VIPA System SLIO

IM | 053-1EC00 | Handbuch

HB300D_IM | RD_053-1EC00 | Rev. 12/48 November 2012

Copyright © VIPA GmbH. All Rights Reserved.

Dieses Dokument enthält geschützte Informationen von VIPA und darf außer in Übereinstimmung mit anwendbaren Vereinbarungen weder offengelegt noch benutzt werden.

Dieses Material ist durch Urheberrechtsgesetze geschützt. Ohne schriftliches Einverständnis von VIPA und dem Besitzer dieses Materials darf dieses Material weder reproduziert, verteilt, noch in keiner Form von keiner Einheit (sowohl VIPA-intern als auch -extern) geändert werden, es sei denn in Übereinstimmung mit anwendbaren Vereinbarungen, Verträgen oder Lizenzen.

Zur Genehmigung von Vervielfältigung oder Verteilung wenden Sie sich bitte an: VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstraße 4, D-91074 Herzogenaurach, Germany Tel.: +49 (91 32) 744 -0 Fax.: +49 9132 744 1864 EMail: info@vipa.de http://www.vipa.com

Hinweis

Es wurden alle Anstrengungen unternommen, um sicherzustellen, dass die in diesem Dokument enthaltenen Informationen zum Zeitpunkt der Veröffentlichung vollständig und richtig sind. Das Recht auf Änderungen der Informationen bleibt jedoch vorbehalten.

Die vorliegende Kundendokumentation beschreibt alle heute bekannten Hardware-Einheiten und Funktionen. Es ist möglich, dass Einheiten beschrieben sind, die beim Kunden nicht vorhanden sind. Der genaue Lieferumfang ist im jeweiligen Kaufvertrag beschrieben.

EG-Konformitätserklärung

Hiermit erklärt VIPA GmbH, dass die Produkte und Systeme mit den grundlegenden Anforderungen und den anderen relevanten Vorschriften übereinstimmen.

Die Übereinstimmung ist durch CE-Zeichen gekennzeichnet.

Informationen zur Konformitätserklärung

Für weitere Informationen zur CE-Kennzeichnung und Konformitätserklärung wenden Sie sich bitte an Ihre Landesvertretung der VIPA GmbH.

Warenzeichen

VIPA, SLIO, System 100V, System 200V, System 300V, System 300S, System 400V, System 500S und Commander Compact sind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH.

SPEED7 ist ein eingetragenes Warenzeichen der profichip GmbH.

SIMATIC, STEP, SINEC, TIA Portal, S7-300 und S7-400 sind eingetragene Warenzeichen der Siemens AG.

Microsoft und Windows sind eingetragene Warenzeichen von Microsoft Inc., USA.

Portable Document Format (PDF) und Postscript sind eingetragene Warenzeichen von Adobe Systems, Inc.

Alle anderen erwähnten Firmennamen und Logos sowie Marken- oder Produktnamen sind Warenzeichen oder eingetragene Warenzeichen ihrer jeweiligen Eigentümer.

Dokument-Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Fehler anzeigen oder inhaltliche Fragen zu diesem Dokument stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefax: +49 9132 744 1204 EMail: documentation@vipa.de

Technischer Support

Wenden Sie sich an Ihre Landesvertretung der VIPA GmbH, wenn Sie Probleme mit dem Produkt haben oder Fragen zum Produkt stellen möchten. Ist eine solche Stelle nicht erreichbar, können Sie VIPA über folgenden Kontakt erreichen:

VIPA GmbH, Ohmstraße 4, 91074 Herzogenaurach, Germany

Telefon: +49 9132 744 1150 (Hotline) EMail: support@vipa.de

Inhaltsverzeichnis

1
2
1-1
1-2
1-3
1-6
1-7
1-10
1-14
1-18
1-19
1-22
2-2
2-3
2-6
3-1
3-1 3-2
 3-1 3-2 3-5
3-1 3-2 3-5 3-6
 3-1 3-2 3-5 3-6 3-11
3-1 3-2 3-5 3-6 3-11 3-12
3-1 3-5 3-6 3-11 3-12 3-13

Über dieses Handbuch

Das Handbuch beschreibt den IM 053-1EC00 EtherCAT-Koppler aus dem System SLIO von VIPA. Hier finden Sie alle Informationen, die für Inbetriebnahme und Betrieb erforderlich sind.

Überblick Teil 1: Grundlagen und Montage

Kernthema dieses Kapitels ist die Vorstellung des System SLIO von VIPA. Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System SLIO erforderlich sind. Neben den Abmessungen sind hier auch die allgemeinen technischen Daten des System SLIO aufgeführt.

Teil 2: Hardwarebeschreibung

Hier wird näher auf die Hardware-Komponenten des IM 053-1EC00 EtherCAT-Koppler eingegangen.

Die Technischen Daten finden Sie am Ende des Kapitels.

Teil 3: Einsatz

Inhalt dieses Kapitels ist der Einsatz des IM 053-1EC00 EtherCAT-Koppler. Nach einer kurzen Einführung erhalten Sie hier alle Informationen zu Aufbau und Projektierung. Die Fehlerbearbeitung rundet das Kapitel ab.

Zielsetzung und Inhalt	Das Handbuch beschreibt den IM 053-1EC00 aus dem System SLIO von VIPA. Beschrieben wird Aufbau, Projektierung und Anwendung.				
	Dieses Handbuch ist Bestandteil des Dokumentationspakets mit der BestNr.: VIPA HB300D_IM und ist gültig für:				
	Produkt	BestNr.	ab Stand: HW	FW	
	IM 053EC	VIPA 053-1EC00	02	1.3.0	
Zielgruppe	Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.				
Aufbau des Handbuchs	Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.				
Orientierung im Dokument	 Als Orientierungshilfe stehen im Handbuch zur Verfügung: Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Übersicht der beschriebenen Themen am Anfang jedes Kapitels 				
Verfügbarkeit	 Das Handbuch ist verfügbar in: gedruckter Form auf Papier in elektronischer Form als PDF-Datei (Adobe Acrobat Reader) 				
Piktogramme Signalwörter	Besonders wichtige T Signalworten ausgezeic	extteile sind mit f hnet:	olgenden Pikto	grammen und	
$\underline{\wedge}$	Gefahr! Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.				
\triangle	Achtung! Bei Nichtbefolgen sind Sachschäden möglich.				
	Hinweis! Zusätzliche Informatione	en und nützliche Tipp	DS		

Sicherheitshinweise

Bestimmungsgemäße Verwendung Das System SLIO ist konstruiert und gefertigt für:

- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

Gefahr!

Das Gerät ist nicht zugelassen für den Einsatz

• in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung Zur Entsorgung des Geräts nationale Vorschriften beachten!

Teil 1 Grundlagen und Montage

ÜberblickKernthema dieses Kapitels ist die Vorstellung des System SLIO von VIPA.
Hier finden Sie alle Informationen, die für den Aufbau und die Verdrahtung
einer Steuerung aus den Komponenten des System SLIO erforderlich sind.
Neben den Abmessungen sind hier auch die allgemeinen technischen
Daten des System SLIO aufgeführt.

Inhalt	Thema	Seite
	Teil 1 Grundlagen und Montage	
	Sicherheitshinweis für den Benutzer	
	Systemvorstellung	
	Abmessungen	
	Montage	
	Demontage und Modultausch	
	Verdrahtung	1-14
	Hilfe zur Fehlersuche - LEDs	
	Aufbaurichtlinien	
	Allgemeine Daten	1-22

Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen.

Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen.

Nur durch konsequente Anwendung von Schutzeinrichtungen und verantwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Verwenden Sie für den Versand immer die Originalverpackung.

Baugruppen

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potenzialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

Achtung!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Systemvorstellung

Übersicht

Das System SLIO ist ein modular aufgebautes Automatisierungssystem für die Montage auf einer 35mm Tragschiene. Mittels der Peripherie-Module in 2-, 4- und 8-Kanalausführung können Sie dieses System passgenau an Ihre Automatisierungsaufgaben adaptieren.

Der Verdrahtungsaufwand ist gering gehalten, da die DC 24V Leistungsversorgung im Rückwandbus integriert ist und defekte Elektronik-Module bei stehender Verdrahtung getauscht werden können.

Durch Einsatz von den farblich abgesetzten Power-Modulen können Sie innerhalb des Systems weitere Potenzialbereiche für die DC 24V Leistungsversorgung definieren, bzw. die Elektronikversorgung um 2A erweitern.

Komponenten

Das System SLIO besteht aus folgenden Komponenten:

- Bus-Koppler
- Peripherie-Module
- Power-Module
- Zubehör

Bus-Koppler

Beim Bus-Koppler sind Bus-Interface und Power-Modul in ein Gehäuse integriert. Das Bus-Interface bietet Anschluss an ein übergeordnetes Bus-System.

Über das integrierte Power-Modul zur Spannungsversorgung werden sowohl das Bus-Interface als auch die Elektronik der angebunden Peripherie-Module versorgt.

Die DC 24V Leistungsversorgung für die angebunden Peripherie-Module erfolgt über einen weiteren Anschluss am Power-Modul.

Durch Montage von bis zu 64 Peripherie-Modulen am Bus-Koppler werden diese elektrisch verbunden, d.h. sie sind am Rückwandbus eingebunden, die Elektronik-Module werden versorgt und jedes Peripherie-Modul ist an die DC 24V Leistungsversorgung angeschlossen. Peripherie-Module

Jedes Peripherie-Modul besteht aus einem *Terminal-* und einem *Elektronik*-Modul.

[1]

- [1] Terminal-Modul
- [2] Elektronik-Modul

Terminal-Modul

Das *Terminal-Modul* bietet die Aufnahme für das Elektronik-Modul, beinhaltet den Rückwandbus mit Spannungsversorgung für die Elektronik, die Anbindung an die DC 24V Leistungsversorgung und den treppenförmigen Klemmblock für die Verdrahtung.

Zusätzlich besitzt das Terminal-Modul ein Verriegelungssystem zur Fixierung auf einer Tragschiene. Mittels dieser Verriegelung können Sie Ihr SLIO-System außerhalb Ihres Schaltschranks aufbauen und später als Gesamtsystem im Schaltschrank montieren.

Über das *Elektronik-Modul*, welches durch einen sicheren Schiebemechanismus mit dem Terminal-Modul verbunden ist, wird die Funktionalität eines SLIO-Peripherie-Moduls definiert.

Im Fehlerfall können Sie das defekte Elektronik-Modul gegen ein funktionsfähiges Modul tauschen. Hierbei bleibt die Verdrahtung bestehen.

Über eine integrierte Werkscodierung der Elektronik-Module können nur die Module gesteckt werden, welche kombiniert werden dürfen.

Auf der Frontseite befinden sich LEDs zur Statusanzeige.

Für die einfache Verdrahtung finden Sie bei jedem Elektronik-Modul auf der Front und an der Seite entsprechende Anschlussbilder.

Die Spannungsversorgung erfolgt im System SLIO über Power-Module. Diese sind entweder im Bus-Koppler integriert oder können zwischen die Peripherie-Module gesteckt werden. Je nach Power-Modul können Sie Potenzialgruppen der DC 24V Leistungsversorgung definieren bzw. die Elektronikversorgung um 2A erweitern.

Zur besseren Erkennung sind die Power-Module farblich von den Peripherie-Modulen abgesetzt.

Power-Module

Zubehör

Schirmschienen-Träger

Der Schirmschienen-Träger dient zur Aufnahme von Schirmschienen (10mm x 3mm) für den Anschluss von Kabelschirmen.

Schirmschienen-Träger, Schirmschiene und Kabelschirmbefestigungen sind nicht im Lieferumfang enthalten, sondern ausschließlich als Zubehör erhältlich.

Der Schirmschienen-Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt.

Bei flacher Tragschiene können Sie zur Adaption die Abstandshalter am Schirmschienen-Träger abbrechen.

