

Handbücher/Manuals

VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH

Ohmstraße 4 D-91074 Herzogenaurach Tel.: +49-9132-744-0 Fax: +49-9132-744-144 Internet: www.vipa.de E-Mail: Info@vipa.de

Handbuch

VIPA System 300S SPEED7 - CPU

Best.-Nr.: VIPA HB140D_CPU Rev. 07/43

Die Angaben in diesem Handbuch erfolgen ohne Gewähr. Änderungen des Inhalts können jederzeit ohne Vorankündigung erfolgen.

 © Copyright 2007 VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH
 Ohmstraße 4, D-91074 Herzogenaurach,
 Tel.: +49 (91 32) 744 -0
 Fax.: +49 (91 32) 744-144
 EMail: info@vipa.de
 http://www.vipa.de

Hotline: +49 (91 32) 744-114

Alle Rechte vorbehalten

Haftungs-
ausschlussDer Inhalt dieses Handbuchs wurde auf Übereinstimmung mit der be-
schriebenen Hard- und Software geprüft.Dennoch können Abweichungen nicht ausgeschlossen werden. Die An-
gaben in diesem Handbuch werden regelmäßig überprüft und erforderliche
Korrekturen sind in den nachfolgenden Auflagen enthalten.Für Verbesserungsvorschläge sind wir dankbar.

WarenzeichenVIPA, SPEED7 und System 300Vsind eingetragene Warenzeichen der VIPA Gesellschaft für Visualisierung
und Prozessautomatisierung mbH.

SIMATIC, STEP und S7-300 sind eingetragene Warenzeichen der Siemens AG.

Alle ansonsten im Text genannten Warenzeichen sind Warenzeichen der jeweiligen Inhaber und werden als geschützt anerkannt.

Über dieses Handbuch

Das Handbuch beschreibt die bei VIPA erhältlichen System 300S SPEED7 CPUs ab Firmware Version 3.0.0. Hier finden Sie neben einer Produktübersicht eine detaillierte Beschreibungen der einzelnen Module. Sie erhalten Informationen für den Anschluss und die Handhabe der CPUs im System 300S.

Überblick Teil 1: Grundlagen

Im Rahmen dieser Einleitung erfolgt die Vorstellung des System 300 von VIPA als zentrales bzw. dezentrales Automatisierungssystem.

Teil 2: Montage und Aufbaurichtlinien

Alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System 300 erforderlich sind, finden Sie in diesem Kapitel.

Teil 3: Hardwarebeschreibung CPU 31xS

Die SPEED7 CPU erhalten Sie in mehreren Varianten. In diesem Kapitel ist die Hardware der verschiedenen Ausführungen beschrieben.

Teil 4: Einsatz CPU 31xS

Allgemeine Angaben zum Einsatz der CPU wie Adressvergabe, Betriebszustände, Einsatz der MCC und Kommunikation über PG/OP und MPI finden Sie in diesem Teil.

Teil 5: Einsatz E/A-Peripherie CPU 314ST

Hier finden Sie eine Beschreibung der E/A-Peripherie der CPU 314ST. Beschrieben sind Funktionalität, Projektierung und Diagnose des integrierten Analog- und Digital-Teils.

Teil 6: Einsatz CPU 31xS unter Profibus

Der Einsatz und die Projektierung unter Profibus der SPEED7 CPUs von VIPA wird in diesem Teil näher erläutert.

Teil 7: Einsatz RS485 für PtP-Kommunikation

Über die integrierte RS485-Schnittstelle können Sie eine PtP-Kommunikation aufbauen. Die Vorgehensweise hierzu finden Sie in diesem Kapitel.

Teil 8: Einsatz CPU 31xS unter TCP/IP

In diesem Kapitel ist der Einsatz der CPU 31xSN/NET und die Kommunikation unter TCP/IP beschrieben.

Inhaltsverzeichnis

Benutzerhinweise	1
Sicherheitshinweise	2
Teil 1 Grundlagen	1-1
Sicherheitshinweis für den Benutzer	1-2
Hinweise zum Einsatz der MPI-Schnittstelle	1-3
Hinweise zum Green Cable von VIPA	1-4
Allgemeine Beschreibung System 300	1-5
System 300S	1-6
Hinweise zur Projektierung	1-10
Arbeitsweise einer CPU	1-14
Programme der CPU 31xS	1-15
Operanden der CPU 31xS	
Teil 2 Montage und Aufbaurichtlinien	2-1
Übersicht	
Einbaumaße	
Montage Standard-Bus	2-4
Montage SPEED-Bus	2-5
Verdrahtung	2-8
Aufbaurichtlinien	2-12
Teil 3 Hardwarebeschreibung CPU 31xS	3-1
Systemühersicht	
	2-0
Komponenten	
Fin /Ausabe Bereich CPU 31/ST	3 16
Tachnische Daten	2 10
Toil 4 Eincotz CBU 21xS	
Tell 4 Ellisatz GFU 31X5 Montage ODEED Due	
Montage SPEED-Bus	
Adressierung	
Initialisierung des Ethernet-PG/OP-Kanais	
Projektierung	
Einstellung der CPU-Parameter	
Parametrierung von Modulen	
Projekt transferieren	
Betriebszustände	
Urlöschen	4-33
Firmwareupdate	4-35
Rücksetzen auf Werkseinstellung	4-38
Speichererweiterung mit MCC	4-39
Erweiterter Know-how-Schutz	4-40
MMC-Cmd - Autobefehle	4-42
VIPA-spezifische Diagnose-Einträge	4-44
Mit Testfunktionen Variablen steuern und beobachten	4-48

Teil 5 Einsatz E/A-Peripherie CPU 314ST	5-1
Übersicht	5-2
Ein-/Ausgabe-Bereich	5-3
Analog-Teil	5-5
Analog-Teil - Parametrierung	5-9
Analog-Teil - Diagnosefunktionen	5-13
Digital-Teil	5-16
Zähler - Schnelleinstieg	5-18
Zähler - Parametrierung	5-21
Zähler - Funktionen	5-26
Zähler - Zusatzfunktionen	5-32
Zähler - Diagnose und Alarm	5-39
Teil 6 Einsatz CPU 31xS unter Profibus	6-1
Übersicht	6-2
Projektierung CPU mit integriertem Profibus Master	6-3
Einsatz als Profibus DP-Slave	6-5
Profibus-Aufbaurichtlinien	6-7
Inbetriebnahme und Anlaufverhalten	6-10
Teil 7 Einsatz RS485 für PtP-Kommunikation	7-1
Schnelleinstieg	7-2
Protokolle und Prozeduren	7-3
Einsatz der RS485-Schnittstelle für PtP	7-7
Prinzip der Datenübertragung	7-9
Parametrierung	7-10
Kommunikation	7-13
Teil 8 Einsatz CPU 31xS unter TCP/IP	8-1
Industrial Ethernet in der Automatisierung	
ISO/OSI-Schichtenmodell	
Grundbegriffe	
Protokolle	
IP-Adresse und Subnetz	8-10
Planung eines Netzwerks	8-12
Kommunikationsmöglichkeiten des CP	8-15
Funktionsübersicht	8-18
Schnelleinstieg	8-19
Hardware-Konfiguration	8-23
Kommunikationsverbindungen projektieren	8-26
SEND/RECEIVE im SPS-Anwenderprogramm	8-32
NCM-Diagnose - Hilfe zur Fehlersuche	8-37
Kopplung mit Fremdsystemen	8-40
Beispiel zur Kommunikation CPU 31xSN/NET - CPU 31xSN/NET	Г 8- 4 3
Anhang	A-1
Index	A-1

