ist folgende Vorgehensweise zweckmäßig:

- · Diagnose aufrufen.
- Mit Dialog für Online-Verbindung öffnen, Verbindungsparameter eintragen und mit [OK] Online-Verbindung herstellen.
- Den CP identifizieren und über Baugruppenzustand den aktuellen Zustand des CPs ermitteln.
- Verbindungen überprüfen auf Besonderheiten wie:
 - Verbindungszustand
 - Empfangszustand
 - Sendezustand
- Über *Diagnosepuffer* den Diagnosepuffer des CP einsehen und entsprechend auswerten.
- Soweit erforderlich, Projektierung bzw. Programmierung ändern und Diagnose erneut starten.

Kopplung mit Fremdsystemen

Übersicht

Die bei TCP- bzw. ISO-on-TCP unterstütze Betriebsart FETCH/WRITE können Sie prinzipiell für Zugriffe von Fremdgeräten auf den SPS-Systemspeicher verwenden. Damit Sie diesen Zugriff z.B. auch für PC-Anwendungen implementieren können, müssen Sie den Telegramm-Aufbau für die Aufträge kennen. Die spezifischen Header für Anforderungs- und Quittungstelegramme sind standardmäßig 16Byte lang und werden auf den Folgeseiten beschrieben.

ORG-Format

Das Organisationsformat ist die Kurzbeschreibung einer Datenquelle bzw. eines Datenziels in SPS-Umgebung. Die verwendbaren ORG-Formate sind in der nachfolgenden Tabelle aufgelistet.

Die ERW-Kennung ist bei der Adressierung von Datenbausteinen relevant. In diesem Fall wird hier die Datenbaustein-Nummer eingetragen. Die Anfangsadresse und Anzahl adressieren den Speicherbereich und sind im HIGH-/LOW- Format abgelegt (Motorola - Adressformat).

Beschreibung	Тур	Bereich
ORG-Kennung	BYTE	1x
ERW-Kennung	BYTE	1255
Anfangsadresse	HILOWORD	0y
Länge	HILOWORD	1z

In der nachfolgenden Tabelle sind die verwendbaren ORG-Formate aufgelistet. Die "Länge" darf nicht mit -1 (FFFFh) angegeben werden.

ORG-Kennung 01h-04h

CPU-Bereich	DB	MB	EB	AB
ORG-Kennung	01h	02h	03h	04h
Beschreibung	Quell-/Zieldaten aus/in Datenbaustein im Hauptspeicher.	Quell-/Zieldaten aus/in Merkerbereich.	Quell-/Zieldaten aus/in Prozessabbild der Ein- gänge (PAE).	Quell-/Zieldaten aus/in Prozessabbild der Ausgänge (PAA).
ERW-Kennung (DBNR)	DB, aus dem die Quell- daten entnommen werden bzw. in den die Zieldaten transferiert werden.	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	DBB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	MB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	EB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	AB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.
Länge Bedeutung	Länge des Quell-/Ziel- datenblocks in Worten.	Länge des Quell-/Ziel- datenblocks in Bytes.	Länge des Quell-/Ziel- datenblocks in Bytes.	Länge des Quell-/Ziel- datenblocks in Bytes.

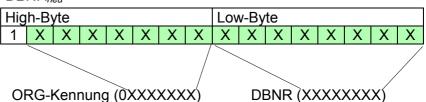
Hinweis!

Informationen zu den erlaubten Bereichen finden Sie im Teil "Hardwarebeschreibung der CPU".

ORG-Kennung 05h-07h

CPU-Bereich	PB	ZB	TB
ORG-Kennung	05h	06h	07h
Beschreibung	Quell-/Zieldaten aus/in Peri- pheriebaugruppen. Bei Quelldaten Eingabe- baugruppen, bei Zieldaten Ausgabebaugruppen.	Quell-/Zieldaten aus/in Zählerzellen.	Quell-/Zieldaten aus/in Zeitenzellen.
ERW-Kennung (DBNR)	irrelevant	irrelevant	irrelevant
Anfangsadresse Bedeutung	PB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	ZB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.	TB-Nr., ab der die Daten entnommen bzw. eingeschrieben werden.
Länge Bedeutung	Länge des Quell-/Zieldaten- blocks in Bytes.	Länge des Quell-/Zieldaten- blocks in Worten (Zählerzelle = 1 Wort).	Länge des Quell-/Zieldaten- blocks in Worten (Zählerzelle = 1 Wort).

Übertragen von Bausteinen mit Nummern >255


ORG-Kennung 81h-FFh

Zur Übertragung von Datenbausteinen im Nummernbereich 256 ... 32768 können Sie die ORG-Kennung 81h-FFh verwenden.

Da die Angabe einer DB-Nr. >255 ein Wort als Länge erfordert, setzt sich DBNR_{neu} aus dem Inhalt von ORG-Kennung und DBNR zusammen.

DBNR_{neu} wird als Wort auf folgende Weise generiert:

DBNR_{neu}

Ist das höchste Bit der ORG-Kennung gesetzt, so ergibt sich das Low-Byte von $\mathsf{DBNR}_\mathsf{neu}$ aus der DBNR und das High-Byte von $\mathsf{DBNR}_\mathsf{neu}$ aus der ORG-Kennung, wobei das höchste Bit der ORG-Kennung eliminiert wird.

Folgende Formel soll dies nochmals verdeutlichen:

DBNR_{neu}=256 x (ORGKennung AND 7Fh) + DBNR

Aufbau SPS-Header

Bei FETCH und WRITE generiert der CP SPS-Header für Anforderungsund Quittungstelegramme. Diese Header sind 16Byte lang und haben folgende Struktur:

WRITE

Anforderungstelegramm Remote Station

Systemkennung	= "S5"	(Wort)
Länge Header	=10h	(Byte)
Kenn. OP-Code	=01h	(Byte)
Länge OP-Code	=03h	(Byte)
OP-Code	=03h	(Byte)
ORG-Block	=03h	(Byte)
Länge ORG-Block	=08h	(Byte)
ORG-Kennung*		(Byte)
ERW-Kennung		(Byte)
Anfangsadresse		(Wort)
Länge		(Wort)
Leerblock	=FFh	(Byte)
Länge Leerblock	=02h	(Byte)
Daten bis zu 64kByt	te (nur we	nn
Fehler-Nr.=0)		

Quittungstelegramm CP

Systemkennung	= "S5"	(Wort)
Länge Header	=10h	(Byte)
Kenn. OP-Code	=01h	(Byte)
Länge OP-Code	=03h	(Byte)
OP-Code	=04h	(Byte)
Quittungsblock	=0Fh	(Byte)
Länge Q-Block	=03h	(Byte)
Fehler-Nr.		(Byte)
Leerblock	=FFh	(Byte)
Länge Leerblock	=07h	(Byte)
5 leere Bytes angehängt		

FETCH

Anforderungstelegramm Remote Station

Systemkennung	="S5"	(Wort)
Länge Header	=10h	(Byte)
Kenn. OP-Code	=01h	(Byte)
Länge OP-Code	=03h	(Byte)
OP-Code	=05h	(Byte)
ORG-Block	=03h	(Byte)
Länge ORG-Block	=08h	(Byte)
ORG-Kennung*		(Byte)
ERW-Kennung		(Byte)
Anfangsadresse		(Wort)
Länge		(Wort)
Leerblock	=FFh	(Byte)
Länge Leerblock	=02h	(Byte)
*\ Nähara Angahan -	.ms Datamb	anaiala fina

Quittungstelegramm CP

Systemkennung	= "S5"	(Wort)	
Länge Header	=10h	(Byte)	
Kenn. OP-Code	=01h	(Byte)	
Länge OP-Code	=03h	(Byte)	
OP-Code	=06h	(Byte)	
Quittungsblock	=0Fh	(Byte)	
Länge Q-Block	=03h	(Byte)	
Fehler-Nr.		(Byte)	
Leerblock	=FFh	(Byte)	
Länge Leerblock	=07h	(Byte)	
5 leere Bytes angehängt			
Daten bis zu 64kByte (nur wenn Fehler-Nr.=0)			

^{*)} Nähere Angaben zum Datenbereich finden Sie unter "ORG-Format" weiter oben.