Bei jedem Bus-Koppler gehört zum Schutz der Bus-Kontakte eine Bus-Blende zum Lieferumfang. Vor der Montage von SLIO-Modulen ist die Bus-Blende am Bus-Koppler zu entfernen.

Zum Schutz der Bus-Kontakte müssen Sie die Bus-Blende immer am äußersten Modul montieren.

Abmessungen

Maße Bus-Koppler

Maße Peripherie-Modul

Maße Elektronik-Modul

76.5

Maße in mm

Montage

Funktionsprinzip Das Terminal-Modul besitzt einen Verriegelungshebel an der Oberseite. Zur Montage und Demontage ist dieser Hebel nach oben zu drücken, bis er hörbar einrastet.

> Zur Montage stecken Sie das zu montierende Modul an das zuvor gesteckte Modul und schieben Sie das Modul, geführt durch die Führungsleisten an der Ober- und Unterseite, auf die Tragschiene.

> Durch Klappen des Verriegelungshebels nach unten wird das Modul auf der Tragschiene fixiert.

Sie können entweder die Module einzeln auf der Tragschiene montieren oder als Block. Hierbei ist zu beachten, dass jeder Verriegelungshebel geöffnet ist.

Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen. Für die Montage schieben Sie das Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite hörbar am Terminal-Modul einrastet.

Montage Vorgehensweise

Die einzelnen Module werden direkt auf eine Tragschiene montiert. Über die Verbindung mit dem Rückwandbus werden Elektronik- und Leistungsversorgung angebunden.

Sie können bis zu 64 Module stecken. Bitte beachten Sie hierbei, dass der Summenstrom der Elektronikversorgung den Maximalwert von 3A nicht überschreitet. Durch Einsatz des Power-Moduls 007-1AB10 können Sie den Strom für die Elektronikversorgung um jeweils 2A erweitern. Näheres hierzu finden Sie unter "Verdrahtung".

- Montage Tragschiene
- Montieren Sie die Tragschiene! Bitte beachten Sie, dass Sie von der Mitte der Tragschiene nach oben einen Montageabstand von mindestens 80mm und nach unten von 60mm bzw. 80mm bei Verwendung von Schirmschienen-Trägern einhalten.

Montage Kopf-Modul (z.B. Bus-Koppler)

- Beginnen Sie auf der linken Seite mit dem Kopf-Modul (z.B. Bus-• Koppler). Klappen Sie hierzu beide Verriegelungshebel des Kopf-Moduls nach oben, stecken Sie das Kopf-Modul auf die Tragschiene und klappen Sie die Verriegelungshebel wieder nach unten.
- Entfernen Sie vor der Montage der Peripherie-Module die Bus-Blende auf der rechten Seite des Kopf-Moduls, indem Sie diese nach vorn abziehen. Bewahren Sie die Blende für spätere Montage auf.

2

Montage Peripherie-Module • Montieren Sie die gewünschten Peripherie-Module.

- Montage Bus-Blende
- Nachdem Sie Ihr Gesamt-System montiert haben, müssen Sie zum Schutz der Bus-Kontakte die Bus-Blende am äußersten Modul wieder stecken.

Montage Schirmschienenträger

 Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen. Der Träger wird unterhalb des Klemmblocks in das Terminal-Moduls gesteckt, bis dieser einrastet. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.

HB300D - IM - RD_053-1EC00 - Rev. 12/48

Demontage und Modultausch

Vorgehensweise Bei der Demontage und beim Austausch eines Moduls, eines Kopf-Moduls (z.B. Bus-Koppler) oder einer Modulgruppe müssen Sie aus montagetechnischen Gründen immer das rechts daneben befindliche Elektronik-Modul entfernen! Nach der Montage kann es wieder gesteckt werden.

Austausch eines Elektronik-Moduls Zum Austausch eines Elektronik-Moduls können Sie das Elektronik-Modul, nach Betätigung der Entriegelung an der Unterseite, nach vorne abziehen. Für die Montage schieben Sie das Elektronik-Modul in die Führungsschiene, bis dieses an der Unterseite hörbar am Terminal-Modul einrastet.

Austausch eines Moduls

- Entfernen Sie falls vorhanden die Verdrahtung am Modul. Näheres hierzu finden Sie unter "Verdrahtung".
- Betätigen Sie die Entriegelung an der Unterseite des rechts daneben befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.
- Klappen Sie den Verriegelungshebel des zu tauschenden Moduls nach oben.
- Ziehen Sie das Modul nach vorne ab.

- Zur Montage klappen Sie den Verriegelungshebel des zu montierenden Moduls nach oben.
- Stecken Sie das zu montierende Modul in die Lücke zwischen die beiden Module und schieben Sie das Modul, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.
- Klappen Sie den Verriegelungshebel wieder nach unten.
- Stecken Sie wieder das zuvor entnommene Elektronik-Modul.

Austausch eines Kopf-Moduls (z.B. Bus-Koppler) Bus-Interface und Power-Modul des Kopf-Moduls dürfen nicht voneinander getrennt werden! Hier dürfen Sie lediglich das Elektronik-Modul tauschen!

- Entfernen Sie falls vorhanden die Verdrahtung am Kopf-Modul. Näheres hierzu finden Sie unter "Verdrahtung".
- Betätigen Sie die Entriegelung an der Unterseite des rechts neben dem Kopf-Modul befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.
- Klappen Sie alle Verriegelungshebel des zu tauschenden Kopf-Moduls nach oben.
- Ziehen Sie das Kopf-Modul nach vorne ab.

- Zur Montage klappen Sie alle Verriegelungshebel des zu montierenden Kopf-Moduls nach oben.
- Stecken Sie das zu montierende Kopf-Modul an das linke Modul und schieben Sie das Kopf-Modul, geführt durch die Führungsleisten, auf die Tragschiene.
- Klappen Sie alle Verriegelungshebel wieder nach unten.
- Stecken Sie wieder das zuvor entnommene Elektronik-Modul.

Austausch einer Modulgruppe

- Entfernen Sie falls vorhanden die Verdrahtung an der Modulgruppe. Näheres hierzu finden Sie unter "Verdrahtung".
- Betätigen Sie die Entriegelung an der Unterseite des rechts neben der Modulgruppe befindlichen Elektronik-Moduls und ziehen Sie dieses nach vorne ab.
- Klappen Sie alle Verriegelungshebel der zu tauschenden Modulgruppe nach oben.

- Ziehen Sie die Modulgruppe nach vorne ab.

- Zur Montage klappen Sie alle Verriegelungshebel der zu montierenden Modulgruppe nach oben.
- Stecken Sie die zu montierende Modulgruppe in die Lücke zwischen die beiden Module und schieben Sie die Modulgruppe, geführt durch die Führungsleisten auf beiden Seiten, auf die Tragschiene.

- Klappen Sie alle Verriegelungshebel wieder nach unten.
- Stecken Sie wieder das zuvor entnommene Elektronik-Modul.

Verdrahtung

Anschlussklemmen Bei der Verdrahtung werden Anschlussklemmen mit Federklemmtechnik eingesetzt. Die Verdrahtung mit Federklemmtechnik ermöglicht einen schnellen und einfachen Anschluss Ihrer Signal- und Versorgungsleitungen.

Im Gegensatz zur Schraubverbindung ist diese Verbindungsart erschütterungssicher.

Daten

U_{max}: 240V AC / 30V DC I_{max}: 10A Querschnitt: 0,08 ... 1,5mm² (AWG 28 ... 16) Abisolierlänge: 10mm

Verdrahtung Vorgehensweise

- Zum Verdrahten stecken Sie, wie in der Abbildung gezeigt, einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung. Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit der Anschlussklemme verbunden.

Standard-Verdrahtung

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene

Achtung!

Da die Leistungsversorgung keine interne Absicherung besitzt, ist diese extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z!

Hinweis!

Die Elektronikversorgung ist intern gegen zu hohe Spannung durch eine Sicherung geschützt.

Die Sicherung befindet sich innerhalb des Power-Moduls. Wenn die Sicherung ausgelöst hat, muss das Elektronik-Modul getauscht werden!

Absicherung

- Die Leistungsversorgung ist extern mit einer Sicherung entsprechend dem Maximalstrom abzusichern, d.h. max. 10A mit einer 10A-Sicherung (flink) bzw. einem Leitungsschutzschalter 10A Charakteristik Z.
- Es wird empfohlen die Elektronikversorgung für Bus-Koppler und I/O-Ebene extern mit einer 2A-Sicherung (flink) bzw. einem Leitungsschutzschalter 2A Charakteristik Z abzusichern.
- Die Elektronikversorgung für die I/O-Ebene des Power-Moduls 007-1AB10 sollte ebenfalls extern mit einer 1A-Sicherung (flink) bzw. einem Leitungsschutzschalter 1A Charakteristik Z abgesichert werden.

Zustand der Elektronikversorgung über LEDs

Nach PowerON des System SLIO leuchtet an jedem Modul die RUN- bzw. MF-LED, sofern der Summenstrom für die Elektronikversorgung 3A nicht übersteigt. Ist der Summenstrom größer als 3A, werden die LEDs nicht mehr angesteuert. Hier müssen Sie zwischen Ihre Peripherie-Module das Power-Modul mit der Best.-Nr. 007-1AB10 platzieren. Näheres hierzu finden Sie auf der Folgeseite.

Das Power-Modul mit der Best.-Nr. 007-1AB00 setzen Sie ein, wenn die Einsatz von 10A für die Leistungsversorgung nicht mehr ausreichen. Sie haben so auch **Power-Modulen** die Möglichkeit, Potenzialgruppen zu bilden.

> Das Power-Modul mit der Best.-Nr. 007-1AB10 setzen Sie ein, wenn die 3A für die Elektronikversorgung am Rückwandbus nicht mehr ausreichen. Zusätzlich erhalten Sie eine neue Potenzialgruppe für die DC 24V Leistungsversorgung mit max. 4A.

> Durch Stecken des Power-Moduls 007-1AB10 können am nachfolgenden Rückwandbus Module gesteckt werden mit einem maximalen Summenstrom von 2A. Danach ist wieder ein Power-Modul zu stecken.

> Zur Sicherstellung der Spannungsversorgung dürfen die Power-Module beliebig gemischt eingesetzt werden.

007-1AB10

Power-Modul

007-1AB00

- (1) DC 24V für Leistungsversorgung I/O-Ebene (max. 10A)
- (2) DC 24V für Elektronikversorgung Bus-Koppler und I/O-Ebene
- (3) DC 24V für Leistungsversorgung I/O-Ebene (max. 4A)
- (4) DC 24V für Elektronikversorgung I/O-Ebene

007-1AB10

Schirm auflegen Zur Schirmauflage ist die Montage von Schirmschienen-Trägern erforderlich.

Der Schirmschienen-Träger (als Zubehör erhältlich) dient zur Aufnahme der Schirmschiene für den Anschluss von Kabelschirmen.

Der Träger wird unterhalb des Klemmblocks in das Terminal-Modul gesteckt, bis dieser einrastet. Bei flacher Tragschiene können Sie zur Adaption den Abstandshalter am Schirmschienen-Träger abbrechen.

Nach der Montage der Schirmschienen-Träger mit der Schirmschiene können Sie die Kabel mit dem entsprechend abisolierten Kabelschirm auflegen und über die Schirmanschlussklemme mit der Schirmschiene verbinden.

[4] Kabelschirm

Hilfe zur Fehlersuche - LEDs

Allgemein

Jedes Modul besitzt auf der Frontseite die LEDs RUN und MF. Mittels dieser LEDs können Sie Fehler in Ihrem System bzw. fehlerhafte Module ermitteln.

In den nachfolgenden Abbildungen werden blinkende LEDs mit \doteqdot gekennzeichnet.

Summenstrom der Elektronik-Versorgung überschritten

Verhalten: Nach dem Einschalten bleibt an jedem Modul die RUN-LED aus und es leuchtet sporadisch die MF-LED.