Benutzerhinweise

Zielsetzung und Inhalt	Das Handbuch beschreibt die bei VIPA erhältlichen System 300S SPEED7 CPUs. Beschrieben wird Aufbau, Projektierung und Anwendung.	
Zielgruppe	Das Handbuch ist geschrieben für Anwender mit Grundkenntnissen in der Automatisierungstechnik.	
Aufbau des Handbuchs	Das Handbuch ist in Kapitel gegliedert. Jedes Kapitel beschreibt eine abgeschlossene Thematik.	
Orientierung im Dokument	 Als Orientierungshilfe stehen im Handbuch zur Verfügung: Gesamt-Inhaltsverzeichnis am Anfang des Handbuchs Übersicht der beschriebenen Themen am Anfang jedes Kapitels Stichwortverzeichnis (Index) am Ende des Handbuchs 	
Verfügbarkeit	 Das Handbuch ist verfügbar in: gedruckter Form auf Papier in elektronischer Form als PDF-Datei (Adobe Acrobat Reader) 	
Piktogramme Signalwörter	Besonders wichtige Textteile sind mit folgenden Piktogrammen und Signalworten ausgezeichnet:	
\bigwedge	Gefahr! Unmittelbar drohende oder mögliche Gefahr. Personenschäden sind möglich.	
$\underline{\land}$	Achtung! Bei Nichtbefolgen sind Sachschäden möglich.	
	Hinweis! Zusätzliche Informationen und nützliche Tips	

Sicherheitshinweise

Bestimmungsgemäße Verwendung Die SPEED7 ist konstruiert und gefertigt für:

- alle VIPA System-300-Komponenten
- Kommunikation und Prozesskontrolle
- Allgemeine Steuerungs- und Automatisierungsaufgaben
- den industriellen Einsatz
- den Betrieb innerhalb der in den technischen Daten spezifizierten Umgebungsbedingungen
- den Einbau in einen Schaltschrank

Gefahr!

Das Gerät ist nicht zugelassen für den Einsatz

• in explosionsgefährdeten Umgebungen (EX-Zone)

Dokumentation

Handbuch zugänglich machen für alle Mitarbeiter in

- Projektierung
- Installation
- Inbetriebnahme
- Betrieb

Vor Inbetriebnahme und Betrieb der in diesem Handbuch beschriebenen Komponenten unbedingt beachten:

- Änderungen am Automatisierungssystem nur im spannungslosen Zustand vornehmen!
- Anschluss und Änderung nur durch ausgebildetes Elektro-Fachpersonal
- Nationale Vorschriften und Richtlinien im jeweiligen Verwenderland beachten und einhalten (Installation, Schutzmaßnahmen, EMV ...)

Entsorgung Zur Entsorgung des Geräts nationale Vorschriften beachten!

Teil 1 Grundlagen

Überblick	 Im Rahmen dieser Grundlagen folgen Hinweise im Umgang und Informationen über Projektierung eines SPEED7 Systems von VIPA. Auch finden Sie hier allgemeine Angaben zum System 300S wie Maße, und Umgebungsbedingungen. Beachten Sie bitte auch die Hinweise zur MPI-Schnittstelle und zum Green Cable in diesem Kapitel! 		
	 Nachfolgend sind beschrieben: Sicherheitshinweise zum Einsatz von CPU, MP²I-Schnittstelle und Green Cable Komponenten System 300S Allgemeine Beschreibung wie Maße, Betriebssicherheit und Umgebungsbedingungen Zusammenfassung der Projektierung Aufbau, Arbeitsweise und Grundlagen der Programmierung 		
Inhalt	Thema Seite		
	Teil 1 Grundlagen1-1		
	Sicherheitshinweis für den Benutzer1-2		
	Hinweise zum Einsatz der MPI-Schnittstelle1-3		
	Hinweise zum Green Cable von VIPA1-4		
	Allgemeine Beschreibung System 3001-5		
	System 300S1-6		
	Hinweise zur Projektierung1-10		
	Arbeitsweise einer CPU 1-14		
	Programme der CPU 31xS 1-15		
	Operanden der CPU 31xS 1-15		

Sicherheitshinweis für den Benutzer

Handhabung elektrostatisch gefährdeter Baugruppen VIPA-Baugruppen sind mit hochintegrierten Bauelementen in MOS-Technik bestückt. Diese Bauelemente sind hoch empfindlich gegenüber Überspannungen, die z.B. bei elektrostatischer Entladung entstehen.

Zur Kennzeichnung dieser gefährdeten Baugruppen wird nachfolgendes Symbol verwendet:

Das Symbol befindet sich auf Baugruppen, Baugruppenträgern oder auf Verpackungen und weist so auf elektrostatisch gefährdete Baugruppen hin. Elektrostatisch gefährdete Baugruppen können durch Energien und Spannungen zerstört werden, die weit unterhalb der Wahrnehmungsgrenze des Menschen liegen. Hantiert eine Person, die nicht elektrisch entladen ist, mit elektrostatisch gefährdeten Baugruppen, können Spannungen auftreten und zur Beschädigung von Bauelementen führen und so die Funktionsweise der Baugruppen beeinträchtigen oder die Baugruppe unbrauchbar machen. Auf diese Weise beschädigte Baugruppen werden in den wenigsten Fällen sofort als fehlerhaft erkannt. Der Fehler kann sich erst nach längerem Betrieb einstellen. Durch statische Entladung beschädigte Bauelemente können bei Temperaturänderungen, Erschütterungen oder Lastwechseln zeitweilige Fehler zeigen.

antwortungsbewusste Beachtung der Handhabungsregeln lassen sich Funktionsstörungen und Ausfälle an elektrostatisch gefährdeten Baugruppen wirksam vermeiden.

Versenden von Verwenden Sie für den Versand immer die Originalverpackung.

Baugruppen

Messen und Ändern von elektrostatisch gefährdeten Baugruppen Bei Messungen an elektrostatisch gefährdeten Baugruppen sind folgende Dinge zu beachten:

- Potentialfreie Messgeräte sind kurzzeitig zu entladen.
- Verwendete Messgeräte sind zu erden.

Bei Änderungen an elektrostatisch gefährdeten Baugruppen ist darauf zu achten, dass ein geerdeter Lötkolben verwendet wird.

Achtung!

Bei Arbeiten mit und an elektrostatisch gefährdeten Baugruppen ist auf ausreichende Erdung des Menschen und der Arbeitsmittel zu achten.

Hinweise zum Einsatz der MPI-Schnittstelle

Was ist MP ² I	 Die MP²I-Schnittstelle hat 2 Schnittstellen in einer Schnittstelle vereint: MPI-Schnittstelle RS232-Schnittstelle Bitte beachten Sie, dass die MP²I-Schnittstelle nur bei Einsatz des Green Cable von VIPA als RS232-Schnittstelle benutzt werden kann.
Einsatz als MPI- Schnittstelle	Die MPI-Schnittstelle dient zur Datenübertragung zwischen CPUs und PCs. In einer Buskommunikation können Sie Daten zwischen den CPUs trans- ferieren, die über MPI verbunden sind. Bei Anschluss eines handelsüblichen MPI-Kabels bietet die MPI-Buchse die volle MPI-Funktionalität.

Wichtige Hinweise zum Einsatz von MPI-Kabeln

Bei Einsatz eines MPI-Kabels an den CPUs von VIPA ist darauf zu achten, dass der Pin 1 nicht verbunden ist. Dies kann zu Transferproblemen führen und ggf. an der CPU einen Defekt herbeiführen!

Insbesondere Profibus-Kabel von Siemens, wie beispielsweise das Kabel mit der Best.-Nr. 6XV1 830-1CH30, darf an der MP²I-Buchse nicht betrieben werden.

Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Einsatz als RS232-Schnittstelle nur über "Green Cable"

Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sie können aber auch das "Green Cable" von VIPA verwenden. Sie erhalten dies unter der Best.-Nr. VIPA 950-0KB00.