Hinweis!

Bitte beachten Sie, dass im Gegensatz zu Siemens-S5-Systemen hier bei der Daten-Baustein-Adressierung die Anfangsadresse als Byte-Nummer interpretiert wird.

Meldungen von Fehler-Nr.

Folgende Meldungen können über Fehler-Nr. zurückgeliefert werden:

Fehler-Nr	Meldung
00h	Kein Fehler aufgetreten
01h	Der angegebene Bereich kann nicht gelesen bzw. beschrieben werden

Teil 7 Einsatz PLC-Tool

Überblick

In diesem Teil ist der Einsatz der Bediensoftware *PLC-Tool* von VIPA näher erläutert. PLC-Tool ist Bestandteil des OPC-Server-Pakets und wird bei der Standard-Installation zusammen mit dem OPC-Server installiert. Das OPC-Server-Paket finden Sie auf der beiliegenden CD *SW-ToolDemo*.

Inhalt	Thema		Seite
	Teil 7	Einsatz PLC-Tool	7-1
	Allgemei	n	7-2
	Installation	on und Programmstart	7-3
	Bedienur	ng PLC-Tool	7-4
		PLC-Tool	

Allgemein

Übersicht

PLC-Tool

Das PLC-Tool ist ein Programm zur Bedienung der CPU 51xS.

Zur Kommunikation mit der CPU ist der OPC-Server erforderlich. Dieser ist auf dem PC zu installieren. Mit dem PLC-Tool können Sie auch externe CPUs ansprechen, die über MPI an die serielle Schnittstelle des PCs angebunden werden.

Zur Beobachtung und Bedienung der CPU dient die oben abgebildete Bedienoberfläche, die schematisch der Draufsicht einer CPU nachempfunden ist. Hier wird der Status der auf der CPU befindlichen LEDs, sowie die Stellung des Betriebsartenschalters, dargestellt.

Tray-Icon

Das Programm installiert sich beim Start auch als kleines Symbol (Traylcon) in der Taskleiste von Windows.

Auch das Tray-Icon visualisiert den Zustand der CPU. Hier im Beispiel wird die CPU im Zustand RUN ① angezeigt. Das Programm kann mehrfach gestartet werden, so dass mehrere CPUs gleichzeitig bedient und beobachtet werden können. Für jede Verbindung zu einer CPU vergeben Sie eine eigene MPI-Adresse.

Alle ansonsten im Text genannten Warenzeichen sind Warenzeichen der jeweiligen Inhaber und werden als geschützt anerkannt.

Installation und Programmstart

Systemanforderungen

Für den Einsatz des PLC-Tools auf Ihrem PC gibt es folgende Systemanforderungen:

- PC mit Windows Betriebssystem (Windows 2000 oder h\u00f6her, Windows XP professional oder Windows NT 4.0 Servicepack 6)
- mindestens 32MB Arbeitsspeicher (empfohlen werden 64MB)
- zur Installation ca. 10MB f
 ür OPC-Server und PLC-Tool

Voraussetzung

Für den Einsatz des PLC-Tools ist die Installation des OPC-Servers erforderlich, da hierbei die für das PLC-Tool erforderlichen Treiber auf Ihrem PC installiert werden.

Installation

Da das PLC-Tool Bestandteil des OPC-Server Pakets ist, wird dies bei der Standard-Installation zusammen mit dem OPC-Server installiert.

Sie können aber auch das PLC-Tool einzeln installieren. Wie auch bei der Installation des OPC-Servers wird die Installation des PLC-Tools von einem Setup-Programm unterstützt.

Beenden Sie alle Windows-Programme, bevor Sie das Setup-Programm ausführen.

Legen Sie die CD *SW-ToolDemo* ein. Über die Autostart-Funktion der CD wird eine Übersicht geladen. Von nun an werden Sie durch die Installation geführt.

Programmstart

Das PLC-Tool können Sie wie jede andere PC-Anwendung öffnen.

Hierbei stehen drei Möglichkeiten zur Verfügung:

Startmenü

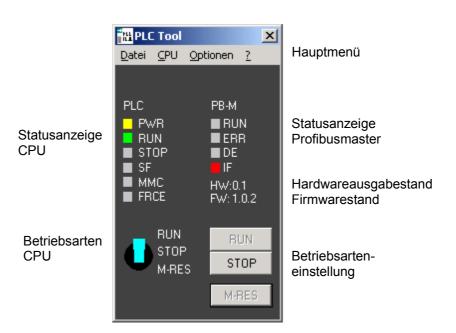
Rufen Sie im Windows START-Menü den Eintrag OPC auf! Klicken Sie dort auf den Eintrag PLC-Tool!

Explorer

Das PLC-Tool können Sie aus dem Windows-Explorer durch Doppelklick auf die Datei *VPLCTool.exe* im Verzeichnis C:\Programme\OPC Server starten

Taskleiste über Tray-Icon

Sobald das PLC-Tool gestartet ist, erscheint dieses als Minisymbol (Traylcon) in der Startleiste.


Durch Doppelklicken auf dieses Tray-Icon können Sie das PLC-Tool öffnen.

Bedienung PLC-Tool

Bediendialog

Bediendialog öffnen

Nach dem Aufrufen des Programms wird der Bediendialog geöffnet.

Hauptmenü

Die Menüleiste des Programms enthält folgende Einträge:

Datei	CPU	Optionen	?(Hilfe)
- Minimieren	- Neue Verbindung	- Sprache	- Inhalt
- Beenden	- Verbindungsdiagnose	- Link erstellen	- Hilfe Index
	- Bausteine übertragen	- Immer oben	- Hilfe verwenden
			- Info

Name des SPS-Systems

Hier erfolgt die Anzeige des Namens Ihres SPS-Systems, den Sie im Dialogfeld **CPU** > *Neue Verbindung* angeben können.

Statusanzeigen

In den Statusanzeigen werden die LED-Zustände der entsprechenden CPU nachgebildet. Der Aufbau der Statusanzeige richtet sich nach der eingesetzten CPU. Solange noch keine Verbindung zur CPU besteht, ist die Statusanzeige deaktiviert. Zusätzlich erfolgt eine Statusanzeige in der Taskleiste Ihres Windows-Systems (Tray-Icon).

Betriebsarten-Schalter

Zur Einstellung der CPU Betriebsart dienen die Schaltflächen, die je nach Betriebsart aktiviert bzw. deaktiviert sind. Zusätzlich wird der physikalische Zustand des Betriebsarten-Schalters auf dem Desktop in Form eines Schalters dargestellt.

Menüstruktur

Datei

Minimieren

Durch Anwendung des Minimier-Befehls wird der Bediendialog geschlossen.

Das Programm bleibt weiter aktiv und wird als Minisymbol (Tray-Icon) auf der Taskleiste abgelegt.

Beenden

Hiermit wird das Programm beendet und das Tray-Icon aus der Taskleiste entfernt.

CPU

Neue Verbindung

Mit diesem Befehl öffnet sich ein Dialogfenster. In diesem Dialogfenster können Sie ihre Verbindung zur CPU spezifizieren.

Verbindungsdiagnose

Bei Anwendung dieses Befehls öffnet sich ein Dialogfenster, das Informationen zur aktuellen Verbindung ausgibt.

Bausteine übertragen

Mit dieser Funktion können wld-Dateien auf die Baugruppe übertragen werden.

Optionen

Sprache

Wird dieser Befehl markiert, öffnet sich ein Untermenü mit einer Liste von verfügbaren Sprachen für die Oberfläche. Die aktive Sprache ist durch einen Haken markiert. Durch Anklicken einer anderen Sprache wird die Sprache der Programmoberfläche gewechselt.