Ursache: Der maximale Strom für die Elektronikversorgung ist überschritten.

Abhilfe: Platzieren Sie immer, sobald der Summenstrom für die Elektronikversorgung den maximalen Strom übersteigt, das Power-Modul

007-1AB10. Näheres hierzu finden Sie weiter oben unter "Verdrahtung".

Konfigurationsfehler

Verhalten: Nach dem Einschalten blinkt an einem Modul bzw. an mehreren Modulen die MF-LED. Die RUN-LED bleibt ausgeschaltet.

Ursache: An dieser Stelle ist ein Modul gesteckt, welches nicht dem aktuell konfigurierten Modul entspricht.

Abhilfe: Stimmen Sie Konfiguration und Hardware-Aufbau aufeinander ab.

Modul-Ausfall

Verhalten: Nach dem Einschalten blinken alle RUN-LEDs bis zum fehlerhaften Modul. Bei allen nachfolgenden Modulen leuchtet die MF LED und die RUN-LED ist aus.

Ursache: Das Modul rechts der blinkenden Module ist defekt. *Abhilfe:* Ersetzen Sie das defekte Modul.

Aufbaurichtlinien

Allgemeines Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau des System SLIO. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV), sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Was bedeutet
 Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.
 Alle System SLIO Komponenten sind für den Einsatz in Industrie-umgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

Mögliche	Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden
Störeinwirkungen	in Ihre Steuerung einkoppeln:

- Elektromagnetische Felder (HF-Einkopplung)
- Magnetische Felder mit energietechnischer Frequenz
- E/A-Signalleitungen
- Bus-System
- Stromversorgung
- Schutzleiter

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung

Grundregeln zur Sicherstellung der EMV Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen (Details siehe unten).
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Vermeiden Sie bei der Beleuchtung von Schränken Leuchtstofflampen.
- Schaffen Sie ein einheitliches Bezugspotenzial und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit dem System SLIO sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von
LeitungenElektrische, magnetische oder elektromagnetische Störfelder werden durch
eine Schirmung geschwächt; man spricht hier von einer Dämpfung.
Über die mit dem Gehäuse leitend verbundene Schirmschiene werden

Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:

- die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann
- Analogsignale (einige mV bzw. µA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergeh
 äuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiter-schiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zum System SLIO Modul weiter, legen Sie ihn dort jedoch **nicht** erneut auf!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Abhilfe: Potenzialausgleichsleitung.

Allgemeine Daten

Konformität und Approbation		
Konformität		
CE	2006/95/EG	Niederspannungsrichtlinie
	2004/108/EG	EMV-Richtlinie
Approbation		
UL	UL 508	Zulassung für USA und Kanada
Sonstiges		
RoHS	-	Produkte bleifrei

Personenschutz und Geräteschutz			
Schutzart	-	IP20	
Potenzialtrennung			
Zum Feldbus	-	Galvanisch entkoppelt	
Zur Prozessebene	-	Galvanisch entkoppelt	
Isolationsfestigkeit	EN 61131-2	-	
Isolationsspannung gegen Bezugserde			
Eingänge / Ausgänge	-	AC / DC 50V, bei Prüfspannung AC 500V	
Schutzmaßnahmen	-	gegen Kurzschluss	

Umgebungsbedingungen gemäß EN 61131-2			
Klimatisch			
Lagerung /Transport	EN 60068-2-14	-25+70°C	
Betrieb			
Horizontaler Einbau	EN 61131-2	0+60°C	
Vertikaler Einbau	EN 61131-2	0+60°C	
Luftfeuchtigkeit	EN 60068-2-30	RH1 (ohne Betauung, relative Feuchte 10 95%)	
Verschmutzung	EN 61131-2	Verschmutzungsgrad 2	
Mechanisch			
Schwingung	EN 60068-2-6	1g, 9Hz 150Hz	
Schock	EN 60068-2-27	15g, 11ms	

Montagebedingungen			
Einbauort	-	Im Schaltschrank	
Einbaulage	-	Horizontal und vertikal	

EMV	Norm		Bemerkungen
Störaussendung	EN 61000-6-4		Class A (Industriebereich)
Störfestigkeit	EN 61000-6-2		Industriebereich
Zone B			
		EN 61000-4-2	ESD
			8kV bei Luftentladung (Schärfegrad 3),
			4kV bei Kontaktentladung (Schärfegrad 2)
		EN 61000-4-3	HF-Einstrahlung (Gehäuse)
			80MHz 1000MHz, 10V/m, 80% AM (1kHz)
			1,4GHz 2,0GHz, 3V/m, 80% AM (1kHz)
			2GHz 2,7GHz, 1V/m, 80% AM (1kHz)
		EN 61000-4-6	HF-Leitungsgeführt
			150kHz 80MHz, 10V, 80% AM (1kHz)
		EN 61000-4-4	Burst, Schärfegrad 3
		EN 61000-4-5	Surge, Installationsklasse 3 *)

*) Aufgrund der energiereichen Einzelimpulse ist bei Surge eine angemessene externe Beschaltung mit Blitzschutzelementen wie z.B. Blitzstromableitern und Überspannungsableitern erforderlich.

Teil 2 Hardwarebeschreibung

ÜberblickHier wird näher auf die Hardware-Komponenten des IM 053-1EC00
EtherCAT-Koppler eingegangen.
Die Technischen Daten finden Sie am Ende des Kapitels.

Leistungsmerkmale

Eigenschaften Der EtherCAT-Koppler IM 053EC ermöglicht die einfache Anbindung von dezentralen Peripheriemodulen an EtherCAT. EtherCAT bietet Echtzeit-Ethernet-Technologie auf E/A-Ebene.

- EtherCAT-Koppler für maximal 64 Peripherie-Module
- Ethernet-basierendes Feldbussystem mit hoher Echtzeitfähigkeit
- Unterstützung des CANopen Applikationsprofils CoE (CANopen over Ethernet)
- Online-Projektierung über das Master-System
- Umfangreiche Diagnosefunktionen
- RJ45-Buchse 100BaseTX
- Netzwerk-LEDs für Link/Activity und Error
- Status-LEDs für RUN und Error
- Distributed Clock und Station Alias werden aktuell nicht unterstützt

Bestelldaten	Тур	Bestellnummer	Beschreibung
	IM 053EC	VIPA 053-1EC00	EtherCAT-Koppler für SLIO

Aufbau

053-1EC00

- [1] Verriegelungshebel Terminal-Modul
- [2] Beschriftungsstreifen Bus-Interface
- [3] LED-Statusanzeige Bus-Interface
- [4] Beschriftungsstreifen Power-Modul
- [5] LED-Statusanzeige Power-Modul
- [6] Rückwandbus
- [7] DC 24V Leistungsversorgung
- [8] Power-Modul
- [9] EtherCAT RJ45 Bus-Interface "IN"
- [10] EtherCAT RJ45 Bus-Interface "OUT"
- [11] Entriegelung Power-Modul
- [12] Bus-Interface
- [13] Anschlussklemme

Statusanzeige Bus-Interface

PW — SF —	
RUN — L/A1 — IF1 — L/A2 — IF2 —	

LED	Farbe	Beschreibung		
PW	grün	•	Bus-Interface wird mit Spannung versorgt	
SF	rot	☆	1 Flash pro s: Bei Statuswechsel aufgrund eines Fehlers z.B. beim Ziehen eines Moduls 2 Flash pro s: Bei EtherCAT-Timeout (Watchdog) z.B. Ausfall des EtherCAT-Masters Blinken mit 2Hz: Bei Konfigurationsfehler	
RUN	grün	0	Bus-Koppler im Initialisierungs-Zustand	
		•	Bus-Koppler im Operational-Zustand	
		¢	Blinken mit 2Hz: Bus-Koppler im Pre- Operational-Zustand 1 Flash pro s: Bus-Koppler im Safe- Operational-Zustand	
L/A1	grün	0	Keine Kommunikation zum Vorgänger	
		•	Vorhergehender EtherCAT-Teilnehmer ist angeschlossen	
IF1	rot	•	Interner Fehler in der Kommunikation mit dem vorhergehenden Teilnehmer	
L/A2	grün	0	Keine Kommunikation zum Nachfolger	
		•	Nachfolgender EtherCAT-Teilnehmer ist angeschlossen	
IF2	rot	•	Interner Fehler in der Kommunikation mit dem nachfolgenden Teilnehmer	

an: • aus: • blinkend: \Leftrightarrow

Statusanzeige Power-Modul

LED	Farbe	Bes	Beschreibung		
PWR IO	grün	•	Leistungsversorgung OK		
PF IO *	rot	•	Sicherung Leistungsversorgung defekt (Power fail)		
PWR	grün	•	Elektronikversorgung OK		
PF	rot	٠	Sicherung Elektronikversorgung defekt		
an: •					

*) Diese LED gibt es ausschließlich beim Power-Modul mit Hardware-Ausgabestand 1. Informationen zum Ausgabestand finden Sie unterhalb des Beschriftungsstreifens.

Anschlussklemme

Für Drähte mit einem Querschnitt von 0,08mm² bis 1,5mm².

Pos.	Funktion	Тур	Beschreibung	
1			nicht belegt	
2	DC 24V	E	DC 24V für Leistungsversorgung	
3	0V	E	GND für Leistungsversorgung	
4	Sys DC 24V	E	DC 24V für Elektronikversorgung	
5		nicht belegt		
6	DC 24V	E	DC 24V für Leistungsversorgung	
7	0V	E	GND für Leistungsversorgung	
8	Sys 0V	E	GND für Elektronikversorgung	

E: Eingang

EtherCAT RJ45 **Bus-Interface**

87654321

Mit der oberen RJ45-Buchse "IN", gleichbedeutend mit Port 0, wird der EtherCAT-Koppler in das EtherCAT-Netzwerk eingebunden.

Die untere RJ45-Buchse "OUT", gleichbedeutend mit Port 1, dient zum Anschluss weiterer EtherCAT-Geräte im gleichen Strang.

Die Buchsen haben folgende Belegung:

8-polige	RJ45-Buchse:
----------	--------------

10 e g e						
Pin	Signal					
1	Transmit +					
2	Transmit -					
3	Receive +					
4	-					
5	-					
6	Receive -					
7	-					
8	-					

Topologie

EtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen Standard-CAT5-Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu 100m zwischen 2 Teilnehmern möglich.

In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen. Der Einsatz von Hubs ist nicht möglich.

Ein EtherCAT-Netz besteht immer aus einem Master und einer beliebigen Anzahl an EtherCAT-Slaves (Koppler). Jeder EtherCAT-Slave besitzt eine RJ45-Buchse "IN" und "OUT". Das ankommende EtherCAT-Kabel aus Richtung des Masters ist in die mit "IN" bezeichnete Buchse zu stecken. Die mit "OUT" bezeichnete Buchse ist mit dem nachfolgenden Teilnehmer zu verbinden. Beim jeweiligen letzten Teilnehmer bleibt die "OUT"-Buchse frei.