Hiermit können Sie ausschließlich bei VIPA CPUs mit MP²I-Buchse als Punkt-zu-Punkt-Verbindung seriell über die MP²I-Buchse Ihre Daten übertragen.

Bitte beachten Sie hierzu die Hinweise zum Green Cable auf der Folgeseite.

Hinweise zum Green Cable von VIPA

Was ist das Green Cable

Das Green Cable ist ein grünes Verbindungskabel, das ausschließlich zum Einsatz an VIPA System-Komponenten konfektioniert ist.

Das Green Cable ist ein Programmier- und Downloadkabel für VIPA CPUs mit MP²I-Buchse sowie VIPA Feldbus-Master. Sie erhalten das Green Cable von VIPA unter der Best.-Nr.: VIPA 950-0KB00.

Mit dem Green Cable können Sie:

- Projekte seriell übertragen Unter Umgehung aufwändiger Hardware (MPI-Adapter, etc.) können Sie über das Green Cable eine serielle Punkt-zu-Punkt-Verbindung über die MP²I-Schnittstelle realisieren.
- *Firmware-Updates der CPUs und Feldbus-Master durchführen* Über das Green Cable können Sie unter Einsatz eines Upload-Programms die Firmware aller aktuellen VIPA CPUs mit MP²I-Buchse sowie bestimmter Feldbus-Master (s. Hinweis) aktualisieren.

Wichtige Hinweise zum Einsatz des Green Cable

Bei Nichtbeachtung der nachfolgenden Hinweise können Schäden an den System-Komponenten entstehen.

Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise entstehen und bei unsachgemäßem Einsatz, übernimmt die VIPA keinerlei Haftung!

Hinweis zum Einsatzbereich

Das Green Cable darf ausschließlich <u>direkt</u> an den hierfür vorgesehenen Buchsen der VIPA-Komponenten betrieben werden (Zwischenstecker sind nicht zulässig). Beispielsweise ist vor dem Stecken des Green Cables ein gestecktes MPI-Kabel zu entfernen.

Zurzeit unterstützen folgende Komponenten das Green Cable:

VIPA CPUs mit MP²I-Buchse sowie die Feldbus-Master von VIPA.

Hinweis zur Verlängerung

Die Verlängerung des Green Cables mit einem weiteren Green Cable bzw. die Kombination mit weiteren MPI-Kabeln ist nicht zulässig und führt zur Beschädigung der angeschlossenen Komponenten!

Das Green Cable darf nur mit einem 1:1 Kabel (alle 9 Pin 1:1 verbunden) verlängert werden.

Allgemeine Beschreibung System 300

Das System 300 Das System 300 ist ein modulares zentral wie dezentral einsetzbares Automatisierungssystem für Anwendungen im mittleren und oberen Leistungsbereich. Die einzelnen Module werden direkt auf der Profilschiene montiert und über Busverbinder, die von hinten an die Module gesteckt werden, gekoppelt.

Die CPUs des System 300 von VIPA sind befehlskompatibel zur S7-300 von Siemens.

System 300V Bei VIPA wird unterschieden zwischen System 300V und System 300S.

System 300S

System 300V

Mit dem System 300V können Sie Automatisierungsaufgaben zentral und dezentral lösen. Die einzelnen Module des System 300V von VIPA sind funktionsgleich zu Siemens. Durch den kompatiblen Rückwandbus sind somit Module von VIPA und Siemens mischbar.

• System 300S

Das System 300S erweitert den zentralen Bereich um Hochgeschwindigkeits-CPUs, die den SPEED7-Chip integriert haben. Zusätzlich besitzen manche CPUs des System 300S einen parallelen SPEED-Bus, über den Sie modular schnelle Peripherie-Module, wie IOs oder Bus-Master ankoppeln können.

ÜbersichtIn diesem Handbuch ist das System 300S beschrieben. Dies umfasst dieHandbücherSPEED7-CPUs 31xS und die Peripherie-Module für SPEED-Bus (dick grün
umrahmt).

Die Beschreibung der System 300V CPU 31x und die zugehörigen Peripherie-Module, wie digitale und analoge Ein-/Ausgabe-Module, Spannungsversorgungen und Bus-Koppler finden Sie in HB 130.

System 300S

Übersicht

Die CPUs 31xS basieren auf der SPEED7-Technologie. Hierbei wird die CPU durch Koprozessoren im Bereich Programmierung und Kommunikation unterstützt und erhält somit eine Leistungssteigerung, so dass diese höchsten Anforderungen genügt.

Mit Ausnahme der Basis-Variante sind alle SPEED7-CPUs mit einem parallelen SPEED-Bus ausgestattet, der die zusätzliche Anbindung von bis zu 16 Modulen aus der SPEED-Bus-Peripherie ermöglicht. Während die Standard-Peripherie-Module rechts von der CPU gesteckt werden, erfolgt die Anbindung der SPEED-Bus-Peripherie-Module über einen SPEED-Bus-Busverbinder links von der CPU.

CPU 31xS Im System 300S stehen verschiedene CPUs zur Verfügung. Programmiert wird in STEP[®]7 von Siemens. Hierzu können Sie WinPLC7 von VIPA oder den Siemens SIMATIC Manager verwenden.

CPUs mit integrierter Ethernet- bzw. Bus-Anschaltung oder mit zusätzlichen seriellen Schnittstellen garantieren eine komfortable Integration der SPS in ein Netzwerk oder den Anschluss von zusätzlichen Endgeräten.

Das Anwenderprogramm wird im batteriegepufferten RAM oder auf einem zusätzlich steckbaren MMC-Speichermodul gespeichert. Aufgrund der automatischen Adressierung können bei Einsatz der CPUs 31xS bis zu 32 Peripherie-Module angesprochen werden.

Zusätzlich besitzen alle CPUs 31xS mit Ausnahme der Basis-Variante einen parallelen SPEED-Bus über den Sie modular schnelle Peripherie-Module, wie IOs oder Bus-Master ankoppeln können.

SPEED-Bus	Der SPEED-Bus ist ein von VIPA entwickelter 32Bit Parallel-Bus mit einer maximalen Datenrate von 40MByte/s. Über SPEED-Bus haben Sie die Möglichkeit bis zu 16 SPEED-Bus-Module an Ihre CPU 31xS zu koppeln. Im Gegensatz zum "Standard"-Rückwandbus, bei dem die Module rechts von der CPU über Einzel-Busverbinder gesteckt werden, erfolgt beim SPEED-Bus die Ankopplung über eine spezielle SPEED-Bus-Schiene links von der CPU. Von VIPA erhalten Sie Profilschienen mit integriertem SPEED-Bus für 2, 6, 10 oder 16 SPEED-Bus-Peripherie-Module in unterschiedlichen Längen.
SPEED-Bus- Peripherie-Module	 Die SPEED-Bus-Peripherie-Module können ausschließlich auf den hierfür vorgesehenen SPEED-Bus-Steckplätzen links von der CPU eingesetzt werden. Für den SPEED-Bus sind von VIPA folgende Module verfügbar: Schnelle Feldbus-Module, wie Profibus DP-, Interbus-, CANopen-Master und CANopen-Slave Schneller CP 343 (CP 343 Kommunikationsprozessor für Ethernet) Schnelle digitale Ein-/Ausgabe-Module (Fast Digital IN/OUT)
Speicher- management	Jede CPU 31xS hat einen Arbeitsspeicher integriert. Hiervon werden während des Programmablaufs 50% für Programmcode und 50% für Daten verwendet. Ab der CPU-Firmware 3.0.0 haben Sie die Möglichkeit den Gesamt- speicher mittels einer MCC Speichererweiterungskarte bis zum Maximal- speicher zu erweitern.
Integrierter Profibus DP-Master	Die CPUs der System 300S Serie haben einen Profibus DP-Master integriert. Über den DP-Master, mit einem Datenbereich von 1kByte für Ein- und Ausgabe, können Sie bis zu 125 DP-Slaves ansprechen. Die Projektierung erfolgt unter WinPLC7 von VIPA oder im Hardware- Konfigurator von Siemens.
Integrierter Ethernet-PG/OP- Kanal	Auf jeder CPU 31xS befindet sich eine Ethernet-Schnittstelle für PG/OP- Kommunikation. Nach der Zuweisung einer IP-Adresse über ein "Minimalprojekt" können Sie über "Zielsystem"-Funktionen den Ethernet- PG/OP-Kanal direkt ansprechen und Ihre CPU programmieren bzw. fernwarten. Hier sind maximal 2 PG/OP-Verbindungen möglich. Sie haben auch die Möglichkeit über diese Verbindungen mit einer Visualisierungs-Software auf die CPU zuzugreifen.