Hinweis!

Sofern Ihr Betriebssystem Sprachen nicht unterstützt, werden diese deaktiviert dargestellt. Die Sprachen sind zwar vorhanden, können aber nicht angewählt werden.

Link erstellen

Über Link erstellen können Sie einen Link für die momentan aktive CPU-Verbindung erstellen. Den Ablageort geben Sie im Dialogfenster an.

Immer Oben

Diese Funktion setzt den Bediendialog immer auf die oberste Ebene des Bildschirmes. Das Fenster ist damit immer sichtbar, auch dann, wenn Sie mit anderen Anwendungen arbeiten. Diese Funktion ist mit einem Haken versehen, wenn sie aktiv ist. Durch erneutes Klicken auf diese Funktion kann sie wieder deaktiviert werden.

? (Hilfe) Inhalt

Dieser Befehl öffnet eine Übersicht mit den Themen der Online-Hilfe.

Hilfe Index

Dieser Befehl gibt die Möglichkeit, sich alle Stichworte zu den Hilfsinformationen alphabetisch anzeigen zu lassen. In der Liste gehen Sie mit den Pfeiltasten auf bzw. ab zu dem gewünschten Wort und markieren es. Der dazugehörige Hilfe-Text wird daraufhin angezeigt.

Hilfe verwenden

Diese Funktion öffnet ein Fenster mit der Standard-Hilfe für Windows. Hier erhalten Sie Informationen zur Verwendung des Hilfesystems.

Info

Über Info erhalten Sie Angaben zum Versionsstand des PLC-Tools und zum Copyright.

Einsatz PLC-Tool

Verbindungsaufbau zur CPU

Unter **CPU** > *Neue Verbindung* öffnet sich das Dialogfenster "Neuen Adapter anlegen".

Stellen Sie für den Zugriff auf die CPU 51xS als *Verbindungstyp* "Ethernet" ein. Es zeigt sich folgendes Dialogfenster:

Name des Adapters

Vergeben Sie hier einen eindeutigen Namen! Er sollte das SPS-System bezeichnen, in dem sich Ihre CPU befindet, wie zum Beispiel "Mischer".

Beschreibung

In diesem Dialogfeld können Sie eine zusätzliche Beschreibung eingeben, die Ihr System näher erläutert. Die hier vergebene Bezeichnung wird als "Tool-Tip" ausgegeben. Vergeben Sie hier keine Beschreibung, so wird der Name des Adapters als "Tool-Tip" ausgegeben.

Lokale IP-Adresse

Sofern sich die CPU 51xS Steckkarte in dem PC befindet, auf dem Sie PLC-Tool installiert haben, geben Sie hier die IP-Adresse des Ethernet-Teils der CPU 51xS an.

Möchten Sie von einem externen PC über Ethernet auf die CPU 51xS zugreifen, so ist hier die IP-Adresse der Netzwerkkarte des externen PCs anzugeben. Zusätzlich müssen Sie auf dem Ziel-PC das Routing zur CPU 51xS Steckkarte einstellen und die Route im externen PC eintragen. Näheres hierzu finden Sie unter "Zugriff extern auf PG/OP-Kanal über Routing".

CPU IP-Adresse

Geben Sie hier die IP-Adresse des CPU-Teils der Steckkarte an.

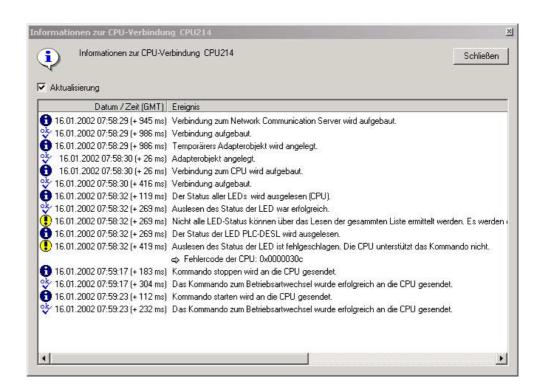
Steckplatz (Rack)

Belassen Sie diesen Parameter auf 2.

Fertig stellen

Sobald Sie die Schaltfläche [Fertig stellen] anklicken, erfolgt ein Verbindungsaufbau zu Ihrer CPU.

Hinweis!


Die Einstellungen, die Sie am Dialogfenster durchführen, existieren nur temporär.

Sobald Sie das PLC-Tool schließen, werden Ihre Eingaben gelöscht. Zur Sicherung Ihrer Angaben sollten Sie über **Optionen** > *Link erstellen* Ihre Daten in Form eines Links speichern.

Verbindungsdiagnose

Dialogfenster

Unter **CPU** > *Verbindungsdiagnose* öffnet sich folgendes Dialogfenster:

In diesem Dialogfenster werden Informationen zur aktuellen Verbindung ausgegeben.

Ereignisprotokoll

Ähnlich dem Ereignisprotokoll von Windows, werden zur Anzeige der Diagnosedaten 3 Ereignisarten verwendet und über ein entsprechendes Symbol angezeigt.

Die Symbole haben folgende Bedeutung:

🖖 Ein Vorgang wurde erfolgreich abgeschlossen.

Ein Vorgang befindet sich in der Bearbeitung.

Während der Bearbeitung ist ein Fehler aufgetreten.

Link erstellen

Dialogfenster

Unter **Optionen** > *Link erstellen* gelangen Sie in ein Dialogfenster zur Sicherung Ihrer Verbindungsdaten, in Form eines Links, auf Ihren PC. Durch den Programmstart über diesen Link startet das PLC-Tool und stellt automatisch die gespeicherte Verbindung her.

Folgende Eingaben für den neu zu erstellenden Link können vorgenommen werden:

Ordner für den Link

Durch Anklicken des Pfeils öffnet sich die Auswahlliste, die eine Reihe von Verzeichnissen aus dem Startmenü, sowie den Desktop bereit hält. Wählen Sie mit der Maus den gewünschten Ablageort für den Link aus! Sie können über den Eintrag *Anderer Ordner* auch einen beliebigen anderen Ordner für den Link angeben. Hierzu öffnet sich ein Standard-Dialog für ein neues Verzeichnis.

Adapter

Über diese Auswahlliste sehen Sie die bereits erstellten Verbindungen. Die Liste entspricht der Liste im Menü **CPU**.

In dieser Auswahlliste finden Sie die bereits erstellten Verbindungen. Sie finden diese Liste auch im Verbindungs-Dialogfenster.

Sprache

Über die Auswahlliste haben Sie die Möglichkeit aus den verfügbaren Sprachen, die im Menü **Optionen** > *Sprache* entsprechend aufgelistet sind, die bevorzugte Sprache für den Link mittels Mausklick zu bestätigen.

Versteckt (als Symbol in der Programmleiste)

Durch Anwählen dieser Option wird erreicht, dass das Programm beim Starten über den Link nicht maximiert, sondern nur als Symbol in der Programmleiste gestartet wird.

Immer Oben

Durch diese Option wird das Programm beim Starten über den Link immer über allen anderen Programmen am Bildschirm liegen.

Hinweis!

Durch Ablage Ihres Links in Autostart (Alle Benutzer) mit der Einstellung "versteckt" wird, sobald Ihr Windows-System gestartet ist, das PLC-Tool gestartet und als Tray Icon auf der Task-Leiste abgelegt.

Betriebszustand ändern

Betriebsarten-Schalter

Der aktuelle Betriebszustand wird durch die Leuchtdioden dargestellt. Die aktuelle Stellung des Betriebsarten-Schalters an der CPU wird durch eine Grafik im PLC-Tool visualisiert.

Der Schalter hat folgende Stellungen:

Die CPU befindet sich im Run Modus.

Die CPU befindet sich im Stop Modus.

M-Res (Urlöschen) - die CPU wird gerade urgelöscht.

Schaltflächen

Neben dem Betriebsarten-Schalter befinden sich drei Schaltflächen, mit denen die CPU in den jeweiligen Betriebszustand versetzt werden kann.