Technische Daten

Artikelnummer	053-1EC00		
Bezeichnung	IM 053EC		
Modulkennung	-		
Technische Daten Stromversorgung			
Versorgungsspannung (Nennwert)	DC 24 V		
Versorgungsspannung (zulässiger Bereich)	DC 20 4 28 8 V		
Verpolschutz	✓		
Stromaufnahme (im Leerlauf)	95 mA		
Stromaufnahme (Nennwert)	0.95 A		
Einschaltstrom	39A		
124	0.14 A ² s		
max. Stromabgabe am Rückwandbus	3 A		
max. Stromabgabe Lastversorgung	10 A		
Verlustleistung	3 W		
Status Alarm Diagnosen			
Statusanzeige	ia		
Alarma	ja ja parametrierbar		
Riozossalarm	ja, parametriorbar		
Diagnoscolorm	ja, parametriorbar		
Diagnosofunktion	ja, parametriorbar		
Diagnossinformation suclessor			
Wortungsonzoigo			
Sammalfablaranzaiga			
Kapolfoblaranzaiga			
Aucheu	keine		
	4		
Baugruppentrager max.	1		
Baugruppen je Baugruppentrager	64		
Anzahi Digitaibaugruppen, max.	64		
Anzani Analogbaugruppen, max.	64		
Kommunikation	Etter OAT		
Feldbus Dhuailt			
Priysik			
Anschluss	2 X RJ45		
ropologie	Linienstruktur mit Abzweigen		
Detenzialgetrepet			
	◆		
	00000		
	-		
Ubertragungsgeschwindigkeit, min.			
Obertragungsgeschwindigkeit, max.			
Adressbereich Eingange, max.	4 KB		
Adressbereich Ausgange, max.	4 KB		
Anzani TXPDOs, max.	-		
Anzani RXPDOS, max.	-		
Genause			
Material	PPE / PPE GF10		
Befestigung	Profilschiene 35mm		
Abmessungen (BxHxT)	48,5 x 109 x 76,5 mm		
Gewicht	155 g		
Umgebungsbedingungen			
Betriebstemperatur	0 °C bis 60 °C		
Lagertemperatur	-25 °C bis 70 °C		
Zertifizierungen			
Zertifizierung nach UL508	ia		

Teil 3 Einsatz

Überblick Inhalt dieses Kapitels ist der Einsatz des IM 053-1EC00 EtherCAT-Koppler. Nach einer kurzen Einführung erhalten Sie hier alle Informationen zu Aufbau und Projektierung. Die Fehlerbearbeitung rundet das Kapitel ab.

nhalt

Thema		Seite
Teil 3	Einsatz	
Grund	lagen	
EtherC	CAT Zustandsmaschine	
Zugriff	auf das System SLIO	
Datent	ransfer über PDO und SDO	
Variab	les PDO-Mapping über SDO	
Objekt	-Verzeichnis	
Fehler	bearbeitung	

Grundlagen

Allgemeines Feldbusse haben sich seit vielen Jahren in der Automatisierungstechnik etabliert. Da einerseits die Forderung nach immer höheren Geschwindigkeiten besteht, andererseits bei dieser Technologie die technischen Grenzen bereits erreicht wurden, musste nach neuen Lösungen gesucht werden.

Das aus der Bürowelt bekannte Ethernet ist mit seinen heute überall verfügbaren 100MBit/s sehr schnell. Durch die dort verwendete Art der Verkabelung und den Regeln bei den Zugriffsrechten ist dieses Ethernet nicht echtzeitfähig. Dieser Effekt wurde mit EtherCAT[®] beseitigt.

EtherCAT[®] Für EtherCAT[®] gilt: EtherCAT[®] is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

EtherCAT bedeutet **Ether**net for **C**ontroller and **A**utomation **T**echology. Es wurde ursprünglich von der Firma Beckhoff Automation GmbH entwickelt und wird nun von der EtherCAT Technology Group (ETG) unterstützt und weiterentwickelt. Die ETG ist die weltgrößte internationale Anwender- und Herstellervereinigung für Industrial Ethernet mit rund 1450 Mitgliedsfirmen (Stand Oktober 2010).

EtherCAT ist ein offenes Ethernet-basierendes Feldbus-System, das in der IEC genormt wird.

EtherCAT erfüllt als offenes Feldbus-System das Anwenderprofil für den Bereich industrieller Echtzeitsysteme.

Im Gegensatz zur klassischen Ethernet-Kommunikation erfolgt bei EtherCAT der Datenaustausch der I/O-Daten bei 100MBit/s im Vollduplex-Betrieb, während das Telegramm die Koppler durchläuft. Da auf diese Weise ein Telegramm in Sende- und in Empfangsrichtung die Daten vieler Teilnehmer erreicht, besitzt EtherCAT eine Nutzdatenrate von über 90%.

Das für Prozessdaten optimierte EtherCAT-Protokoll wird direkt im Ethernet-Telegramm transportiert. Dieses wiederum kann aus mehreren Untertelegrammen bestehen, die jeweils einen Speicherbereich des Prozessabbilds bedienen.

Übertragungs-
mediumEtherCAT verwendet als Übertragungsmedium Ethernet. Es kommen
Standard-CAT5-Kabel zum Einsatz. Hierbei sind Leitungslängen von bis zu
100m zwischen 2 Teilnehmern möglich.

In einem EtherCAT-Netzwerk dürfen nur EtherCAT-Komponenten verwendet werden. Für die Realisierung von Topologien abweichend von der Linienstruktur sind entsprechende EtherCAT-Komponenten erforderlich, welche dies unterstützen. Der Einsatz von Hubs ist nicht möglich.

Kommunikationsprinzip Bei EtherCAT sendet der Master ein Telegramm an den ersten Teilnehmer. Dieser entnimmt aus dem laufenden Datenstrom die für ihn bestimmten Daten, fügt seine Antwortdaten in das Telegramm ein und sendet das Telegramm weiter zum nächsten Teilnehmer. Dieser verfährt auf die gleiche Weise mit dem Telegramm. Ist das Telegramm beim letzten Teilnehmer angekommen, stellt dieser fest, dass kein weiterer Teilnehmer angeschlossen ist und sendet das

Telegramm zurück an den Master. Hierbei wird das Telegramm über das andere Adernpaar durch alle Teilnehmer zum Master gesendet (Vollduplex). Durch die Steckreihenfolge und die Nutzung der Vollduplex-Technologie stellt EtherCAT einen logischen Ring dar.

CoE

CoE steht für **C**ANopen **o**ver **E**therCAT. Jeder intelligente EtherCAT-Koppler (mit Mikrocontroller) unterstützt das CoE-Interface.

Mit CANopen haben Sie eine einheitliche Anwenderschnittstelle, die einen vereinfachten Systemaufbau mit unterschiedlichsten Geräten ermöglicht. Mit CoE können Sie komfortabel auf alle Geräteparameter zugreifen und gleichzeitig Daten einlesen und ausgeben. Echtzeitdaten lesen Sie über PDOs und die Parametrierung führen Sie über SDOs aus. Weiter stehen Ihnen Emergency-Objekte zur Verfügung.

CRC: Checksum

Komponenten Die Komponenten des CoE-Interface sind nachfolgend aufgeführt:

EtherCAT StateÜber die EtherCAT State Machine wird der Zustand des EtherCAT-
Kopplers gesteuert.

- Objektverzeichnis Im Objektverzeichnis werden alle Parameter-, Diagnose-, Prozess- oder sonstige Daten aufgeführt, die über EtherCAT gelesen oder beschrieben werden können. Über den SDO-Informations-Dienst können Sie auf das Objektverzeichnis zugreifen. Zusätzlich liegt das Objektverzeichnis in der Gerätebeschreibungsdatei ab.
- Prozessdaten Der EtherCAT Data Link Layer ist für die schnelle Übertragung von Prozessdaten optimiert. Hier wird festgelegt, wie die Prozessdaten des Gerätes den EtherCAT-Prozessdaten zugeordnet sind und wie die Applikation auf dem Gerät zum EtherCAT-Zyklus synchronisiert ist. Die Zuordnung der Prozessdaten (Mapping) erfolgt über die PDO-Mappingund die SyncManager-PDO-Assign-Objekte. Diese beschreiben, welche Objekte aus dem Objektverzeichnis als Prozessdaten mit EtherCAT übertragen werden. Über die SyncManager-Communication-Objekte wird festgelegt, mit welcher Zykluszeit die zugehörigen Prozessdaten über EtherCAT übertragen werden und in welcher Form sie für die Übertragung synchronisiert werden.
- Emergencies Über Emergencies können Diagnosen, Prozessereignisse und Fehler beim Zustandswechsel der State Machine übertragen werden. Statusmeldungen dagegen, die den aktuellen Zustand des Gerätes anzeigen, sollten direkt mit den Prozessdaten übertragen werden.
- ESI-DateienVon VIPA erhalten Sie für den EtherCAT-Koppler ESI-Dateien. Diese
Dateien befinden sich entweder auf dem beiliegenden Datenträger oder im
Download-Bereich von www.vipa.de. Installieren Sie die ESI-Dateien in
Ihrem Projektiertool. Nähere Hinweise zur Installation der ESI-Dateien
finden Sie im Handbuch zu Ihrem Projektiertool.
Zur Konfiguration in Ihrem Projektiertool befinden sich in den ESI-Dateien
alle System SLIO Module in Form von XML-Daten.

EtherCAT Zustandsmaschine

Zustände

In jedem EtherCAT-Koppler ist eine Zustandsmaschine implementiert. Für jeden Zustand ist definiert, welche Kommunikationsdienste über EtherCAT aktiv sind. Die State Machine wird vom EtherCAT-Master gesteuert.

						Init				
	1	•	(IP)↓	(PI) ↑		1	• (B) ↓	(BI) ↑
				Pre-C	Operati	ional	(SI)		Boo (opt	otstrap tional)
(0	I)		1	• ((PS) ↓ ((SP) ∱		_		
		(OF	>)		Safe	-Opera	tional			
				((SO)↓	(OS) ∮	_			
	Operational									

- IP: Starte Mailbox-Kommunikation
- PI: Stoppe Mailbox-Kommunikation
- PS: Starte Input Update
- SP: Stoppe Input Update
- SO: Starte Output Update
- OS: Stoppe Output Update
- OP: Stoppe Input Update, stoppe Output Update
- SI: Stoppe Input Update, stoppe Mailbox-Kommunikation
- OI: Stoppe Output Update, stoppe Input Update, Stoppe Mailbox-Kommunikation
- IB: Starte Mailbox für Firmwareupdate im Bootstrap-Mode
- BI: Neustart/Stoppe Mailbox

Init

Nach dem Einschalten befindet sich der EtherCAT-Koppler im Zustand Init. Dort ist weder Mailbox- noch Prozessdatenkommunikation möglich. Der EtherCAT-Master initialisiert die SyncManager-Kanäle 0 und 1 für die Mailbox-Kommunikation.

Pre-Operational
(Pre-Op)Beim Übergang von Init nach Pre-Op prüft der EtherCAT-Koppler, ob die
Mailbox korrekt initialisiert wurde.

Im Zustand *Pre-Op* ist Mailbox-Kommunikation aber keine Prozessdaten-Kommunikation möglich. Der EtherCAT-Master initialisiert die SyncManager-Kanäle für Prozessdaten (ab SyncManager-Kanal 2), die FMMU-Kanäle und das PDO-Mapping bzw. das SyncManager-PDO-Assignment. Weiterhin werden in diesem Zustand die Einstellungen für die Prozessdatenübertragung sowie modulspezifische Parameter übertragen, die von den Defaulteinstellungen abweichen.

- Safe-Operational (Safe-Op) Beim Übergang von *Pre-Op* nach *Safe-Op* prüft der EtherCAT-Koppler, ob die SyncManager-Kanäle für die Prozessdatenkommunikation korrekt sind. Bevor er den Zustandswechsel quittiert, kopiert der EtherCAT-Koppler aktuelle Inputdaten in die entsprechenden DP-RAM-Bereiche des EtherCAT-Koppler-Controllers. Im Zustand *Safe-Op* ist Mailbox- und Prozessdaten-Kommunikation möglich. Hierbei werden die Inputdaten zyklisch aktualisiert aber die Ausgänge sind deaktiviert.
- **Operational (Op)** Im Zustand *Op* kopiert der EtherCAT-Koppler die Ausgangsdaten des Masters auf seine Ausgänge. Es ist Prozessdaten- und Mailbox-Kommunikation möglich.
- **Bootstrap optional (Boot)**Im Zustand *Boot* kann ein Update der EtherCAT-Koppler-Firmware vorgenommen werden. Dieser Zustand ist nur über *Init* zu erreichen. Im Zustand *Boot* ist Mailbox-Kommunikation über das Protokoll *File-Access over EtherCAT* (FoE) möglich, aber keine andere Mailbox-Kommunikation und keine Prozessdaten-Kommunikation.