Betriebssicherheit	 Anschluss über Federzugklemmen an Frontstecker Aderquerschnitt 0,082,5mm² Vollisolierung der Verdrahtung bei Modulwechsel Potenzialtrennung aller Peripherie-Module zum Rückwandbus ESD/Burst gemäß IEC 61000-4-2/IEC 61000-4-4 (bis Stufe 3) Schockfestigkeit gemäß IEC 60068-2-6 / IEC 60068-2-27 (1G/12G)
Umgebungs- bedingungen	 Betriebstemperatur: 0 +60°C Lagertemperatur: -25 +70°C Relative Feuchte: 5 95% ohne Betauung Lüfterloser Betrieb
Aufbau/Maße	 Verfügbare Länge der Profilschiene in mm: 160, 482, 530, 830 und 2000 Maße Grundgehäuse: 1fach breit: (BxHxT) in mm: 40x125x120 2fach breit: (BxHxT) in mm: 80x125x120
Kompatibilität	Module und CPUs aus dem System 300 von VIPA und Siemens können als Mischkonfiguration am "Standard"-Bus eingesetzt werden. Die Projektierung erfolgt unter WinPLC7 von VIPA oder im Hardware- Konfigurator von Siemens. Die SPEED7-CPUs von VIPA sind befehlskompatibel zur Programmier- sprache STEP [®] 7 von Siemens und können unter WinPLC7 von VIPA oder im Siemens SIMATIC Manager programmiert werden. Hierbei kommt der Befehlssatz der S7-400 von Siemens zum Einsatz.
	Hinweis! Bitte verwenden Sie zur Projektierung einer SPEED7-CPU von VIPA immer die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) von Siemens aus dem Hardware-Katalog.

Zur Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager vorausgesetzt!

- **Green Cable** Sie können Ihre Projekte von Ihrem PC seriell an die CPU übertragen, indem Sie das "Green Cable" verwenden. Bitte beachten Sie hierbei die Hinweise zum Green Cable in diesem Kapitel.
- Jede CPU besitzt ein eingebautes Netzteil. Das Netzteil ist mit DC 24V zu Integriertes versorgen. Über die Versorgungsspannung werden neben der internen Netzteil Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt. Bitte beachten Sie, dass das integrierte Netzteil den Rückwandbus (SPEED-Bus und Standard-Bus) in der Summe je nach CPU mit max. 5A versorgen kann. Das Netzteil ist gegen Verpolung und Überstrom geschützt. Jede SPEED-Bus-Leiste besitzt eine Steckmöglichkeit für eine externe

Spannungsversorgung. Hiermit können Sie den maximalen Strom am Rückwandbus um 6A erhöhen.

Zugriffsmöglichkeiten für Projektierung und Firmwareupdate

In der nachfolgenden Übersicht sind alle Zugriffsmöglichkeiten für Projektierung und Firmwareupdate dargestellt.

Hinweise zur Projektierung

Übersicht

Die Projektierung eines SPEED7-Systems sollte nach folgender Vorgehensweise erfolgen:

- Projektierung der SPEED7-CPU und des internen DP-Master (falls vorhanden) als CPU 318-2DP (318-2AJ00-0AB00)
- Projektierung der reell gesteckten Module am Standard-Bus
- Projektierung des internen Ethernet-PG/OP-Kanals nach den reell gesteckten Modulen als virtueller CP 343-1 (Angabe von IP-Adresse, Subnetz-Maske und Gateway für Online-Projektierung)
- Projektierung eines internen CP 343 (falls vorhanden) als 2. CP 343-1
- Projektierung und Vernetzung aller SPEED-Bus-CPs bzw. -DP-Master als CP 343-1 (343-1EX11) bzw. CP 342-5 (342-5DA02 V5.0)
- Projektierung aller SPEED-Bus-Module als einzelne DP-Slaves in einem virtuellen DP-Master-Modul (speedbus.gsd erforderlich)

Hinweis!

Bitte verwenden Sie zur Projektierung einer CPU 31xS von VIPA immer die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) von Siemens aus dem Hardware-Katalog.

Zur Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

Voraussetzung Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog.

Für den Einsatz der System 300S Module am SPEED-Bus ist die Einbindung der System 300S Module über die GSD-Datei speedbus.gsd von VIPA im Hardwarekatalog erforderlich.

Hinweis zum Green Cable

Bitte beachten Sie die Hinweise zum Einsatz des Green Cables in diesem Kapitel. Für Schäden, die aufgrund der Nichtbeachtung dieser Hinweise und/oder bei unsachgemäßem Einsatz entstehen, übernimmt die VIPA keinerlei Haftung!

Vorgehensweise Die Projektierung einer SPEED7-CPU besteht aus folgenden Komponenten:

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

Vorbereitung

Starten Sie den Hardware-Konfigurator von Siemens und binden Sie die speedbus.gsd für den SPEED-Bus von VIPA ein.

• Projektierung der CPU

Projektieren Sie eine CPU 318-2DP (318-2AJ00-0AB00 V3.0). Sofern Ihre SPEED7-CPU einen DP-Master besitzt, können Sie diesen jetzt mit Profibus vernetzen und Ihre DP-Slaves anbinden.

- *Projektierung der reell gesteckten Module am Standard-Bus* Platzieren Sie ab Steckplatz 4 die Module, die sich auf dem Standard-Bus rechts der CPU befinden.
- Projektierung der integrierten CPs

Für den internen Ethernet-PG/OP-Kanal ist immer als 1. Modul unter den reell gesteckten Modulen ein CP 343-1 (343-1EX11) zu platzieren. Hat Ihre SPEED7-CPU zusätzlich einen CP 343 integriert, so ist dieser ebenfalls als CP 343-1 aber immer unterhalb des zuvor platzierten CP 343-1 zu projektieren.

• Projektierung aller SPEED-Bus-CPs und -DP-Master

Platzieren und vernetzen Sie unter den zuvor projektieren internen CPU-Komponenten alle CPs als 343-1EX11 und DP-Master als 342-5DA02 V5.0, die sich am SPEED-Bus befinden.

Bitte beachten Sie, dass die Reihenfolge innerhalb einer Funktionsgruppe (CP bzw. DP-Master) der Reihenfolge am SPEED-Bus von rechts nach links entspricht.

Projektierung der CPU und aller SPEED-Bus-Module in einem virtuellen Master-System

Die Steckplatzzuordnung der SPEED-Bus-Module und die Parametrierung der Ein-/Ausgabe-Peripherie hat über ein virtuelles Profibus DP-Master-System zu erfolgen. Platzieren Sie hierzu als letztes Modul einen DP-Master (342-5DA02 V5.0) mit Mastersystem. Die Profibusadresse muss hierbei <100 sein!

Binden Sie nun für die CPU und jedes Modul am SPEED-Bus den Slave "vipa_speedbus" an. Nach der Installation der speedbus.gsd finden Sie diesen unter *Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDbus*. Stellen Sie als Profibus-Adresse die Steckplatz-Nr. (100...116) des Moduls ein und platzieren Sie auf dem einzigen Steckplatz 0 des Slave-Systems das entsprechende Modul.