Folgende Schaltflächen können bedient werden:

RUN

Die CPU wird in den Run Modus versetzt.

STOP

Die CPU wird in den Stop Modus versetzt.

M-RES

Die CPU wird urgelöscht.

Hinweis!

Die Schaltflächen werden abhängig vom aktuellen Betriebszustand (Leuchtdioden) und der aktuellen Stellung des Betriebsartenschalters für die Bedienung freigegeben oder gesperrt. Dadurch können Sie zu einem Zeitpunkt nur die Schaltflächen bedienen, die für die augenblickliche Situation sinnvoll sind.

Tray-Icon

Jede Instanz des Programms installiert sich nach dem Start als Tray-Icon in der Windows Programmleiste. Beim Beenden wird das Tray-Icon wieder entfernt.

Das Tray-Icon wird je nach Betriebszustand der CPU folgendes Aussehen haben:

(1)

CPU ist im Run-Modus.

CPU befindet sich im Anlauf (Übergang Stop > Run).

1

CPU ist im Stop-Modus.

(1)

Zustand der CPU ist unbekannt (keine Verbindung).

Tooltip

Wenn Sie mit der Maus über das Tray - Symbol fahren, wird ein kleines Info-Fenster (Tooltip) mit dem Namen des Adapters angezeigt.

Durch Doppelklick auf das Symbol öffnet sich der Dialog.

Klicken mit der rechten Maustaste auf das Symbol, so öffnet sich ein Menü, über das ebenfalls der Dialog aufgerufen werden kann. Außerdem wird über das Menü das Beenden des Programms angeboten.

Statusanzeige

LEDs

Das PLC-Tool besitzt zur Statusanzeige LED-Reihen für die CPU und für den Profibus-Master. Die Verwendung und die jeweiligen Farben finden Sie in den nachfolgenden Tabellen. Für eine detaillierte Beschreibung der Leuchtdioden lesen Sie bitte im Handbuch der jeweiligen CPU nach!

Nicht alle Leuchtdioden, die im Folgenden aufgelistet werden, müssen immer angezeigt werden. Vielmehr zeigt das PLC-Tool nur die Leuchtdioden an, über die es Informationen von der CPU lesen kann.

Status LEDs CPU	Bezeichnung	Farbe	Bedeutung
	PWR	gelb	CPU wird mit Spannung versorgt
	RUN	grün	CPU befindet sich im Zustand RUN. Blinkt die Leuchtdiode, so befindet sich die CPU im Anlauf.
	STOP	rot	CPU befindet sich im Zustand STOP.
	SF	rot	Leuchtet bei System-Fehler
	MMC	rot	Blinkt bei Zugriff auf MMC
	FRCE	gelb	Leuchtet, sobald Variablen fixiert werden.
	DESL	gelb	Zeigt Profibus-Slave-Aktivität an, sofern der integrierte Profibus-Master aktiviert ist.

Status LEDs Profibus-Master	Bezeichnung	Farbe	Bedeutung
	RUN	grün	Der Profibus-Master ist in Betrieb. Blinkt diese Leuchtdiode, so ist der Profibus-Master im Anlauf.
	ERR	rot	Leuchtet bei Ausfall eines Slaves
	DE	gelb	DE (Data exchange) zeigt Kommunikation über Profibus an
	IF	rot	Initialisierungsfehler bei fehlerhafter Parametrierung

Teil 8 WinPLC7

Überblick

In diesem Teil wird die Programmier- und Simulationssoftware WinPLC7 von VIPA vorgestellt. WinPLC7 eignet sich für alle mit Siemens STEP®7 programmierbaren Steuerungen.

Neben der Systemvorstellung und der Installation finden Sie hier die Grundzüge der Programmbedienungen an einem Beispielprojekt erklärt. Nähere Informationen zum Einsatz von WinPLC7 können Sie der Online-Hilfe bzw. der Online-Dokumentation von WinPLC7 entnehmen.

Inhalt	Thema	Seite
	Teil 8 WinPLC7	8- 1
	Systemvorstellung	8-2
	Installation	8-3
	Beispiel zur Proiektierung	8-4

Systemvorstellung

Allgemein

WinPLC7 ist eine Programmier- und Simulationssoftware von VIPA für alle mit Siemens STEP[®]7 programmierbaren Steuerungen.

Hiermit können Sie Anwenderprogramme in FUP, KOP und AWL erstellen. Neben einer komfortablen Programmierumgebung hat WinPLC7 einen Simulator integriert, der ohne Einsatz zusätzlicher Hardware die Simulation Ihres Anwenderprogramms auf dem PC ermöglicht.

Diese "Soft-SPS" wird wie eine reale SPS bedient und bietet gleiches Fehlerverhalten und Diagnosemöglichkeit über Diagnosebuffer, USTACK und BSTACK.

Hinweis!

Ausführliche Informationen und Programmier-Beispiele finden Sie in der Online-Hilfe bzw. in der Online-Dokumentation von WinPLC7.

Alternativen

Sie haben auch die Möglichkeit, anstelle von WinPLC7 von VIPA den SIMATIC Manager von Siemens zu verwenden. Die Vorgehensweisen hierzu finden Sie in diesem Handbuch.

Systemvoraussetzungen

- Pentium mit 233MHz und 64MByte Arbeitsspeicher
- Grafikkarte mit mind. 16Bit Farben wir empfehlen eine Bildschirmauflösung von mind. 1024x768 Pixel.
- Windows 98SE/ME, Windows 2000, Windows XP (Home und Professional), Windows Vista

Bezugsquellen

Eine *Demoversion* können Sie von VIPA beziehen. Mit der *Demoversion* können Sie ohne Freischaltung die CPUs 11x aus dem System 100V von VIPA projektieren.

Zur Projektierung der SPEED7 CPUs ist eine Lizenz für die "Profi"-Version erforderlich. Diese können Sie von VIPA beziehen und online aktivieren.

Für WinPLC7 gibt es folgende Bezugsquellen:

Online

Unter www.vipa.de im Service-Bereich unter *Downloads* finden Sie einen Link auf die aktuellste Demo-Version und auf Updates von WinPLC7.

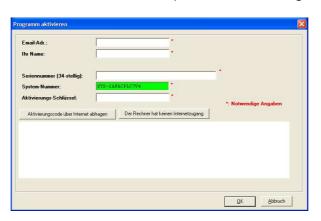
CD

BestNr.	Beschreibung	
SW211C1DD	WinPLC7 Einzellizenz, CD, mit deutscher Beschreibung	
SW211C1ED	WinPLC7 Einzellizenz, CD, mit englischer Beschreibung	
SW900T0LA	ToolDemo VIPA-Software-Sammlung mit kostenfreien bzw. freischaltbaren Demoversionen	

Installation

Voraussetzung

Die Projektierung einer SPEED7-CPU von VIPA unter WinPLC7 ist ausschließlich mit einer aktivierten "Profi"-Version von WinPLC7 möglich.


Installation WinPLC7 Demo

Die Installation und die Registrierung von WinPLC7 erfolgt nach folgender Vorgehensweise:

- Zur Installation von WinPLC7 starten Sie das Setup-Programm von der entsprechenden CD bzw. führen Sie die online bezogene exe-Datei aus.
- Wählen Sie die gewünschte Sprachvariante aus.
- Stimmen Sie dem Softwarelizenzvertrag zu.
- Geben Sie ein Installationsverzeichnis und eine Gruppenzuordnung an und starten Sie den Installationsvorgang.