Zugriff auf das System SLIO

Übersicht Nachfolgend wird der Zugriff unter EtherCAT auf folgende Bereiche des System SLIO gezeigt:

- E/A-Bereich
- Parameterdaten
- Diagnosedaten

Angaben zur Belegung der Bereiche finden Sie in der Beschreibung zu dem entsprechenden System SLIO Modul.

	Hinweis! Bitte beachten Sie, dass die System SLIO Power- und Klemmen-Module keine Typ-Kennung besitzen. Diese können vom EtherCAT-Koppler nicht erkannt werden und werden somit bei der Auflistung bzw. Zuordnung der Steckplätze nicht berücksichtigt. Im Weiteren werden die Steckplätze innerhalb von EtherCAT als <i>EtherCAT-Slot</i> bezeichnet. Die Zählung beginnt immer bei 0.
ESI-Dateien	Von VIPA erhalten Sie für den EtherCAT-Koppler ESI-Dateien. Diese Dateien befinden sich entweder auf dem beiliegenden Datenträger oder im Download-Bereich von www.vipa.de. Installieren Sie die ESI-Dateien in Ihrem Projektiertool. Nähere Hinweise zur Installation der ESI-Dateien finden Sie im Handbuch zu Ihrem Projektiertool. Zur Konfiguration in Ihrem Projektiertool befinden sich in den ESI-Dateien alle System SLIO Module in Form von XML-Daten. Eine Projektierung sollte immer unter Einsatz der ESI-Dateien erfolgen.
Zugriff auf den E/A-Bereich	Über folgende Objekte können Sie auf den E/A-Bereich zugreifen: PDO SDO
Zugriff über PDO	Sobald der EtherCAT-Koppler in den Zustand <i>Safe-Operational</i> übergeht, können Eingabe-Daten gelesen werden. Im Zustand <i>Operational</i> können Sie dann auch Ausgabe-Daten schreiben. Informationen zur Prozessdatenübertragung mittels PDO finden Sie im Handbuch zu Ihrem EtherCAT-Master. Zusätzlich werden die Ein-/Ausgabe-Daten auf SDO-Objekte gemappt.

Zugriff über SDO Mittels SDO-Zugriff können Sie lesend auf Ein- und Ausgabedaten des Objektverzeichnisses zugreifen. Die nachfolgende Abbildung zeigt, wie die Ein-/Ausgabedaten auf die SDO-Objekte gemappt werden:

	IM 053 EC	SM 021 DI 2x DC24V	SM 022 DO 4x DC24V	SM 031 AI 2x 12Bit	CM 001	FM 050 1x32Bit	SM 021 DI 4x DC24V
		l data	I data	l data	I data	I data	I data
		02h		02h		02h	02h
	Input Index:	0x6000	0x6001	0x6002	-	0x6003	0x6004
\sim						04h	04h
		O data	O data	O data	O data	O data	O data
	Output Index:	0x7000	0x7001	0x7002	-	0x7003	0x7004
			04h			04h	
	053-1EC00	Slot 1	Slot 2	Slot 3	Slot 4	Slot 5	Slot 6
	EtherCAT-Slot	0	1	2	-	3	4

Eingabe-Daten 0x6000 + EtherCAT-Slot

Index	Modul	Subindex
0x6000	SM 021 DI 2x DC 24V	01h, 02h
0x6002	SM 031 AI 2x 12Bit	01h, 02h
0x6003	FM 050 1x32Bit	01h, 02h, 03h, 04h
0x6004	SM 021 DI 4x DC 24V	01h, 02h, 03h, 04h

Ausgabe-Daten 0x7000 + EtherCAT-Slot

Index	Modul	Subindex
0x7001	SM 022 DO 4x DC 24V	01h, 02h, 03h, 04h
0x7003	FM 050 1x32Bit	01h, 02h, 03h, 04h

Eingabe-Daten lesen Beim Zugriff auf den Eingabe-Bereich eines System SLIO Moduls erfolgt die Adressierung über den Index (0x6000 + EtherCAT-Slot). Über Subindizes haben Sie Zugriff auf die entsprechenden Eingabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Sub-	Name	Тур	Attr.	Default-	Bedeutung
	index				Wert	
0x6000 0x603F	0x00	Input Data	Unsigned8	ro		Anzahl der Subindizes der Eingabe-Daten für den entsprechenden EtherCAT-Slot
	0x01			ro		Eingabe-Daten (siehe Modul-Beschreibung)
	0x02			ro		

Ausgabe-Daten lesen

Beim lesenden Zugriff auf den Ausgabe-Bereich eines System SLIO Moduls erfolgt die Adressierung über den Index (0x7000 + EtherCAT-Slot). Über Subindizes haben Sie lesenden Zugriff auf die entsprechenden Ausgabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Sub-	Name	Тур	Attr.	Default-	Bedeutung
	index				Wert	
0x7000	0x00	Output	Unsigned8	ro		Anzahl der Subindizes der Ausgabe-Daten für
		Data				den entsprechenden EtherCAT-Slot
0x703F						
	0x01			ro		Ausgabe-Daten (siehe Modul-Beschreibung)
	0x02			ro		

Zugriff auf Parameterdaten

Die nachfolgende Abbildung zeigt, wie die Parameter-Daten auf die SDO-Objekte gemappt werden:

Parameter-Daten 0x3100 + EtherCAT-Slot

Index	Modul	Subindex
0x3102	SM 031 AI 2x 12Bit	01h, 02h
0x3103	FM 050 1x32Bit	01h 0Fh

Zugriff auf die Die Modulparametrierung erfolgt über SDO-Transfer. Hierbei adressieren Sie über den *Index* den EtherCAT-Slot. Über *Subindizes* haben Sie Zugriff auf den entsprechenden Parameter. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x3100 0x313F	0x00 0x01 0x02 	Parameter Param1 Param2	Unsigned8	ro rw rw	Anzahl der Parameter	Zugriff auf die Parameter von System SLIO Modulen. Es werden nur parametrierbare Module gemappt. Modul-Parameterdaten (siehe Modul-Beschreibung)

Hinweis!

Module, die nicht alarmfähig sind oder bei denen der Diagnose-Alarm deaktiviert ist, können bei Falschparametrierung keine Alarme schicken. Durch Abfrage der Diagnosedaten nach der Parametrierung können Sie eventuelle Parametrierfehler ermitteln. **Zugriff auf Diagnosedaten Diagnosedaten Diagnosealarmdaten automatisch über das Emergency-Telegramm, sofern** der Alarm über die Parametrierung aktiviert ist. Sie haben aber auch die Möglichkeit über SDO Diagnose-Daten anzufordern.

Alarm-Status Der Alarm-Status enthält jeweils einen Zähler für Prozess- und Diagnosealarme zur Alarmsignalisierung. Diese Zähler sind Eingangsdaten des EtherCAT-Kopplers und werden zusammen mit den Prozessdaten übertragen.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0xF100	0x00 0x01 0x02	Interrupt Status Hardware Interrupt Counter Diagnostic	Unsigned8 Unsigned32 Unsigned32	ro ro ro	2 0x00000000 0x00000000	Zähler für Prozessalarm Zähler für Diagnosealarm
		Counter				

Bei deaktiviertem *Auto-Acknowledge* (Objekt 0x3000:01 = 0) des EtherCAT-Kopplers wird der entsprechende Zähler auf 1 gesetzt bis Sie diesen entsprechend quittieren. Hierzu schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Bei aktiviertem *Auto-Acknowledge* (Objekt 0x3000:01 = 1) finden Sie hier die Anzahl an Prozess- bzw. Diagnosealarmen, welche seit dem letzten Alarm-Reset aufgetreten sind. Zum Rücksetzen des entsprechenden Zählers schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Es gilt folgende Index-Zuordnung:

- Schreiben auf 0x06 von Index 0x5000: Reset von Zähler Prozessalarm
- Schreiben auf 0x06 von Index 0x5002: Reset von Zähler Diagnosealarm

Prozessalarm-
datenSofern der Alarm-Status einen Prozessalarm anzeigt, haben Sie über Index
0x5000 Zugriff auf aktuelle Prozessalarmdaten. Die Belegung der
Prozessalarmdaten finden Sie in der entsprechenden Modul-Beschreibung.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x5000	0x00	Hardware Interrupt Data	Unsigned8	ro	6	Aktuelle Prozessalarmdaten
	0x01	Slot Number	Unsigned8	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm aufgetreten ist
	0x02	Hardware Interrupt Data 00	Unsigned8	ro	0x00	Prozessalarmdaten (siehe Modul-Beschreibung)
	0x03	Hardware Interrupt Data 01	Unsigned8	ro	0x00	(
	0x04	Hardware Interrupt Data 02	Unsigned8	ro	0x00	
	0x05	Hardware Interrupt Data 03	Unsigned8	ro	0x00	
	0x06	Acknowledge	Unsigned8	rw	0x00	Schreiben eines beliebigen Werts setzt Prozessalarmzähler zurück und quittiert ggf. Alarm.

Diagnosedaten (Byte 1 ... 4)

Sofern der Alarm-Status einen Diagnosealarm anzeigt, haben Sie über Index 0x5002 Zugriff auf aktuelle Diagnosealarmdaten. Die Belegung der Diagnosedaten finden Sie in der entsprechenden Modul-Beschreibung.

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x5002	0x00	Diagnostic Data	Unsigned8	ro	6	Aktuelle Diagnosedaten
	0x01	Slot Number	Unsigned8	ro	0x00	EtherCAT-Slot des Moduls, bei
			_			dem der Alarm aufgetreten ist
	0x02	Diagnostic Data 00	Unsigned8	ro	0x00	Byte 1 4 der Diagnosedaten
		-	_			(siehe Modul-Beschreibung)
	0x03	Diagnostic Data 01	Unsigned8	ro	0x00	
	0x04	Diagnostic Data 02	Unsigned8	ro	0x00	
	0x05	Diagnostic Data 03	Unsigned8	ro	0x00	
	0x06	Acknowledge	Unsigned8	rw	0x00	Schreiben eines beliebigen
		_				Werts setzt Diagnosealarmzähler
						zurück und quittiert ggf. Alarm.

Diagnosedaten (Byte 1 ... n)

Mit diesem Objekt haben Sie Zugriff auf die gesamten Diagnosedaten eines Moduls. Sie können entweder die aktuellen Diagnosedaten abrufen oder die Diagnosedaten eines Moduls auf einem beliebigen EtherCAT-Slot.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x5005	0x00 0x01	Diagnostic Data Slot	Unsigned8 Unsigned8	ro rw	18 0	Im Lesezugriff finden Sie hier den EtherCAT-Slot des Moduls, von dem die nachfolgend aufgeführte Diagnose stammt. Durch Schreiben eines EtherCAT-Slots können Sie die Diagnosedaten eines beliebigen Moduls abfragen.
	0x02		Unsigned8	ro	0	Diagnosedatensatz des Moduls
	0x03		Unsigned8	ro	0	(siehe Modul-Beschreibung)
	0x04		Unsigned8	ro	0	
	0x05		Unsigned8	ro	0	
	0x06		Unsigned8	ro	0	
	0x07		Unsigned8	ro	0	
	0x08		Unsigned8	ro	0	
	0x09		Unsigned8	ro	0	
	0x0A		Unsigned8	ro	0	
	0x0B		Unsigned8	ro	0	
	0x0C		Unsigned8	ro	0	
	0x0D		Unsigned8	ro	0	
	0x0E		Unsigned8	ro	0	
	0x0F		Unsigned8	ro	0	
	0x10		Unsigned8	ro	0	
	0x11		Unsigned8	ro	0	
	0x12		Unsigned32	ro	0	

Datentransfer über PDO und SDO

Übersicht

PDO PDO steht für Process Data Object. Mittels PDOs können Sie zur Laufzeit Prozessdaten übertragen. Hierbei adressieren Sie im Telegramm direkt die entsprechenden Ein- bzw. Ausgänge.