Buserweiterung mit
IM 360 und IM 361Zur Buserweiterung können Sie die IM 360 von Siemens einsetzen, an die
Sie bis zu 3 Erweiterungs-Racks über die IM 361 anbinden können.
Buserweiterungen dürfen immer nur auf Steckplatz 3 platziert werden.
Näheres hierzu finden im Teil "Einsatz CPU 31xS" unter "Adressierung".

1-11

SPEEDbus VIPA_SPEEDbus VIPA_SPEEDbus Steckpl.Best.-Nr. 0 CPU auf Steckpl.100 • Projection

(100) VIPA

Standard-Bus

1 2

X2

X1

3

reelle Module

am Standard-Bus

CPs bzw. DP-Master

am SPEED-Bus als

(n) VIPA

Steckpl. Modul

CPU 318-2

MPI/DP

343-1EX11 (intern PG/OP)

343-1EX11 (intern CP343)

343-1EX11 bzw. 342-5DA02

virtueller DP-Master für CPU

und alle SPEED-Bus-Module

342-5DA02 V5.0

DP

Zusammenfassung In der nachfolgenden Abbildung sind alle Projektierschritte nochmals zusammengefasst:

Das entsprechende Modul ist aus dem HW-Katalog von vipa_speedbus auf Steckplatz 0 zu übernehmen

Hinweis!

Die Reihenfolge der DPM- und CP-Funktionsgruppen ist unerheblich. Es ist lediglich darauf zu achten, dass innerhalb einer Funktionsgruppe die Reihenfolge (DP1, DP2 ... bzw. CP1, CP2 ...) eingehalten wird.

1	Т	

Hinweis gültig für alle SPEED-Bus-Module!

Für den SPEED-Bus ist immer als letztes Modul der Siemens DP-Master CP 342-5 (342-5DA02 V5.0) einzubinden, zu vernetzen und in die *Betriebsart* DP-Master zu parametrieren. An dieses Mastersystem ist jedes einzelne SPEED-Bus-Modul als VIPA_SPEED-Bus-Slave anzubinden. Durch Angabe der SPEED-Bus-Steckplatz-Nr. über die Profibus-Adresse und durch Einbinden des entsprechenden SPEED-Bus-Moduls auf dem

und durch Einbinden des entsprechenden SPEED-Bus-Moduls auf dem einzigen Steckplatz 0 erhält der Siemens SIMATIC Manager so Informationen über die am SPEED-Bus befindlichen Module.

Zusätzlich sind je nach Modul die nachfolgenden Projektierungen erforderlich.

- Projektierung der DP-Master am SPEED-Bus Die Hardware-Konfiguration und Profibus-Projektierung erfolgt im Siemens SIMATIC Manager. Hierbei ist für jeden SPEED-Bus-DP-Master ein virtueller CP 342-5 (342-5DA02 V5.0) am Standard-Bus hinter den reellen Modulen zu projektieren und mit den entsprechenden DP-Slaves zu vernetzen.
- Projektierung CP 343 am SPEED-Bus SPEED-Bus-CPs sind im Siemens SIMATIC Manager am Standardbus hinter den reellen Modulen als virtuelle CP 343-1 (343-1EX11) zu projektieren und mit den entsprechenden Ethernet-Komponenten zu vernetzen. Für die Vernetzung ist das Siemens Projektiertool NetPro erforderlich.
- Projektierung der
CAN-Master am
SPEED-BusDie Projektierung der CANopen-Master am SPEED-Bus erfolgt unter
WinCoCT (Windows CANopen Configuration Tool) von VIPA.SPEED-BusAus WinCoCT exportieren Sie Ihr Projekt als wld-Datei. Die wld-Datei
können Sie in Ihren Hardware-Konfigurator von Siemens importieren.
Eine zusätzliche Einbindung am Standard-Bus ist nicht erforderlich.
- Projektierung der
Interbus-Master am
SPEED-BusDie Projektierung des IBS-Master-Systems erfolgt in Ihrem SPS-Anwen-
derprogramm unter Verwendung der VIPA FCs.
Eine zusätzliche Einbindung am Standard-Bus ist nicht erforderlich.

Arbeitsweise einer CPU

Allgemein	Die CPU enthält einen Standardprozessor mit internem Programm- speicher. In Verbindung mit der System 300S Peripherie erhalten Sie ein leistungsfähiges Gerät zur Prozessautomatisierung innerhalb der System 300S Familie. In einer CPU gibt es folgende Arbeitsweisen:
	 zyklische Bearbeitung zeitgesteuerte Bearbeitung alarmgesteuerte Bearbeitung Bearbeitung nach Priorität
zyklische Bearbeitung	Die zyklische Bearbeitung stellt den Hauptanteil aller Vorgänge in der CPU. In einem endlosen Zyklus werden die gleichen Bearbeitungsfolgen wiederholt.
zeitgesteuerte Bearbeitung	Erfordern Prozesse in konstanten Zeitabschnitten Steuersignale, so können Sie neben dem zyklischen Ablauf zeitgesteuert bestimmte Aufgaben durch- führen z.B. zeitunkritische Überwachungsfunktionen im Sekundenraster.
alarmgesteuerte Bearbeitung	Soll auf ein Prozesssignal besonders schnell reagiert werden, so ordnen Sie diesem einen alarmgesteuerten Bearbeitungsabschnitt zu. Ein Alarm kann in Ihrem Programm eine Bearbeitungsfolge aktivieren.
Bearbeitung nach Priorität	Die oben genannten Bearbeitungsarten werden von der CPU nach Wichtigkeitsgrad behandelt (Priorität). Da auf ein Zeit- oder Alarmereignis schnell reagiert werden muss, unterbricht die CPU zur Bearbeitung dieser hochprioren Ereignisse die zyklische Bearbeitung, reagiert auf diese Ereignisse und setzt danach die zyklische Bearbeitung wieder fort. Die zyklische Bearbeitung hat daher die niedrigste Priorität.

Programme der CPU 31xS

Übersicht	Das in jeder CPU vorhandene Programm unterteilt sich in:SystemprogrammAnwenderprogramm
Systemprogramm	Das Systemprogramm organisiert alle Funktionen und Abläufe der CPU, die nicht mit einer spezifischen Steuerungsaufgabe verbunden sind.
Anwender- programm	Hier finden Sie alle Funktionen, die zur Bearbeitung einer spezifischen Steuerungsaufgabe erforderlich sind. Schnittstellen zum Systemprogramm stellen die Operationsbausteine zur Verfügung.

Operanden der CPU 31xS

Übersicht Die CPU 31xS stellt Ihnen für das Programmieren folgende Operandenbereiche zur Verfügung:

- Prozessabbild und Peripherie
- Merker
- Zeiten und Zähler
- Datenbausteine

Prozessabbild undAuf das Prozessabbild der Aus- und Eingänge PAA/PAE kann Ihr An-
wenderprogramm sehr schnell zugreifen. Sie haben Zugriff auf folgende
Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Sie können mit Ihrem Anwenderprogramm über den Bus direkt auf Peripheriebaugruppen zugreifen. Folgende Datentypen sind möglich:

- Bytes
- Wörter
- Blöcke

MerkerDer Merkerbereich ist ein Speicherbereich, auf den Sie über Ihr Anwender-
programm mit entsprechenden Operationen zugreifen können. Verwenden
Sie den Merkerbereich für oft benötigte Arbeitsdaten.

Sie können auf folgende Datentypen zugreifen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Zeiten und Zähler Sie können mit Ihrem Anwendungsprogramm eine Zeitzelle mit einem Wert zwischen 10ms und 9990s laden. Sobald Ihr Anwenderprogramm eine Startoperation ausführt, wird dieser Zeitwert um ein durch Sie vorgegebenes Zeitraster dekrementiert, bis Null erreicht wird.