Aktivierung der "Profi"-Version

- Starten Sie WinPLC7. Es erscheint der "Demo"-Dialog.
- Drücken Sie die Taste <q>. Es erscheint folgender Aktivierungsdialog:

- Füllen Sie folgende Felder aus: *Email-Adr., Ihr Name* und *Seriennummer*. Ihre Seriennummer finden Sie auf einem Aufkleber auf der CD-Hülle von WinPLC7.
- Sofern Ihr PC mit dem Internet verbunden ist, können Sie online über [Aktivierungscode über Internet abfragen] den Aktivierungs-Schlüssel anfordern. Ansonsten klicken Sie auf die Schaltfläche [Der Rechner hat keinen Internetzugang] und folgen Sie den Anweisungen.
- Bei erfolgreicher Registrierung wird der Aktivierungs-Schlüssel im Dialogfenster eingeblendet bzw. Sie erhalten diesen per E-Mail.
- Geben Sie diesen unter Aktivierungs-Schlüssel ein und klicken Sie auf [OK]. WinPLC7 ist jetzt als "Profi"-Version aktiviert.

WinPCAP für Teilnehmersuche über Ethernet installieren

Für die Teilnehmersuche über Ethernet (Erreichbare Teilnehmer) ist der WinPCAP-Treiber zu installieren. Sie finden diesen auf Ihrem PC in Ihrem Installationsverzeichnis unter WinPLC7-V4/WinPcap 4 0.exe.

Führen Sie diese Datei aus und folgen Sie den Anweisungen.

Beispiel zur Projektierung

Aufgabenstellung

Im Beispiel wird ein FC 1 programmiert, welcher vom OB 1 zyklisch aufgerufen wird. Durch Vorgabe von 2 Vergleichswerten (*value1* und *value2*) an den FC können Sie abhängig vom Vergleichsergebnis eine Ausgabe zur SPS aktivieren.

Projektierung für Einsatz im Simulator

Für die Ausgabe im Simulator soll folgendes gelten: wenn *value1* = *value2* aktiviere Ausgang A 124.0 wenn *value1* > *value2* aktiviere Ausgang A 124.1 wenn *value1* < *value2* aktiviere Ausgang A 124.2

Voraussetzung

- Sie besitzen Administratorenrechte für Ihren PC.
- WinPLC7 ist installiert und als "Profi"-Version aktiviert.

Hardware-Konfiguration

Für den ausschließlichen Einsatz im Simulator ist keine Hardware-Konfiguration erforderlich.

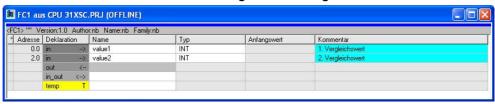
Programmierung von FC 1

Die SPS-Programmierung findet in WinPLC7 statt.

- Starten Sie WinPLC7 ("Profi"-Version)
- Legen Sie mit Datei > Projekt öffnen/erzeugen ein neues Projekt an und öffnen Sie dies.

Baustein erzeugen

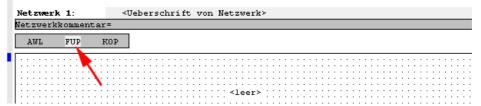
- Wählen Sie **Datei** > Neuen Baustein erzeugen.
- Geben Sie als Baustein "FC1" an und bestätigen Sie Ihre Eingabe mit [OK]. Der Editor für den FC 1 wird aufgerufen.

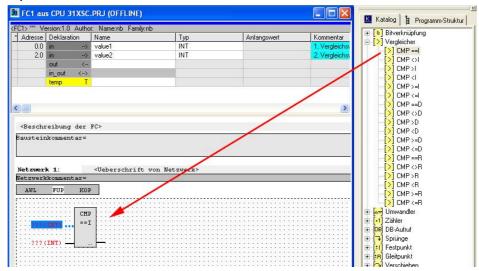

Parameter anlegen

Der obere Teil des Editors enthält die *Parametertabelle*. In diesem Beispiel sollen die 2 Integer-Werte *value1* und *value2* miteinander verglichen werden. Da beide Werte innerhalb der Funktion nur gelesen werden, sind diese als "in" zu deklarieren.

- Gehen Sie auf der Parametertabelle in die Zeile "in --->" und tragen Sie im Feld Name "value1" ein. Drücken Sie die [Return]-Taste. Der Cursor springt zu der Spalte für den Datentyp.
- Sie können jetzt entweder den Datentyp direkt eingeben oder durch Drücken der [Return]-Taste aus einer Liste verfügbarer Datentypen auswählen. Geben Sie als Datentyp INT an und betätigen Sie die [Return]-Taste. Der Cursor springt zu der Spalte für den Kommentar.
- Geben Sie hier "1. Vergleichswert" an und drücken Sie die [Return]-Taste. Eine neue "in -->"-Zeile wird erzeugt und der Cursor in Name gesetzt.
- Verfahren Sie für *value2* auf die gleiche Weise wie unter *value1* beschrieben.
- Speichern Sie den Baustein.

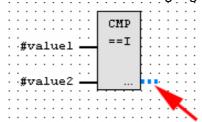
Parametertabelle

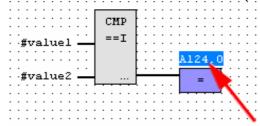

Die Parametertabelle enthält nun folgende Einträge:


Programm eingeben

Wie in der Aufgabenstellung gefordert soll je nach Vergleich von *value1* und *value2* der entsprechende Ausgang aktiviert werden. Für jede Vergleichsoperation ist ein Netzwerk anzulegen.

• Das Programm soll als FUP (Funktionsplan) erzeugt werden. Wählen Sie hierzu durch Klicken auf FUP die FUP-Ansicht.

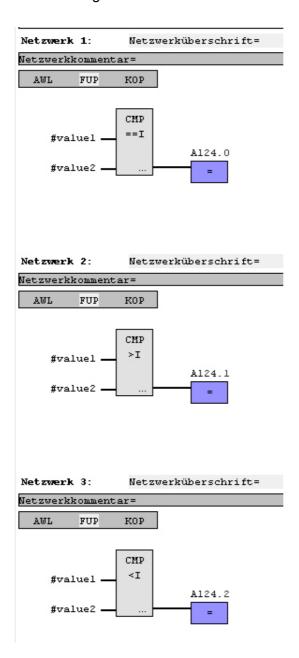

- Klicken Sie in das mit "<leer>" bezeichnete Eingabefeld.
 Die zur Verfügung stehenden Operationen können Sie mit Drag&Drop
 aus dem Katalog in Ihr Projekt ziehen oder durch Doppelklick im Katalog
 in Ihr Projekt übernehmen.
- Öffnen Sie im *Katalog* die Kategorie "Vergleicher" und fügen Sie die Operation "CMP==I" in Ihr Netzwerk ein.


- Klicken Sie auf den linken oberen Eingang und fügen Sie value1 ein. Da es sich hierbei um Bausteinparameter handelt, können Sie durch Eingabe von "#" eine Auswahlliste der Bausteinparameter öffnen.
- Geben Sie "#" ein und betätigen Sie die [Return]-Taste.
- Wählen Sie aus der Auswahlliste den entsprechenden Parameter aus und übernehmen Sie mit der [Return]-Taste.
- Verfahren Sie auf die gleiche Weise mit dem Parameter value2.

Die Zuordnung zu dem korrespondierenden Ausgang, hier A 124.0, erfolgt nach folgender Vorgehensweise:

Klicken Sie auf den Ausgang auf der rechten Seite des Operators.

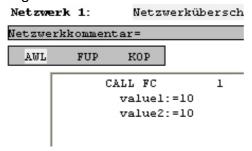
- Öffnen Sie im Katalog die Kategorie "Bitverknüpfung" und wählen Sie die Verknüpfung "--[=]". Das Einfügen von "--=" ist bei WinPLC7 auf der Funktions-Taste [F7] abgelegt.
- Geben Sie durch Klick auf den Operanten den Ausgang A 124.0an.


Hiermit ist Netzwerk1 abgeschlossen.