Näheres zur Prozessdatenübertragung zur Laufzeit finden Sie in der Beschreibung zu Ihrem EtherCAT-Master.

SDOSDO steht für Service Data Object. Innerhalb eines SDO-Telegramms
haben Sie Zugriff auf die Parameterdaten Ihres Systems. Hierbei
adressieren Sie den gewünschten Parameter über Index und Subindex.
Eine Übersicht der Objekte finden Sie im Objektverzeichnis weiter unten.

Übersicht

Variables PDO-Mapping über SDO

Manche Module, wie die ETS- und CP-Module im System SLIO, besitzen ein variables Prozessabbild.

Sofern Ihr Master-System variables PDO-Mapping unterstützt, können Sie durch entsprechende Anpassung der PDO-Inhalte bei Modulen mit variablem Prozessabbild die Größe des Prozessabbilds vorgeben.

Nähere Informationen zum PDO-Mapping finden Sie im Handbuch zu Ihrem Master-System.

- In der ESI-Datei ist definiert, welche Module über ein variables Prozessabbild verfügen. Werden Module mit variablem Prozessabbild verwendet, so werden automatisch Startup-Kommandos in die Startup-Liste des Masters eingefügt. Diese Startup-Kommandos sind SDO-Schreibzugriffe auf die Bereiche 0x16yy und 0x1Ayy (PDO-Mapping), in denen die Struktur der Prozessdaten eines Moduls beschrieben ist. Die Startup-Kommandos werden bei jedem Wechsel vom Zustand Pre-Op nach Safe-Op des entsprechenden EtherCAT-Kopplers durchgeführt.
 - In Ihrem EtherCAT-Master-System / EtherCAT-Konfigurator können Sie die PDO-Inhalte entfernen bzw. hinzufügen. Dabei werden automatisch die Startup-Kommandos angepasst.

Hinweis!

Bitte berücksichtigen Sie bei der Anpassung der PDO-Inhalte immer die Datenstruktur der E/A-Daten der jeweiligen Module!

Informationen zur Datenstruktur der E/A-Daten eines Moduls finden Sie im zugehörigen System SLIO Handbuch.

- Damit die neue Konfiguration übernommen werden kann, ist das Master-System neu zu initialisieren, bzw. bei der Verwendung eines EtherCAT-Konfigurators kann die neue Konfiguration nun in den EtherCAT-Master geladen werden. Beim Wechsel von Pre-Op nach Safe-Op werden die neuen Startup-Kommandos zum EtherCAT-Koppler übermittelt und damit das neue PDO-Mapping eingestellt.
- Der EtherCAT-Koppler konfiguriert das entsprechende Modul um und passt automatisch die Länge der Modulparameter im Objektverzeichnis 0x31yy an.

Hinweis!

Die Anpassung des Prozessabbilds von Modulen mit variabler Prozessabbild-Größe sollte nicht über das Objekt 0x31yy erfolgen, da ansonsten nur die Länge im Modul umparametriert wird, EtherCAT-Koppler und Master aber mit der Standard-Länge arbeiten!

Objekt-Verzeichnis

Objektübersicht

Index	Object Dictionary Area
0x0000 0x0FFF	Data Type Area
0x1000 0x1FFF	Communication Area
0x2000 0x5FFF	Manufacturer Specific Area
0x6000 0x6FFF	Input Area
0x7000 0x7FFF	Output Area
0x8000 0x8FFF	Configuration Area
0x9000 0x9FFF	Information Area
0xA000 0xAFFF	Diagnosis Area
0xB000 0xBFFF	Service Transfer Area
0xC000 0xEFFF	Reserved Area
0xF000 0xFFFF	Device Area

Hinweis!

Bitte beachten Sie, dass die System SLIO Power- und Klemmen-Module keine Typ-Kennung besitzen. Diese können vom EtherCAT-Koppler nicht erkannt werden und werden somit bei der Auflistung bzw. Zuordnung der Steckplätze nicht berücksichtigt.

Im Weiteren werden die Steckplätze innerhalb von EtherCAT als *EtherCAT-Slot* bezeichnet. Die Zählung beginnt immer bei 0.

Beispiel

In dem nachfolgenden Beispiel ist der physikalische Steckplatz 2 von einem Klemmen-Modul (CM) belegt. Da das Klemmen-Modul keine Typ-Kennung besitzt, wird dieses vom EtherCAT-Koppler nicht erkannt. Somit wird in EtherCAT das nächste Modul auf EtherCAT-Slot 1 gemappt usw.

physikalische Steckplatz-Nr.	1	2	3	4
Modul	DI	CM	DI	DI
Index	0x6000	-	0x6001	0x6002
EtherCAT-Slot	0	-	1	2

Device Type

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1000	0x00	Device Type	Unsigned32	ro	0x00001389	0x00001389 steht für MDP

Device Name

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x1008	0x00	Device name	Visible string	ro	VIPA 053-	
					1EC00	

Hardware Version

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1009	0x00	Hardware version	Visible string	ro		

Software Version

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x100A	0x00	Software	Visible string	ro		
		version				

System Version

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x100B	0x00	System version	Unsigned8	ro		Lieferstand, abhängig von den FPGA-Versionen des Kopplers und der Module, mindestens Systemversion 2

Identity Object

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1018	0x00	Identity Object	Visible string	ro	0x04	
	0x01	Vendor ID	Unsigned32	ro	0x0000AFFE	
	0x02	Product Code	Unsigned32	ro	0x0531EC00	
	0x03	Revision Number	Unsigned32	ro	0x00000011	
	0x04	Serial Number	Unsigned32	ro		

Output Mapping Modules

Index	Sub-	Name	Тур	Attr.	Default-	Bedeutung
	muex				wen	
0x1600	0x00	RxPDO Map	Unsigned8	ro/rw*	Anzahl der	Eintrag gibt es nur auf Slots mit
			-		Ausgänge	Ausgabe-Modulen.
0x163E					auf diesem	
0,1001					Steckplatz	
	0x01	Output Mapping	Unsigned32	ro/rw*		Bsp: 0x7000:01, 1 > auf Slot 0 ist der erste Ausgang 1 Bit lang.
	0x02	Output Mapping	Unsigned32	ro/rw*		

*) rw nur bei Ausgabe-Modulen mit variabler Prozessausgabegröße.

Input Mapping Modules

Index	Sub- index	Name	Тур	Attr.	Default- Wert	Bedeutung
0x1A00 0x1A3F	0x00	TxPDO Map	Unsigned8	ro/rw*	Anzahl der Eingänge auf diesem Steckplatz	Eintrag gibt es nur auf Slots mit Eingabe-Modulen.
	0x01 0x02	Input Mapping Input Mapping	Unsigned32 Unsigned32	ro/rw* ro/rw*		Bsp: 0x6000:01, 8 > auf Slot 0 ist der erste Eingang 8 Bit lang.

*) rw nur bei Eingabe-Modulen mit variabler Prozesseingabegröße.

Input Mapping Coupler

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x1AFF	0x00	Status PDO	Unsigned8	ro	2	Mapping für die Alarmzähler des
						Kopplers.
	0x01	Input	Unsigned32	ro	0xF100:01,32	Mapping für den Prozessalarm-
		Mapping				zähler.
	0x02	Input	Unsigned32	ro	0xF100:02,32	Mapping für den Diagnosealarm-
		Mapping				zähler.

Hinweis!

Systembedingt sollten Sie das Mapping im Projektiertool nicht verändern, da es sonst zu Fehlern im Prozessabbild kommen kann!

SyncManager

Туре

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1C00	0x00	SyncManager Type	Unsigned8	ro	4	
	0x01	Subindex 01	Unsigned8	ro	1	
	0x02	Subindex 02	Unsigned8	ro	2	
	0x03	Subindex 03	Unsigned8	ro	3	
	0x04	Subindex 04	Unsigned8	ro	4	

RxPDO Assign

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1C12	0x00	RxPDO Assign	Unsigned8	ro	Anzahl der Module mit Prozessaus- gangsdaten	
	0x01	Subindex 001	Unsigned16	ro		
	 0x40	 Subindex 064	 Unsigned16	ro		

TxPDO Assign

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1C13	0x00	TxPDO Assign	Unsigned8	ro	Anzahl der Eingangs- PDOs von Koppler und Module	
	0x01	Subindex 001	Unsigned16	ro		
	0x02	Subindex 002	Unsigned16	ro		
		 Outbindour 004				
	0x40	Subindex 064	Unsigned16	ro		

Der EtherCAT-Koppler besitzt auch Prozesseingangsdaten, welche den Alarmstatus wiedergeben. Daher gibt es an erster Stelle das Assignment 0x1AFF für die Eingangs-PDOs des Kopplers.

SM Output Parameter

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x1C32	0x00	SM output parameter	Unsigned8	ro	6	
	0x01	Sync mode	Unsigned16	rw		
	0x02	Cycle time	Unsigned32	rw		
	0x03	Shift time	Unsigned32	ro		
	0x04	Sync modes supported	Unsigned16	ro		
	0x05	Minimum cycle time	Unsigned32	ro		
	0x06	Minimum shift time	Unsigned32	ro		

SM Input Parameter

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x1C33	0x00	SM input	Unsigned8	ro	6	
		parameter				
	0x01	Sync mode	Unsigned16	rw		
	0x02	Cycle time	Unsigned32	rw		
	0x03	Shift time	Unsigned32	ro		
	0x04	Sync modes supported	Unsigned16	ro		
	0x05	Minimum cycle time	Unsigned32	ro		
	0x06	Minimum	Unsigned32	ro		
		shift time				

Parameter SLIO	Hier können Sie den EtherCAT-Koppler parametrieren.
EtherCAT Coupler	

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x3000	0x00	Coupler parameter	Unsigned8	ro	1	
	0x01	Auto- Acknowledge	Unsigned8	rw	1	Gibt den Modus an, wie der EtherCAT- Koppler auf Alarme reagieren soll.

- Mit Auto-Acknowledge = 0 sind Sie selbst für die Quittierung verantwortlich. Somit werden Sie über jeden Alarm informiert. Solange ein Alarm nicht quittiert wird sind weitere Alarme gesperrt.
- Mit Auto-Acknowledge = 1 wird jeder Alarm vom EtherCAT-Koppler selbständig quittiert. In diesem Modus werden Diagnosedaten von neuen Alarmen überschrieben. Per Default ist Auto-Acknowledge = 1. Für den Dauereinsatz sollte Auto-Acknowledge aktiviert sein.

Parameter SLIOMit diesem Objekt haben Sie Zugriff auf die Parameter eines System SLIOModuleModuls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den
Index. Über Subindizes haben Sie Zugriff auf den entsprechenden
Parameter. Die Belegung der Subindizes finden Sie in der jeweiligen
Modul-Beschreibung.

Auch hier gilt, dass Power- und Klemmen-Module vom EtherCAT-Koppler nicht erkannt und somit bei der Auflistung bzw. Zuordnung der Steckplätze nicht berücksichtigt werden.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x3100 0x313F	0x00 0x01 0x02 	Parameter Param1 Param2 	Unsigned8	ro rw rw	Anzahl der Parameter	Zugriff auf die Parameter von System SLIO Modulen. Es werden nur parametrierbare Module gemappt. Modul-Parameterdaten (siehe Modul-Beschreibung)

Sofern das Modul Parameter besitzt gilt folgendes Index 0x3100: Zugriff auf EtherCAT-Slot 0 Index 0x3101: Zugriff auf EtherCAT-Slot 1

Index 0x313F: Zugriff auf EtherCAT-Slot 64

Beispiel

In dem nachfolgenden Beispiel haben Sie über Index 0x3102 Zugriff auf die Parameter des Moduls auf dem physikalischen Steckplatz 4.

physikalische Steckplatz-Nr.	1	2	3	4
Modul	DI	CM	DO	AI
Index	0x3100*	-	0x3101*	0x3102
EtherCAT-Slot	0	-	1	2

*) Dieser Eintrag wird nicht aufgeführt, da das Modul keine Parameter besitzt.