Für den Einsatz von Zählern können Sie Zählerzellen mit einem Anfangswert laden (max. 999) und diesen hinauf- bzw. herunterzählen.

Datenbausteine Ein Datenbaustein enthält Konstanten bzw. Variablen im Byte-, Wort- oder Doppelwortformat. Mit Operanden können Sie immer auf den aktuellen Datenbaustein zugreifen.

Sie haben Zugriff auf folgende Datentypen:

- Einzelbits
- Bytes
- Wörter
- Doppelwörter

Teil 2 Montage und Aufbaurichtlinien

Überblick

In diesem Kapitel finden Sie alle Informationen, die für den Aufbau und die Verdrahtung einer Steuerung aus den Komponenten des System 300 erforderlich sind.

Nachfolgend sind beschrieben:

- Allgemeine Übersicht
- Schritte der Montage und Verdrahtung
- Aufbaurichtlinien für das System 300

Inhalt	Thema	Seite
	Teil 2 Montage und Aufbaurichtlinien	2-1
	Übersicht	2-2
	Einbaumaße	2-3
	Montage Standard-Bus	2-4
	Montage SPEED-Bus	2-5
	Verdrahtung	2-8
	Aufbaurichtlinien	2-12

Übersicht

Allgemeines Mit Ausnahme der Basis-Variante sind alle SPEED7-CPUs mit einem parallelen SPEED-Bus ausgestattet, der die zusätzliche Anbindung von bis 16 Modulen aus der SPEED-Bus-Peripherie ermöglicht. Während die Standard-Peripherie-Module rechts von der CPU gesteckt und über Einzel-Busverbinder verbunden werden, erfolgt die Anbindung der SPEED-Bus-Peripherie-Module über eine in die Profilschiene integrierte SPEED-Bus-Steckleiste links von der CPU. Von VIPA erhalten Sie Profilschienen mit integriertem SPEED-Bus für 2, 6, 10 oder 16 SPEED-Bus-Peripherie-Module in unterschiedlichen Längen.

Serieller Die einzelnen System 300V Module werden direkt auf eine Profilschiene montiert und über den Rückwandbus-Verbinder verbunden. Vor der Montage ist der Rückwandbus-Verbinder von hinten an das Modul zu stecken. Die Rückwandbusverbinder sind im Lieferumfang der Peripherie-Module enthalten.

ParallelerBei SPEED-Bus erfolgt die Busanbindung über eine in die Profilschiene
integrierte SPEED-Bus-Steckleiste links von der CPU. Aufgrund des
parallelen SPEED-Bus müssen nicht alle Steckplätze hintereinander belegt
sein.

SLOT 1 für Zusatz-
spannungsversorgungAuf Steckplatz 1 (SLOT 1 DCDC) können Sie entweder ein SPEED-Bus-
Modul oder eine Zusatz-Spannungsversorgung stecken.

Montagemöglich-
keitenSie haben die Möglichkeit das System 300 waagrecht, senkrecht oder
liegend aufzubauen.

Beachten Sie bitte die hierbei zulässigen Umgebungstemperaturen:

- waagrechter Aufbau: von 0 bis 60°C
 - senkrechter Aufbau: von 0 bis 40°C
- liegender Aufbau: von 0 bis 40°C

Einbaumaße

Übersicht	Hier finden Sie alle wichtigen Maße des System 300.
Maße	1fach breit (BxHxT) in mm: 40 x 125 x 120
Grundgehäuse	2fach breit (BxHxT) in mm: 80 x 125 x 120

Montagemaße

Montage Standard-Bus

Vorgehensweise

Sofern Sie keine SPEED-Bus-Module einsetzen, erfolgt die Montage am Standard-Bus rechts der CPU nach folgender Vorgehensweise:

- Verschrauben Sie die Profilschiene mit dem Untergrund (Schraubengröße: M6) so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt.
- Wenn der Untergrund eine geerdete Metallplatte oder ein geerdetes Geräteblech ist, achten Sie auf eine niederohmige Verbindung zwischen Profilschiene und Untergrund.
- Verbinden Sie die Profilschiene mit dem Schutzleiter. Für diesen Zweck befindet sich auf der Profilschiene ein Stehbolzen mit M6-Gewinde.
- Der Mindestquerschnitt der Leitung zum Schutzleiter muss 10mm² betragen.
- Hängen Sie die Spannungsversorgung ein und schieben Sie diese nach links bis ca. 5mm vor den Erdungsbolzen der Profilschiene.
- Nehmen Sie einen Busverbinder und stecken Sie ihn, wie gezeigt, von hinten an die CPU.
- Hängen Sie die CPU rechts neben der Spannungsversorgung ein.
- Klappen sie die CPU nach unten und schrauben Sie die CPU wie gezeigt fest.
- Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts des Vorgänger-Moduls einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

Gefahr!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden!

Montage SPEED-Bus

Vorkonfektionierte SPEED-Bus-Profil-Schiene Für den Einsatz von SPEED-Bus-Modulen ist eine vorkonfektionierte SPEED-Bus-Steckleiste erforderlich. Diese erhalten Sie schon montiert auf einer Profilschiene mit 2, 6, 10 oder 16 Erweiterungs-Steckplätzen.

Montage der Profilschiene

- Verschrauben Sie die Profilschiene mit dem Untergrund (Schraubengröße: M6) so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt.
- Achten Sie immer auf eine niederohmige Verbindung zwischen Profilschiene und Untergrund.

Verbinden Sie die Profilschiene über den Stehbolzen mit Ihrem Schutzleiter.

Der Mindestquerschnitt der Leitung zum Schutzleiter beträgt hierbei 10mm².

Profilschiene

Bestellnummer	SPEED-	A	В	С
	Bus-Slot			
VIPA 390-1AB60	-	160mm	140mm	10mm
VIPA 390-1AE80	-	482mm	466mm	8,3mm
VIPA 390-1AF30	-	530mm	500mm	15mm
VIPA 390-1AJ30	-	830mm	800mm	15mm
VIPA 390-9BC00*	-	2000mm	-	15mm
VIPA 391-1AF10	2	530mm	500mm	15mm
VIPA 391-1AF30	6	530mm	500mm	15mm
VIPA 391-1AF50	10	530mm	500mm	15mm
VIPA 391-1AF80	16	830mm	800mm	15mm

* Verpackungseinheit 10 Stück

122

Montage SPEED-Bus-Module

• Entfernen Sie mit einem geeigneten Schraubendreher die entsprechenden Schutzabdeckungen über den SPEED-Bus-Steckplätzen, indem Sie diese entriegeln und nach unten abziehen.

Da es sich bei SPEED-Bus um einen parallelen Bus handelt, müssen nicht alle SPEED-Bus-Steckplätze hintereinander belegt sein. Lassen Sie bei einem nicht benutzten SPEED-Bus-Steckplatz die Abdeckung gesteckt.

- Bei Einsatz einer DC 24V-Spannungsversorgung hängen Sie diese an der gezeigten Position links vom SPEED-Bus auf der Profilschiene ein und schieben Sie diese nach links bis ca. 5mm vor den Erdungsbolzen der Profilschiene.
- Schrauben Sie die Spannungsversorgung fest.
- Zur Montage von SPEED-Bus-Modulen setzen Sie diese zwischen den dreieckigen Positionierhilfen an einem mit "SLOT ..." bezeichneten Steckplatz an und klappen sie diese nach unten.
- Nur auf "SLOT1 DCDC" können Sie entweder ein SPEED-Bus-Modul oder eine Zusatzspannungsversorgung stecken.
- Schrauben Sie die Module fest.

Montage CPU ohne Standard-Bus-Module

- Soll die SPEED7-CPU ausschließlich am SPEED-Bus betrieben werden, setzen Sie diese wie gezeigt zwischen den beiden Positionierhilfen an dem mit "CPU SPEED7" bezeichneten Steckplatz an und klappen sie diese nach unten.
- Schrauben Sie die CPU fest.