Neues Netzwerk einfügen

Für die weiteren Vergleiche sind die Operationen "CMP>I" auf A 124.1 und "CMP<I" auf A 124.2 erforderlich. Legen Sie für beide Operationen nach folgender Vorgehensweise ein Netzwerk an:

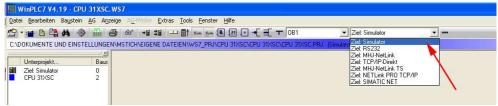
- Bewegen Sie Ihre Maus auf das Editor-Fenster an beliebiger Stelle und betätigen Sie die rechte Maustaste.
- Wählen Sie aus dem Kontextmenü "Einfügen neues Netzwerk". Es öffnet sich ein Dialogfeld zur Vorgabe von Position und Anzahl der Netzwerke.
- Verfahren Sie auf die gleiche Weise wie für "Netzwerk 1" beschrieben.
- Speichern Sie den FC 1 mit Datei > Aktuelles Fenster speichern bzw. mit [Strg]+[S].


FC 1 Nachdem Sie die noch fehlenden Netzwerke ausprogrammiert haben, hat der FC 1 folgenden Aufbau:

Baustein OB 1 erzeugen

Der Aufruf des FC 1 hat aus dem Zyklus-OB OB 1 zu erfolgen.

- Zur Erzeugung des OB 1 wählen Sie entweder Datei > Neuen Baustein erzeugen oder klicken Sie im Projektnavigator auf die Schaltfläche [OB 1 anzeigen] und legen Sie den OB 1 an.
- Wechseln Sie in die AWL-Ansicht.
- Geben Sie "Call FC 1" ein und betätigen Sie die [Return]-Taste. Die FC-Parameter werden automatisch angezeigt und die folgenden Parameter zugeordnet:

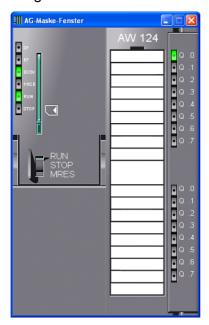


 Speichern Sie den OB 1 mit Datei > Aktuelles Fenster speichern bzw. mit [Strg]+[S].

SPS-Programm in Simulator testen

WinPLC7 bietet Ihnen die Möglichkeit Ihr Projekt in einem Simulator zu testen.

Stellen Sie hierzu "Ziel: Simulator" ein.


- Übertragen Sie die Bausteine in den Simulator mit AG > Alle Bausteine senden.
- Schalten Sie Ihre CPU in RUN, indem Sie auf das Foto "Schalter/Betriebszustand" klicken und wählen Sie im Dialogfeld die Schaltfläche [Neustart] an. Die Anzeige wechselt von STOP nach RUN.
- Zur Anzeige des Prozessabbild gehen Sie auf **Anzeige** > *PAA/PAE-Fenster anzeigen*.
- Doppelklicken Sie auf das Prozessabbild und geben Sie im Register "Zeile2" die Adresse PAB124 an. Bestätigen Sie Ihre Eingabe mit [OK]. Ein mit roter Farbe hinterlegter Wert entspricht einer logischen "1".
- Öffnen Sie den OB 1 über die Schaltfläche [OB 1 anzeigen].
- Ändern Sie den Wert einer Variablen, speichern Sie den OB 1 und übertragen Sie den Baustein in den Simulator. Gleich darauf ändert sich das Prozessabbild gemäß Ihren Vorgaben. Mit Baustein > Beobachten EIN/AUS können Sie den Status Ihrer Bausteine anzeigen.

Visualisierung über AG-Maske

Ein weiterer Bestandteil des Simulators ist die *AG-Maske*. Hier wird grafisch eine CPU dargestellt, die mit digitalen und analogen Peripheriemodulen erweitert werden kann.

Sobald sich die CPU im Simulator in RUN befindet, können Sie hier mit der Maus Eingänge aktivieren und das Verhalten der Ausgänge anzeigen.

- Öffnen Sie die *AG-Maske* über **Anzeige** > *AG-Maske*. Eine CPU wird grafisch dargestellt.
- Durch Betätigung der rechten Maustaste innerhalb der AG-Maske öffnet sich das Kontextmenü. Wählen Sie aus dem Kontextmenü für unser Beispiel "Digitale Ausgabebaugruppe (16Bit) einfügen". Die Baugruppe wird rechts von der CPU dargestellt.
- Öffnen Sie durch Doppelklick auf die Ausgabebaugruppe den Eigenschaften-Dialog und stellen Sie die *Baugruppenadresse* 124 ein.
- Schalten Sie mit der Maus den Betriebsarten-Schalter in RUN. Ihr Programm wird im Simulator ausgeführt und dargestellt.

Projektierung für Einsatz in CPU 51xS

Für die Ausgabe in der CPU 51xS soll folgendes gelten:

wenn *value1* = *value2* aktiviere Merker M 124.0

wenn value1 > value2 aktiviere Merker M 124.1

wenn value1 < value2 aktiviere Merker M 124.2

Voraussetzung

- Sie besitzen Administratorenrechte für Ihren PC.
- WinPLC7 ist installiert und als "Profi"-Version aktiviert.
- Ihre CPU 51xS ist installiert und Sie haben über Ethernet Zugriff auf den PG/OP-Kanal.
- WinPCap für die Teilnehmersuche über Ethernet ist installiert.
- Die Spannungsversorgung der CPU ist eingeschaltet und die CPU befindet sich im STOP-Zustand.

Hardware-Konfiguration

- Starten Sie WinPLC7 ("Profi"-Version).
- Legen Sie mit Datei > Projekt öffnen/erzeugen ein neues Projekt an und öffnen Sie dies.
- Für den Aufruf des Hardware-Konfigurators ist es erforderlich WinPLC7 vom *Simulations*-Modus in den *Offline*-Modus zu schalten. Stellen Sie hierzu zur Kommunikation über Ethernet "Ziel: TCP/IP Direkt" ein.

- Starten Sie mit den Hardware-Konfigurator. Bitte beachten Sie, dass die Auswahl eines Objekts im Hardware-Katalog durch Doppelklick erfolgt.
- Wählen Sie im Register SPS-System selektieren den Parameter "VIPA SPEED7" und klicken Sie auf [Erzeugen]. Eine neue Station wird angelegt.
- Sichern Sie die leere Station. Vor der Sicherung können Sie Ihrer Station einen Namen vergeben und Kommentar hinzufügen.
- Gehen Sie im Hardware-Katalog auf CPU SPEED7 und fügen Sie die entsprechende VIPA-CPU durch Doppelklick in der Station ein.
- Sichern Sie die Hardware-Konfiguration.

Online-Zugriff über Ethernet-PG/OP-Kanal einrichten

- Öffnen Sie die CP343-Eigenschaften, indem Sie im Hardware-Konfigurator auf die CPU auf Steckplatz 2 doppelklicken und [Ethernet CP-Einstellungen (PG/OP-Kanal)] anwählen bzw. in UR3 auf "SPEED7 Ethernet (CP343)" Steckplatz 11 doppelklicken.
- Wählen Sie das Register Allgemeine Parameter an.
- Klicken Sie auf [Eigenschaften Ethernet].
- Wählen Sie das Subnetz "PG_OP_Ethernet".
- Geben Sie eine gültige IP-Adresse und Subnetzmaske an. Sie erhalten diese von Ihrem Systemadministrator.
- Schließen Sie alle Dialogfenster mit [OK].
- Stellen Sie, wenn nicht schon geschehen, "Ziel: Extern TCP/IP direkt" ein.
- Öffnen Sie mit **Online** > *Konfiguration übertragen* den gleichnamigen Dialog.
- Klicken Sie auf [Erreichbare Teilnehmer]. Bitte beachten Sie, dass hierzu WinPCap installiert sein muss!
- Wählen Sie Ihre Netzwerkkarte aus und klicken Sie auf die Schaltfläche [Teilnehmer ermitteln]. Nach einer Wartezeit werden alle erreichbaren Teilnehmer aufgelistet. Hier finden Sie auch Ihre CPU, die mit IP 0.0.0.0 gelistet ist. Zur Kontrolle wird hier auch die MAC-Adresse Ihrer CPU angezeigt.
- Zur Vergabe einer temporären IP-Adresse wählen Sie Ihre CPU an und klicken Sie auf [IP Parameter temporär setzen]. Geben Sie hier die gleichen IP-Parameter an, die Sie in den CPU-Eigenschaften parametriert haben und klicken Sie auf [Parameter schreiben].
- Bestätigen Sie die Meldung, dass die CPU urgelöscht wird. Die IP-Parameter werden an die CPU übertragen und die Liste der erreichbaren Teilnehmer wird aktualisiert.
- Wählen Sie Ihre CPU aus und klicken Sie auf [Übernehmen]. Sie befinden sich nun wieder im Dialog "Konfiguration übertragen".