Clear SLIO Counter

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x4000	0x00	Clear Slio Counter	Unsigned8	ro	2	Schreiben eines beliebigen Wertes auf den entsprechenden Subindex löscht den Zähler
	0x01	Clear Master Counter	Unsigned8	rw	0	
	0x02	Clear Module Counter	Unsigned8	rw	0	

Master Counter

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					-
0x4001	0x00	Master Counter	Unsigned8	ro	11	
	0x01	Expected Length Error	Unsigned16	ro		
	0x02	TimeOut Error	Unsigned16	ro		
	0x03	StopBit Error	Unsigned16	ro		
	0x04	FCS Error	Unsigned16	ro		
	0x05	Telegram Length Error	Unsigned16	ro		
	0x06	Telegram Type Error	Unsigned16	ro		
	0x07	Alarm Retry Error	Unsigned16	ro		
	0x08	Bus Idle Time Error	Unsigned16	ro		
	0x09	Wrong Node Address	Unsigned16	ro		
	0x0A	Telegram Valid	Unsigned16	ro		
	0x0B	Master Load	Unsigned16	ro		
	0x0C	1 telegram retry counter	Unsigned16	ro		
	0x0D	2 telegram retry counter	Unsigned16	ro		
	0x0E	3 telegram retry counter	Unsigned16	ro		

Module MDL Counter

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x4002	0x00	Module MDL Counter	Unsigned8	ro	64	
	0x01	Slot 1	Unsigned16	ro	0	
	0x02	Slot 2	Unsigned16	ro	0	
			_		0	
	0x40	Slot 64	Unsigned16	ro	0	

Module NDL Counter

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x4003	0x00	Module MDL Counter	Unsigned8	ro	64	
	0x01	Slot 1	Unsigned16	ro	0	
	0x02	Slot 2	Unsigned16	ro	0	
	0x40	Slot 64	Unsigned16	ro	0	

Version	Hier haben Sie Zugriff auf die Versions-Angaben der Komponenten des
Components	EtherCAT-Kopplers.
EtherCAT Coupler	

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x4100	0x00	SLIO Version	Unsigned8	ro	4	Versionsangaben der
			_			Komponenten des Kopplers
	0x01	Master FPGA	Unsigned16	ro		Version des FPGA
	0x02	SLIO Bus	Unsigned16	ro		Version des SLIO-Rückwandbus
	0x03	Firmware Packet	Unsigned32	ro		Version Packet
	0x04	Mx-File	Visible string	ro		Name und Version des Mx-Files
			_			des Kopplers

FPGA VersionMit diesem Objekt können Sie die FPGA-Version des SLIO-Moduls auf
dem EtherCAT-Slot ermitteln.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x4101	0x00	Module FPGA Version	Unsigned8	ro		FPGA-Versionen der Module
	0x01	Slot 1	Unsigned16	ro		EtherCAT-Slot
	0x02	Slot 2	Unsigned16	ro		
				ro		
	0x64	Slot 64	Unsigned16	ro		

Firmware VersionÜber dieses Objekt haben Sie Zugriff auf die Firmware-Version des SLIO-
Moduls auf dem EtherCAT-Slot.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x4102	0x00	Module Firmware Version	Unsigned8	ro		Firmwareversionen der Module
	0x01	Slot 1	Unsigned32	ro		EtherCAT-Slot
	0x02	Slot 2	Unsigned32	ro		
				ro		
	0x64	Slot 64	Unsigned32	ro		

Serial Number Modules

Mit diesem Objekt haben Sie Zugriff auf die Seriennummer eines SLIO-Moduls auf dem EtherCAT-Slot.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x4103	0x00	Module Serial Number	Unsigned8	ro		Seriennummern der Module
	0x01	Slot 1	Visible string	ro		EtherCAT-Slot
	0x02	Slot 2	Visible string	ro		
				ro		
	0x64	Slot 64	Visible string	ro		

Hardware Sofern über Objekt 0xF100 (siehe weiter unten) angezeigt wird, dass ein Prozessalarm aufgetreten ist, können Sie hier auf die aktuellen Prozessalarmdaten zugreifen. Die Belegung der Prozessalarmdaten finden Sie in der entsprechenden Modul-Beschreibung.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x5000	0x00	Hardware Interrupt Data	Unsigned8	ro	6	Aktuelle Prozessalarmdaten
	0x01	Slot Number	Unsigned8	ro	0x00	EtherCAT-Slot des Moduls, bei dem der Alarm aufgetreten ist
	0x02	Hardware Interrupt Data 00	Unsigned8	ro	0x00	Prozessalarmdaten (siehe Modul-Beschreibung)
	0x03	Hardware Interrupt Data 01	Unsigned8	ro	0x00	(
	0x04	Hardware Interrupt Data 02	Unsigned8	ro	0x00	
	0x05	Hardware Interrupt Data 03	Unsigned8	ro	0x00	
	0x06	Acknowledge	Unsigned8	rw	0x00	Schreiben eines beliebigen Werts setzt Prozessalarmzähler zurück und quittiert ggf. Alarm.

Bei deaktiviertem *Auto-Acknowledge* des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5000 den *Hardware Interrupt Counter* von Objekt 0xF100 zurücksetzen und den Prozessalarm quittieren.

Diagnostic Data
(Byte 1 ... 4)Sofern über Objekt 0xF100 (siehe weiter unten) angezeigt wird, dass ein
Diagnosealarm aufgetreten ist, können Sie hier auf die ersten 4 Byte der
Diagnosedaten zugreifen. Die Belegung der Diagnosedaten finden Sie in
der entsprechenden Modul-Beschreibung.

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x5002	0x00	Diagnostic Data	Unsigned8	ro	6	Aktuelle Diagnosedaten
	0x01	Slot Number	Unsigned8	ro	0x00	EtherCAT-Slot des Moduls, bei
			_			dem der Alarm aufgetreten ist
	0x02	Diagnostic Data 00	Unsigned8	ro	0x00	Byte 1 4 der Diagnosedaten
						(siehe Modul-Beschreibung)
	0x03	Diagnostic Data 01	Unsigned8	ro	0x00	
	0x04	Diagnostic Data 02	Unsigned8	ro	0x00	
	0x05	Diagnostic Data 03	Unsigned8	ro	0x00	
	0x06	Acknowledge	Unsigned8	rw	0x00	Schreiben eines beliebigen
						Werts setzt Diagnosealarmzähler
						zurück und quittiert ggf. Alarm.

Bei deaktiviertem *Auto-Acknowledge* des EtherCAT-Kopplers können Sie durch Schreiben eines beliebigen Werts auf Subindex 0x06 von Index 0x5002 den *Diagnostic Interrupt Counter* von Objekt 0xF100 zurücksetzen und den Diagnosealarm quittieren.

Diagnostic Data
(Byte 1 ... n)Mit diesem Objekt haben Sie Zugriff auf die gesamten Diagnosedaten
eines Moduls. Sie können entweder die aktuellen Diagnosedaten abrufen
oder die Diagnosedaten eines Moduls auf einem beliebigen EtherCAT-Slot.

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0x5005	0x00 0x01	Diagnostic Data Slot	Unsigned8 Unsigned8	ro rw	18 0	Im Lesezugriff finden Sie hier den EtherCAT-Slot des Moduls, von dem die nachfolgend aufgeführten Diagnose stammt. Durch Schreiben eines EtherCAT-Slots können Sie die Diagnosedaten eines beliebigen Moduls abfragen.
	0x02		Unsigned8	ro	0	Diagnosedatensatz des Moduls
	0x03		Unsigned8	ro	0	(siehe Modul-Beschreibung)
	0x04		Unsigned8	ro	0	
	0x05		Unsigned8	ro	0	
	0x06		Unsigned8	ro	0	
	0x07		Unsigned8	ro	0	
	0x08		Unsigned8	ro	0	
	0x09		Unsigned8	ro	0	
	0x0A		Unsigned8	ro	0	
	0x0B		Unsigned8	ro	0	
	0x0C		Unsigned8	ro	0	
	0x0D		Unsigned8	ro	0	
	0x0E		Unsigned8	ro	0	
	0x0F		Unsigned8	ro	0	
	0x10		Unsigned8	ro	0	
	0x11		Unsigned8	ro	0	
	0x12		Unsigned32	ro	0	

Read Input Data Über dieses Objekt haben Sie Zugriff auf den Eingabe-Bereich eines System SLIO Moduls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den Index (0x6000 + EtherCAT-Slot). Über Subindizes haben Sie Zugriff auf die entsprechenden Eingabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x6000 0x603F	0x00	Input Data	Unsigned8	ro		Anzahl der Subindizes der Eingabe-Daten für den ent- sprechenden EtherCAT-Slot.
	0x01			ro		(siehe Modul-Beschreibung)

Read Output Data Mit diesem Objekt haben Sie lesenden Zugriff auf den Ausgabe-Bereich eines System SLIO Moduls. Die Adressierung des EtherCAT-Slot erfolgt hierbei über den Index (0x7000 + EtherCAT-Slot). Über Subindizes haben Sie lesenden Zugriff auf die entsprechenden Ausgabe-Daten. Die Belegung der Subindizes finden Sie in der jeweiligen Modul-Beschreibung.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0x7000 0x703F	0x00 0x01 0x02	Output Data	Unsigned8	ro ro ro		Anzahl der Subindizes der Ausgabe-Daten für den ent- sprechenden EtherCat-Slot. Ausgabe-Daten (siehe Modul-Beschreibung)

Hinweis!

Informationen, wie Sie Ausgabedaten schreiben, finden Sie in der Beschreibung zu Ihrem EtherCAT-Master.

Modular Device

Profile

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0xF000	0x00	Modular Device Profile	Unsigned8	ro	5	
	0x01	Module Index Distance	Unsigned16	ro	1	
	0x02	Maximum Number of Modules	Unsigned16	ro	0x40 (64)	
	0x03	Standard Entries in Object 0x8yy0	Unsigned32	ro	0	
	0x04	Standard Entries in Object 0x9yy0	Unsigned32	ro	0	
	0x05	Module PDO Group	Unsigned8	ro	0	

Module List

Index	Sub-	Name	Тур	Attr.	Default-Wert	Bedeutung
	index					
0xF010	0x00	Module List	Unsigned8	ro		Modulkennungen der Module
	0x01	Subindex 001	Unsigned32	ro		-
	0x02	Subindex 002	Unsigned32	ro		
	0x40	Subindex 064	Unsigned32	ro		

Configured Module List

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0xF030	0x00	Configured Module List	Unsigned8	rw		Modulkennungen der konfigurierten Module
	0x01	Subindex 001	Unsigned32	rw		
	0x02	Subindex 002	Unsigned32	rw		
	0x40	Subindex 064	Unsigned32	rw		

- Beim Beschreiben eines Subindex wird der eingetragene Wert mit der Modulkennung auf dem gleichen Subindex von Index 0xF050 verglichen. So kann die Konfiguration überprüft werden.
- Da manche Konfigurations-Tools diesen Index nicht automatisch beschreiben, können manche Konfigurationsfehler nicht erkannt werden.