Bitte beachten Sie, dass nicht alle CPU 31xS am SPEED-Bus eingesetzt werden können!

Montage CPU mit Standard-Bus-Modulen

- Sollen auch Standard-Module gesteckt werden, nehmen Sie einen Busverbinder und stecken Sie ihn, wie gezeigt, von hinten an die CPU.
- Setzen Sie die CPU zwischen den beiden Positionierhilfen an dem mit "CPU SPEED7" bezeichneten Steckplatz an und klappen sie diese nach unten.
- Schrauben Sie die CPU fest.

Montage Standard-Bus-Module

 Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts neben dem Vorgänger-Moduls einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

Gefahr!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden

Verdrahtung

Übersicht

Die Spannungsversorgungen und CPUs werden ausschließlich mit Federklemm-Kontakten ausgeliefert. Für die Signalbaugruppen sind bei VIPA die Frontstecker mit Federklemm- oder mit Schraubkontakten erhältlich. Nachfolgend sind alle Anschlussarten der Spannungsversorgungen, CPUs und Ein-/Ausgabe-Module aufgeführt.

Gefahr!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden!

Federklemmtechnik (grau)

Für die Verdrahtung von Spannungsversorgungen, Buskopplern, und Teilen der CPU werden graue Anschlussklemmen mit Federklemmtechnik eingesetzt.

Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen. Es können sowohl flexible Litzen ohne Aderendhülse, als auch starre Leiter verwendet werden.

Die Leitungen befestigen Sie wie folgt an den Federklemmkontakten:

- Rechteckige Öffnung für Schraubendreher

– Runde Öffnung für Drähte

Die nebenstehende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- Zum Verdrahten stecken Sie wie in der Abbildung gezeigt einen passenden Schraubendreher leicht schräg in die rechteckige Öffnung.
- Zum Öffnen der Kontaktfeder müssen Sie den Schraubendreher in die entgegengesetzte Richtung drücken und halten.
- Führen Sie durch die runden Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.

Federklemmtechnik (grün)

Zur Verdrahtung der Spannungsversorgung einer CPU beispielsweise kommen grüne Stecker mit Federzugklemmtechnik zum Einsatz.

Auch hier können Sie Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen. Hierbei dürfen sowohl flexible Litzen ohne Aderendhülse, als auch starre Leiter verwendet werden.

Die Leitungen befestigen Sie wie folgt an den Federklemmkontakten:

Prüfabgriff für 2mm Messspitze Verriegelung (orange) für Schraubendreher

- Runde Öffnung für Drähte

Die nebenstehende Abfolge stellt die Schritte der Verdrahtung in der Draufsicht dar.

- Zum Verdrahten drücken Sie mit einem geeigneten Schraubendreher wie in der Abbildung gezeigt die Verriegelung senkrecht nach innen und halten Sie den Schraubendreher in dieser Position.
- Führen Sie durch die runde Öffnung Ihren abisolierten Draht ein. Sie können Drähte mit einem Querschnitt von 0,08mm² bis 2,5mm² anschließen.
- Durch Entfernen des Schraubendrehers wird der Draht über einen Federkontakt sicher mit dem Steckverbinder verbunden.

Hinweis!

Im Gegensatz zur grauen Anschlussklemme, die weiter oben beschrieben ist, ist die grüne Anschlussklemme als Stecker ausgeführt, der im verdrahteten Zustand vorsichtig abgezogen werden kann.

Nachfolgend ist die Verdrahtung der 2 Frontstecker-Varianten aufgezeigt: Frontstecker der Ein-/Ausgabe-Für die Ein-/Ausgabe-Module sind bei VIPA folgende Stecker erhältlich: Module

20-fach Schraubtechnik VIPA 392-1AJ00	40-fach Schraubtechnik VIPA 392-1AM00			
Öffnen Sie die Frontklappe Ihres Ein-/Ausgabe-Moduls.				
Bringen Sie den Frontstecker in Verdrahtungsstellung. Hierzu stecken Sie den Frontstecker auf das Modul, bis er einrastet. In dieser Stellung ragt der Frontstecker aus dem Modul heraus und hat noch keinen Kontakt.				
Isolieren Sie Ihre Leitungen ab. Verwenden Sie ggf. Aderendhülsen.				
Fädeln Sie den beiliegenden Kabelbinder in den Frontstecker ein.				
Beginnen Sie mit der Verdrahtung von unten nach oben, wenn Sie die Leitungen nach unten aus dem Modul herausführen möchten, bzw. von oben nach unten, wenn die Leitungen nach oben herausgeführt werden sollen.				
Schrauben Sie die Anschlussschrauben der nicht verdrahteten Schraubklemmen ebenfalls fest.				
0,5 0,8 Nm	Legen Sie den beigefügten Kabelbinder um den Leitungsstrang und den Frontstecker herum.			
Ziehen Sie den Kabelbinder für den Leitungsstrang fest.				

Fortsetzung ...

... Fortsetzung

Aufbaurichtlinien

Allgemeines Die Aufbaurichtlinien enthalten Informationen über den störsicheren Aufbau von System 300 Systemen. Es werden die Wege beschrieben, wie Störungen in Ihre Steuerung gelangen können, wie die elektromagnetische Verträglichkeit (EMV), sicher gestellt werden kann und wie bei der Schirmung vorzugehen ist.

Was bedeutet
 Unter Elektromagnetischer Verträglichkeit (EMV) versteht man die Fähigkeit eines elektrischen Gerätes, in einer vorgegebenen elektromagnetischen Umgebung fehlerfrei zu funktionieren ohne vom Umfeld beeinflusst zu werden bzw. das Umfeld in unzulässiger Weise zu beeinflussen.
 Alle System 300 Komponenten sind für den Einsatz in rauen Industrieumgebungen entwickelt und erfüllen hohe Anforderungen an die EMV. Trotzdem sollten Sie vor der Installation der Komponenten eine EMV-Planung durchführen und mögliche Störquellen in die Betrachtung einbeziehen.

Mögliche	Elektromagnetische Störungen können sich auf unterschiedlichen Pfaden
Störeinwirkungen	in Ihre Steuerung einkoppeln:

- Felder
- E/A-Signalleitungen
- Bussystem
- Stromversorgung
- Schutzleitung

Je nach Ausbreitungsmedium (leitungsgebunden oder -ungebunden) und Entfernung zur Störquelle gelangen Störungen über unterschiedliche Kopplungsmechanismen in Ihre Steuerung.

Man unterscheidet:

- galvanische Kopplung
- kapazitive Kopplung
- induktive Kopplung
- Strahlungskopplung
Grundregeln zur Sicherstellung der EMV Häufig genügt zur Sicherstellung der EMV das Einhalten einiger elementarer Regeln. Beachten Sie beim Aufbau der Steuerung deshalb die folgenden Grundregeln.