Hardware-Konfiguration übertragen Wählen Sie Ihre Netzwerkkarte aus und klicken Sie auf [Konfiguration übertragen]. Nach einer kurzen Zeit erhalten Sie die Meldung, dass die Konfiguration übertragen wurde.

Hinweis!

In der Regel erfolgt die Online-Übertragung Ihrer Hardware-Konfiguration aus dem Hardware-Konfigurator.

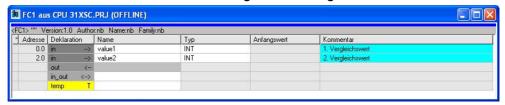
Sie können aber auch mit **Datei** > *Aktive Station im WinPLC-Unterprojekt speichern* Ihre Hardware-Konfiguration als System-Datei in WinPLC7 übertragen und über WinPLC7 an Ihre CPU transferieren.

Hiermit ist die Hardware-Konfiguration abgeschlossen und die CPU immer über die von Ihnen vergebene IP-Adresse auch über WinPLC7 zu erreichen.

Programmierung von FC 1

Die SPS-Programmierung findet in WinPLC7 statt. Schließen Sie den Hardware-Konfigurator und kehren Sie zu Ihrem Projekt in WinPLC7 zurück.

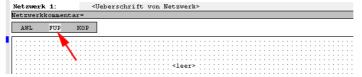
Baustein erzeugen

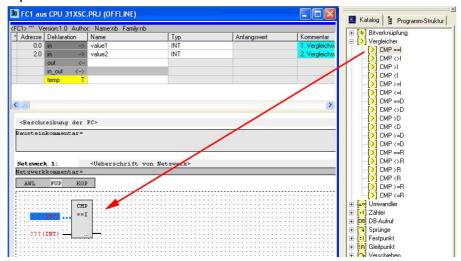

- Wählen Sie **Datei** > Neuen Baustein erzeugen.
- Geben Sie als Baustein "FC1" an und bestätigen Sie Ihre Eingabe mit [OK]. Der Editor für den FC 1 wird aufgerufen.

Parameter anlegen

Der obere Teil des Editors enthält die *Parametertabelle*. In diesem Beispiel sollen die 2 Integer-Werte *value1* und *value2* miteinander verglichen werden. Da beide Werte innerhalb der Funktion nur gelesen werden, sind diese als "in" zu deklarieren.

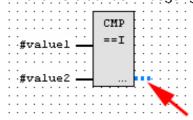
- Gehen Sie auf der Parametertabelle in die Zeile "in -->" und tragen Sie im Feld Name "value1" ein. Drücken Sie die [Return]-Taste. Der Cursor springt zu der Spalte für den Datentyp.
- Sie können jetzt entweder den Datentyp direkt eingeben oder durch Drücken der [Return]-Taste aus einer Liste verfügbarer Datentypen auswählen. Geben Sie als Datentyp INT an und betätigen Sie die [Return]-Taste. Der Cursor springt zu der Spalte für den Kommentar.
- Geben Sie hier "1. Vergleichswert" an und drücken Sie die [Return]-Taste. Eine neue "in -->"-Zeile wird erzeugt und der Cursor in Name gesetzt.
- Verfahren Sie für *value2* auf die gleiche Weise wie unter *value1* beschrieben.
- Speichern Sie den Baustein.


Die Parametertabelle enthält nun folgende Einträge:

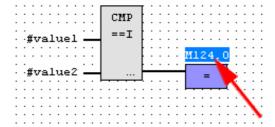

Programm eingeben

Wie in der Aufgabenstellung gefordert soll je nach Vergleich von *value1* und *value2* der entsprechende Merker gesetzt aktiviert werden. Für jede Vergleichsoperation ist ein Netzwerk anzulegen.

• Das Programm soll als FUP (Funktionsplan) erzeugt werden. Wählen Sie hierzu durch Klicken auf FUP die FUP-Ansicht.



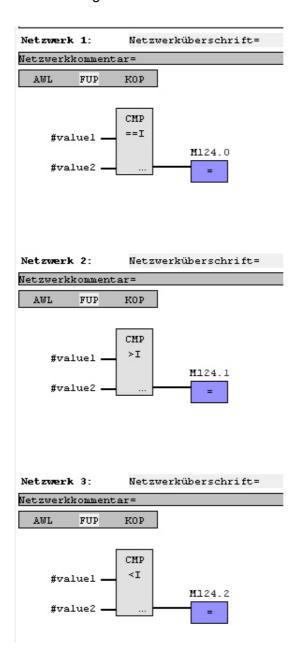
Klicken Sie in das mit "<leer>" bezeichnete Eingabefeld.
 Die zur Verfügung stehenden Operationen können Sie mit Drag&Drop aus dem Katalog in Ihr Projekt ziehen oder durch Doppelklick im Katalog in Ihr Projekt übernehmen.



 Öffnen Sie im Katalog die Kategorie "Vergleicher" und fügen Sie die Operation "CMP==I" in Ihr Netzwerk ein.

- Klicken Sie auf den linken oberen Eingang und fügen Sie *value1* ein. Da es sich hierbei um Bausteinparameter handelt, können Sie durch Eingabe von "#" eine Auswahlliste der Bausteinparameter öffnen.
- Geben Sie "#" ein und betätigen Sie die [Return]-Taste.
- Wählen Sie aus der Auswahlliste den entsprechenden Parameter aus und übernehmen Sie mit der [Return]-Taste.
- Verfahren Sie auf die gleiche Weise mit dem Parameter *value2*. Die Zuordnung zu dem korrespondierenden Merker, hier M 124.0, erfolgt nach folgender Vorgehensweise:
- Klicken Sie auf den Ausgang auf der rechten Seite des Operators.

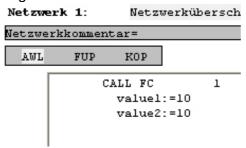
- Öffnen Sie im Katalog die Kategorie "Bitverknüpfung" und wählen Sie die Verknüpfung "--[=]". Das Einfügen von "--=" ist bei WinPLC7 auf der Funktions-Taste [F7] abgelegt.
- Geben Sie durch Klick auf den Operanten den Merker M 124.0 an.


Hiermit ist Netzwerk1 abgeschlossen.

Neues Netzwerk einfügen

Für die weiteren Vergleiche sind die Operationen "CMP>I" auf M 124.1 und "CMP<I" auf M 124.2 erforderlich. Legen Sie für beide Operationen nach folgender Vorgehensweise ein Netzwerk an:

- Bewegen Sie Ihre Maus auf das Editor-Fenster an beliebiger Stelle und betätigen Sie die rechte Maustaste.
- Wählen Sie aus dem Kontextmenü "Einfügen neues Netzwerk". Es öffnet sich ein Dialogfeld zur Vorgabe von Position und Anzahl der Netzwerke.
- Verfahren Sie auf die gleiche Weise wie für "Netzwerk 1" beschrieben.
- Speichern Sie den FC 1 mit Datei > Aktuelles Fenster speichern bzw. mit [Strg]+[S].


Nachdem Sie die noch fehlenden Netzwerke ausprogrammiert haben, hat der FC 1 folgenden Aufbau:

Baustein OB 1 erzeugen

Der Aufruf des FC 1 hat aus dem Zyklus-OB OB 1 zu erfolgen.