Detected Address

List

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0xF040	0x00	Detected Address List	Unsigned8	ro		Adressen aller Module, die vom Koppler erkannt werden
	0x01	Subindex 001	Unsigned16	ro		
	0x02 0x40	 Subindex 064	 Unsigned16	 ro		

Detected Module

List

ndex	Name	Гур	Attr.	Default-Wert	Bedeutung
00x0	Detected Module List	Unsigned8	ro		Modulkennungen aller vom Koppler erkannten Module
x01	Subindex 001	Unsigned32	ro		
x02	Subindex 002	Unsigned32	ro		
	 Subindex 064	 Unsigned32	 ro		
	1ex 00 01 02 40	dex 00 Detected Module List 01 Subindex 001 02 Subindex 002 40 Subindex 064	JexDetected Module ListUnsigned801Subindex 001Unsigned3202Subindex 002Unsigned3240Subindex 064Unsigned32	dexDetected Module ListUnsigned8 roro01Subindex 001Unsigned32ro02Subindex 002Unsigned32ro40Subindex 064Unsigned32ro	dexImage: Constraint of the second systemImage: Constraint of the second system00Detected Module ListUnsigned8 Unsigned32ro01Subindex 001 Unsigned32Unsigned32 ro Unsigned32ro02Subindex 002 Unsigned32Unsigned32 ro Unsigned32ro40Subindex 064Unsigned32 Unsigned32ro

Alarm Status Dieses Objekt enthält jeweils einen Zähler für Prozess- und Diagnosealarme. Diese Zähler sind Eingangsdaten des EtherCAT-Kopplers und werden zusammen mit den Prozessdaten übertragen.

Index	Sub- index	Name	Тур	Attr.	Default-Wert	Bedeutung
0xF100	0x00 0x01 0x02	Interrupt Status Hardware Interrupt Counter Diagnostic Interrupt Counter	Unsigned8 Unsigned32 Unsigned32	ro ro ro	2 0x00000000 0x00000000	Zähler für Prozessalarm Zähler für Diagnosealarm

Bei deaktiviertem *Auto-Acknowledge* des EtherCAT-Kopplers wird der entsprechende Zähler auf 1 gesetzt bis Sie diesen entsprechend quittieren. Hierzu schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Bei aktiviertem *Auto-Acknowledge* finden Sie hier die Anzahl an Prozessbzw. Diagnosealarmen, welche seit dem letzten Alarm-Reset aufgetreten sind. Zum Rücksetzen des entsprechenden Zählers schreiben Sie einen beliebigen Wert auf den Subindex 0x06 unter dem entsprechend zugeordneten Index.

Es gilt folgende Index-Zuordnung:

- Schreiben auf 0x06 von Index 0x5000: Reset von Zähler Prozessalarm
- Schreiben auf 0x06 von Index 0x5002: Reset von Zähler Diagnosealarm

Fehlerbearbeitung

Übersicht	In EtherCAT gibt es folgende Typen von Fehlermeldungen:Emergency-FehlermeldungStandard-Fehlermeldung						
Emergency- Fehlermeldung	Emergency-Fehlermeldungen treten auf, bei Fehlern während des Zustandswechsels bzw. bei Prozess- und Diagnosealarmen sofern diese über die Parametrierung aktiviert wurden. Emergency-Fehlermeldungen werden im Rahmen von geräteinternen Mechanismen ausgelöst und über den Mailbox-Service von EtherCAT dem Master gemeldet.						
Telegrammaufbau	Byte						
		2	3	4	5	6	7
					DATA		
EEC - Emergency Error Code	Emergency Error (0xFFxx: herstellers 0xA0xx: State Ma Konfigura Nähere In	Codes nac spezifisch chine Tra tionsfehle formation	ch ETG-Sj e Emerge ansition E rs (Länge en hierzu	pezifikatio ncy-Nachi Error, beis , Adresse finden Sie	n: richt (VIP, spielsweis , Einstellu e bei der I	A = 0xFF0 se aufgrur ingen). ETG.	0) nd eines
ER - Error Register	Zustand der Ether 01: Init 0 02: Pre-Op 0 03: Bootstrap	CAT State 04: Safe-C 08: Op	e Machine)p	:			
DATA - Fehler- Daten	Hier finden Sie näl Sofern es sich Diagnosealarm ha <i>Error Field</i> (MEF). Byte	here Inforn bei der andelt, fin Das Feld	mationen Fehlerm den Sie hat folger	zum Fehle neldung in DATA nde Strukt	er. um eine das <i>Mar</i> tur:	n Prozes nufacturer	s- bzw. Specific
	0 1	2	3	4	5	6	7
	EEC	ER	SLOT	TYPE		DIAG	
	MEF						
	SLOT - EtherCAT- EtherCAT-Slot des TYPE - Alarmtyp 01: Prozessalarm	-Slot s Moduls r	nit dem Fe	ehler			

02: Diagnosealarm

DIAG - Diagnosedaten Fehlercode, der bei dem entsprechenden Modul beschrieben ist.

Standard-	Standard-Fehlermeldungen	werden	im	Rahmen	von	geräteinternen
Fehlermeldungen	Mechanismen ausgelöst und dem EtherCAT-Master gemeldet. Folgende Standard-Fehlermeldungen können auftreten:				let.	
-						

AL Status Code Zur näheren Fehlerbeschreibung wird vom EtherCAT-Master der AL Status Code (AL = application layer) ausgelesen. Dieser liegt im EtherCAT-Koppler in Register 0x0134 ab. Neben den EtherCAT spezifischen Fehler-Codes finden Sie hier auch die herstellerspezifischen Fehlermeldungen.

EtherCATspezifische Fehlermeldungen

Code	Description	Current State	Resulting State	
0x0000	No error	Any	Current state	
0x0001	Unspecified error	Any	Any + E	
0x0002	No Memory	Any	Any + E	
0x0011	Invalid requested state change	$I \rightarrow S, I \rightarrow O,$	Current state + E	
		$P \rightarrow 0, 0 \rightarrow B,$		
		$S \rightarrow B, P \rightarrow B$		
0x0012	Unknown requested state	Any	Current state + E	
0x0013	Bootstrap not supported	$I \rightarrow B$	I+E	
0x0014	No valid firmware	$I \rightarrow P$	I+E	
0x0015	Invalid mailbox configuration	$I \rightarrow B$	I+E	
0x0016	Invalid mailbox configuration	$I \rightarrow P$	I+E	
0x0017	Invalid SyncManager configuration	$P \rightarrow S, S \rightarrow O$	Current state + E	
0x0018	No valid inputs available	$0, S \rightarrow 0$	S + E	
0x0019	No valid outputs	$0, S \rightarrow 0$	S + E	
0x001A	Synchronization error	$0, S \rightarrow 0$	S + E	
0x001B	SyncManager watchdog (siehe unten)	0, S	S + E	
0x001C	Invalid SyncManager Types	$O, S, P \rightarrow S$	S + E	
0x001D	Invalid Output Configuration	$O, S, P \rightarrow S$	S + E	
0x001E	Invalid Input Configuration	$O, S, P \rightarrow S$	P+E	
0x001F	Invalid Watchdog Configuration	$O, S, P \rightarrow S$	P+E	
0x0020	Coupler needs cold start	Any	Current state + E	
0x0021	Coupler needs INIT	B, P, S, O	Current state + E	
0x0022	Coupler needs PREOP	S, O	S + E, O + E	
0x0023	Coupler needs SAFEOP	0	0+E	
0x0024	Invalid Input Mapping	$P \rightarrow S$	P+E	
0x0025	Invalid Output Mapping	$P \rightarrow S$	P+E	
0x0026	Inconsistent Settings	$P \rightarrow S$	P+E	
0x0027	Free-run not supported	$P \rightarrow S$	P+E	
0x0028	Synchronization not supported	$P \rightarrow S$	P+E	
0x0029	Free-run needs 3 Buffer Mode	$P \rightarrow S$	P+E	
0x002A	Background Watchdog	S, O	P+E	
0x002B	No Valid Inputs and Outputs	$0, S \rightarrow 0$	S + E	
0x002C	Fatal Sync Error	0	S + E	
0x002D	No Sync Error	$S \rightarrow 0$	S + E	
0x0030	Invalid DC SYNC Configuration	$0, S \rightarrow 0, P \rightarrow S$	P + E, S + E	
0x0031	Invalid DC Latch Configuration	$0, S \rightarrow 0, P \rightarrow S$	P + E, S + E	
0x0032	PLL Error	$0, S \rightarrow 0$	S + E	
0x0033	DC Sync IO Error	$0, S \rightarrow 0$	S + E	
0x0034	DC Sync Timeout Error	$0, S \rightarrow 0$	S + E	
0x0035	DC Invalid Sync Cycle Time	$P \rightarrow S$	P+E	
0x0036	DC Sync0 Cycle Time	$P \rightarrow S$	P+E	
0x0037	DC Sync1 Cycle Time	$P \rightarrow S$	P+E	
0x0041	MBX_AOE	B, P, S, O	Current state + E	
0x0042	MBX_EOE	B, P, S, O	Current state + E	
0x0043	MBX_COE	B, P, S, O	Current state + E	
0x0044	MBX_FOE	B, P, S, O	Current state + E	
0x0045	MBX_SOE	B, P, S, O	Current state + E	
0x004F	MBX_VOE	B, P, S, O	Current state + E	
0x0050	EEPROM No Access	Any	Any + E	
0x0051	EEPROM Error	Any	Any + E	
0x0060	Coupler Restarted Locally	Any	1	
< x8000	Reserved			

SyncManager watchdog 0x001B Ist keine Kommunikation mit dem Master möglich wie z.B. durch Leitungsunterbrechung, erhalten Sie nach einer im Master parametrierbaren SyncManager-Watchdog-Zeit die Fehlermeldung 0x001B.

Aufgrund der fixen Watchdog-Zeit im System SLIO muss die SyncManager-Watchdog-Zeit kleiner gleich 0,5s betragen! Ansonsten ist bei Auslösen des SyncManager-Watchdog ein Neustart erforderlich!

Hersteller-	Code	Description	Current State	Resulting State
spezifische	0x8000	no module recognized or present	1	I + E
Fehlermeldungen	0x8001	Module at system bus needs update	P > S	P+E
5	0x8002	Init error	P > S	P+E
	0x8003	unexpected restart (Watchdog)	P > S	P+E
	0x8004	Error reading EEPROM	P > S	P+E
	0x8005	SLIO IO area too big or small	P > S	P+E

I: Init, P: Pre-Operational, S: Safe-Operational, O: Operational, B: Bootstrap, E: Error

SDO Fehlercode Wird eine SDO-Anforderung negativ bewertet, erhalten Sie einen entsprechenden SDO-Fehlercode.

Die nachfolgende Tabelle zeigt die möglichen Fehlercodes:

Code	Description
0x05030000	Toggle bit not alternated
0x05040000	SDO protocol timed out
0x05040001	Client/server command specifier not valid or unknown
0x05040002	Invalid block size (block mode only)
0x05040003	Invalid sequence number (block mode only)
0x05040004	CRC error (block mode only)
0x05040005	Out of memory
0x06010000	Unsupported access to an object
0x06010001	Attempt to read a write only object
0x06010002	Attempt to write a read only object
0x06020000	Object does not exist in the object dictionary
0x06040041	Object cannot be mapped to the PDO
0x06040042	The number and length of the objects to be mapped would exceed PDO length
0x06040043	General parameter incompatibility reason
0x06040047	General internal incompatibility in the device
0x06060000	Access failed due to an hardware error
0x06070010	Data type does not match, length of service parameter does not match
0x06070012	Data type does not match, length of service parameter too high
0x06070013	Data type does not match, length of service parameter too low
0x06090011	Subindex does not exist
0x06090030	Value range of parameter exceeded (only for write access)
0x06090031	Value of parameter written too high
0x06090032	Value of parameter written too low
0x06090036	Maximum value is less than minimum value
0x08000000	General error
0x08000020	Data cannot be transferred or stored to the application
0x08000021	Data cannot be transferred or stored to the application because of local control
0x08000022	Data cannot be transferred or stored to the application because of the present device state
0x08000023	Object directory dynamic generation fails or no object directory is present (e.g. object directory is generated from file and generation fails because of an file error)