- Zur Erzeugung des OB 1 wählen Sie entweder Datei > Neuen Baustein erzeugen oder klicken Sie im Projektnavigator auf die Schaltfläche [OB 1 anzeigen] und legen Sie den OB 1 an.
- Wechseln Sie in die AWL-Ansicht.
- Geben Sie "Call FC 1" ein und betätigen Sie die [Return]-Taste. Die FC-Parameter werden automatisch angezeigt und die folgenden Parameter zugeordnet:

 Speichern Sie den OB 1 mit Datei > Aktuelles Fenster speichern bzw. mit [Strg]+[S].

SPS-Programm in CPU übertragen und ausführen

- Zur Übertragung in Ihre CPU stellen Sie "Ziel: TCP/IP-Direkt" ein.
- Zur Vorgabe der Ethernet-Daten klicken Sie auf [...] und klicken Sie auf [Erreichbare Teilnehmer].
- Wählen Sie Ihre Netzwerkkarte aus und klicken Sie auf [Teilnehmer ermitteln]. Nach einer gewissen Wartezeit werden alle verfügbaren Teilnehmer aufgelistet.
- Wählen Sie Ihre CPU aus, die Sie über die Hardware-Konfiguration mit TCP/IP-Adress-Parametern schon versorgt haben und klicken Sie auf [übernehmen].
- Schließen Sie den "Ethernet-Daten"-Dialog mit [OK].
- Übertragen Sie die Bausteine in Ihre CPU mit **AG** > *Alle Bausteine* senden.
- Schalten Sie Ihre CPU in RUN.
- Öffnen Sie den OB 1 über die Schaltfläche [OB 1 anzeigen].
- Ändern Sie den Wert einer Variablen, speichern Sie den OB 1 und übertragen Sie den Baustein in die CPU. Gleich darauf ändert sich das Ausgabe-Verhalten gemäß Ihren Vorgaben. Mit Baustein > Beobachten EIN/AUS können Sie den Status Ihrer Bausteine anzeigen.

Anhang

A Index

3	Н	
3964R 5-16	H1-Verbindung	6-10
Α	Haltepunkte	3-41
Adress-Klassen 1-5, 3-6	Hardwarebeschreibung	
AG RECV (FC 6)6-34	Host-ID 1-3,	3-5, 6-11
AG_SEND (FC 5)	reservierte1-5, 3	3-6, 6-12
Akku2-9	Hub	6-6
Anwendungsschicht 6-5	1	
ASCII 5-15	Inbetriebnahme	3-4
Aufbau 2-3	Initialisierung	
В	CPU-Komponente	3-10
_	Ethernet-Komponente	
Betriebsart	Installation	
Betriebsartenschalter	IP-Adressvergabe	
Betriebszustände	Treiber	
HALT3-41	Übersicht	
Bitübertragungsschicht	IP-Adresse	6-11
broadcast 6-23	bei Inbetriebnahme	6-11
D	CPU-Komponente	3-24
Darstellungsschicht 6-5	Klassen	
Diagnose 6-37	ISO/OSI Schichtenmodell	6-3
Puffer3-54	ISO-on-TCP-Verbindung6	6-9, 6-27
E	ISO-Transport-Verbindung6-	-10, 6-27
Einsatz	K	
CPU 517S/NET3-1	Know-how-Schutz	3-50
Ethernet6-1, 6-14	Kommunikation	
Profibus-DP-Master 4-1	Ebenen	6-2
PtP-Kommunikation5-1	Ethernet	
Ereignis ID 3-54	Verbindung	
ERW-Kennung 6-40	Anwenderprogramm	
ESD 1-10	Kompatibilität	
Ethernet	Komponenten	
Einsatz6-1	Kopplung	
Hardware-Konfiguration6-18		
Schnelleinsteig6-14	L	
Verbindungen6-20	LEDs	
F	CP 543	
Fehler	Leistungsmerkmale	2-2
Meldungen 6-35	М	
Suche6-37	MAC-Adresse	6-13
Firmware	Inbetriebnahme	6-13
Info über Web-Seite 3-46	MCC	3-49
übertragen3-47	MMC	3-39
Update	-Cmd - Autobefehle	3-52
	Projekttransfer	3-39
G	Diagnose	3-39
Grundlagen 1-1		

Modbus	5-18	Profibus-DP-Master	
Beispiel	5-23	Anlaufverhalten	4-11
Funktionscodes	5-19	DP-Slave anbinden	3-23
Slave-Antwort	5-20	Einsatz	4-1
Telegramm	5-19	als DP-Slave	4-5
Montage		Inbetriebnahme	4-11
MPI-Schnittstelle		Projektierung	
Multicast		Schnittstelle	
	0-20	Synchronisation	
N		Übersicht	
NCM-Diagnose			
Net-ID1-3,	3-5, 6-11	Projekt transferieren	
NetPro	6-21	über MMC	
Adressen	6-28	über PCI Slot	
Bausteinparameter	6-28	über PC-Netzwerkkarte	
Optionen		über RS485	
Schnelleinstieg		Projektierung	3-20
Station		NetPro	6-21
vernetzen		Protokolle	6-7
		Prozeduren	5-16
Verbindungen		PtP-Kommunikation	5-1
Wegewahl		3964R	5-16
Netzwerk		ASCII	
Netzwerkschicht	6-4	Broadcast	
0		Fehlermeldungen 5-8, 5-	
OPC-Server	7-2	Kommunikation	
ORG-Format		Modbus	
Р		Parametrierung	
Parameter		Prinzip Datenübertragung.	
über CPU 318-2DP		Protokolle	
VIPA-spezifisch	3-31	RS485-Schnittstelle	
PG/OP-Kanal	3-14	Schnelleinstieg	
Zugriff extern	3-15	SFCs	
Zugriff intern	3-14	STX/ETX	
pkg-Datei	3-45	USS	5-17
PLC-Tool	7-1	R	
Bediendialog	7-4	Reset	
Betriebszustand		Urlöschen	3_/13
Einsatz		Werkseinstellung	
Installation		RFC1006	
Link erstellen			
Menüstruktur		Routing	
Statusanzeige		Beispiel	3-17
Systemanforderungen		S	
_		Schnelleinstieg	
Verbindungsdiagnose		Ethernet	6-14
Port	6-28	NetPro	
Profibus		PtP-Kommunikation	
Abisolierlängen		Schnittstellen	• =
Aufbaurichtlinien		MPI	2-6
Leitungsabschluss		Profibus-DP-Master	
Stecker		RJ45 CP 543	
Übertragungsmedium			2-1
Übertragungsrate	4-8	RS485	- 4
		PtP	5-1

Schockfestigkeit 1-10
Send/Receive-Verbindung 6-27
Sicherheitshinweise1-2
Sicherungsschicht 6-4
Siemens S7-Verbindung 6-7, 6-25
Sitzungsschicht6-5
Spannungsversorgung2-8, 3-8
Speicher
Erweiterung3-49
Management2-7
SPS-Header 6-42
STX/ETX 5-15
Subnet-ID1-3, 3-5
Subnet-Maske1-4, 3-6, 6-11
Switch 6-6
T
TCP/IP 6-8
TCP-Verbindung6-8, 6-27
Technische Daten 2-10
Testfunktionen3-58
Transportschicht6-4
Tray-lcon7-2, 7-3
Treiber 3-4
TSAP6-13, 6-28
Twisted Pair 6-6

U	
Übersicht	1-9
U	
UDP-Verbindung	6-9, 6-27
Uhr	2-9
Umgebungsbedingungen	1-10
Urlöschen	3-43
USS	5-17
V	
Verbindungs	
Endpunkt	6-25
Тур	6-24
Weg	6-26
W	
Watchdog	3-42
Web-Seite	3-18
Werkseinstellung	3-48
WinPLC7	8-1
wld-Dateien3	-39, 3-50
Z	
Zielsystemfunktionen	3-59
Zykluszeitüberwachung	