- Achten sie bei der Montage Ihrer Komponenten auf eine gut ausgeführte flächenhafte Massung der inaktiven Metallteile.
 - Stellen sie eine zentrale Verbindung zwischen der Masse und dem Erde/Schutzleitersystem her.
 - Verbinden Sie alle inaktiven Metallteile großflächig und impedanzarm.
 - Verwenden Sie nach Möglichkeit keine Aluminiumteile. Aluminium oxidiert leicht und ist für die Massung deshalb weniger gut geeignet.
- Achten Sie bei der Verdrahtung auf eine ordnungsgemäße Leitungsführung.
 - Teilen Sie die Verkabelung in Leitungsgruppen ein. (Starkstrom, Stromversorgungs-, Signal- und Datenleitungen).
 - Verlegen Sie Starkstromleitungen und Signal- bzw. Datenleitungen immer in getrennten Kanälen oder Bündeln.
 - Führen sie Signal- und Datenleitungen möglichst eng an Masseflächen (z.B. Tragholme, Metallschienen, Schrankbleche).
- Achten sie auf die einwandfreie Befestigung der Leitungsschirme.
 - Datenleitungen sind geschirmt zu verlegen.
 - Analogleitungen sind geschirmt zu verlegen. Bei der Übertragung von Signalen mit kleinen Amplituden kann das einseitige Auflegen des Schirms vorteilhaft sein.
 - Legen Sie die Leitungsschirme direkt nach dem Schrankeintritt großflächig auf eine Schirm-/Schutzleiterschiene auf, und befestigen Sie die Schirme mit Kabelschellen.
 - Achten Sie darauf, dass die Schirm-/Schutzleiterschiene impedanzarm mit dem Schrank verbunden ist.
 - Verwenden Sie für geschirmte Datenleitungen metallische oder metallisierte Steckergehäuse.
- Setzen Sie in besonderen Anwendungsfällen spezielle EMV-Maßnahmen ein.
 - Erwägen Sie bei Induktivitäten den Einsatz von Löschgliedern.
 - Benutzen Sie zur Beleuchtung von Schränken Glühlampen und vermeiden Sie Leuchtstofflampen.
- Schaffen Sie ein einheitliches Bezugspotential und erden Sie nach Möglichkeit alle elektrischen Betriebsmittel.
 - Achten Sie auf den gezielten Einsatz der Erdungsmaßnahmen. Das Erden der Steuerung dient als Schutz- und Funktionsmaßnahme.
 - Verbinden Sie Anlagenteile und Schränke mit dem System 300V sternförmig mit dem Erde/Schutzleitersystem. Sie vermeiden so die Bildung von Erdschleifen.
 - Verlegen Sie bei Potenzialdifferenzen zwischen Anlagenteilen und Schränken ausreichend dimensionierte Potenzialausgleichsleitungen.

Schirmung von
LeitungenElektrische, magnetische oder elektromagnetische Störfelder werden durch
eine Schirmung geschwächt; man spricht hier von einer Dämpfung.

Über die mit dem Gehäuse leitend verbundene Schirmschiene werden Störströme auf Kabelschirme zur Erde hin abgeleitet. Hierbei ist darauf zu achten, dass die Verbindung zum Schutzleiter impedanzarm ist, da sonst die Störströme selbst zur Störquelle werden.

Bei der Schirmung von Leitungen ist folgendes zu beachten:

- Verwenden Sie möglichst nur Leitungen mit Schirmgeflecht.
- Die Deckungsdichte des Schirmes sollte mehr als 80% betragen.
- In der Regel sollten Sie die Schirme von Leitungen immer beidseitig auflegen. Nur durch den beidseitigen Anschluss der Schirme erreichen Sie eine gute Störunterdrückung im höheren Frequenzbereich.

Nur im Ausnahmefall kann der Schirm auch einseitig aufgelegt werden. Dann erreichen Sie jedoch nur eine Dämpfung der niedrigen Frequenzen. Eine einseitige Schirmanbindung kann günstiger sein, wenn:

- die Verlegung einer Potenzialausgleichsleitung nicht durchgeführt werden kann
- Analogsignale (einige mV bzw. µA) übertragen werden
- Folienschirme (statische Schirme) verwendet werden.
- Benutzen Sie bei Datenleitungen f
 ür serielle Kopplungen immer metallische oder metallisierte Stecker. Befestigen Sie den Schirm der Datenleitung am Steckergeh
 äuse. Schirm nicht auf den PIN 1 der Steckerleiste auflegen!
- Bei stationärem Betrieb ist es empfehlenswert, das geschirmte Kabel unterbrechungsfrei abzuisolieren und auf die Schirm-/Schutzleiter-schiene aufzulegen.
- Benutzen Sie zur Befestigung der Schirmgeflechte Kabelschellen aus Metall. Die Schellen müssen den Schirm großflächig umschließen und guten Kontakt ausüben.
- Legen Sie den Schirm direkt nach Eintritt der Leitung in den Schrank auf eine Schirmschiene auf. Führen Sie den Schirm bis zum System 300V Modul weiter, legen Sie ihn dort jedoch nicht erneut auf!

Bitte bei der Montage beachten!

Bei Potenzialdifferenzen zwischen den Erdungspunkten kann über den beidseitig angeschlossenen Schirm ein Ausgleichsstrom fließen. Abhilfe: Potenzialausgleichsleitung.

Teil 3 Hardwarebeschreibung CPU 31xS

ÜberblickDie CPU 31xS erhalten Sie in verschiedenen Ausführungen, auf die in
diesem Kapitel weiter eingegangen werden soll.
Die Technischen Daten finden Sie am Ende des Kapitels.

Nachfolgend sind beschrieben:

- Aufbau, Bedien- und Anzeigeelemente der SPEED7-CPUs
- Ein-/Ausgabe-Bereich CPU 314ST
- Technische Daten

Inhalt	Thema	Seite
	Teil 3 Hardwarebeschreibung CPU 31xS	
	Systemübersicht	
	Aufbau	
	Komponenten	
	Ein-/Ausgabe-Bereich CPU 314ST	
	Technische Daten	

Systemübersicht

SPEED7-CPUs Diese CPUs sind befehlskompatibel zu STEP[®]7 von Siemens und konzipiert für mittlere und große Anwendungen mit integriertem 24V-Netzteil. Jede CPU besitzt auf der Front einen Steckplatz für Speichermedien, hat ein Ethernet-Interface für PG/OP-, eine RS485-Schnittstelle für Profibus-DP-Master/PtP-Kommunikation und eine MPI-Schnittstelle integriert und ist für zukünftige Speichererweiterung über MCC vorbereitet.

Über standardisierte Befehle und Programme können sie Sensoren abfragen und Aktoren steuern. Je nach CPU-Typ haben Sie zusätzlich einen CP 343 oder eine RS485-Schnittstelle für Kommunikationsaufgaben integriert. Mit dieser CPU-Serie haben Sie Zugriff auf die Peripherie-Module des System 300V für den Standard-Bus.

Zusätzlich besitzen alle CPUs 31xS mit Ausnahme der Basis-Versionen einen parallelen SPEED-Bus, über den Sie modular schnelle Peripherie-Module wie IOs oder Bus-Master ankoppeln können.

Die weitere Beschreibung in diesem Handbuch bezieht sich, wenn nichts anderes erwähnt ist, auf die gesamte SPEED7-CPU-Familie CPU 31xS von VIPA ab Firmware 3.0.0.

	Basis		Technologie	Extension	
	DPM	NET	DPM	DPM	NET
BestNr.	315-2AG10 315-2AG12	315-4NE11 315-4NE12	314-6CF01 314-6CF02	317-2AJ11 317-2AJ12	317-4NE11 317-4NE12
Speicher (50% Code / 50% Daten)	1MB		512kB	21	ЛВ
über MCC	2MB		2MB	81	/B
MP ² I			ja *)		
Echtzeituhr			ja		
Ethernet-PG/OP			ja		
SPEED-Bus		-	ја	j	а
16 DIO/AIO: DI 816xDC24V DO 80 DC24V 0,5A 4 Zähler AI 4x12Bit/AO 2x12Bit AI 1xPt100	-		ja		-
Profibus-Master/PtP		r	ja	1	
CP 343 integriert	-	ja	-	-	ja
Breite	1fach	2fach	2fach	2fa	ach

Die CPUs, deren Best.-Nr. mit 2 endet, haben nur eine MPI-Schnittstelle. Hier ist der Einsatz des Green Cable von VIPA nicht möglich.

*)

Тур	Bestellnummer	Beschreibung
315SB/DPM	VIPA 315-2AG10	MP ² I-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master
315SN/NET	VIPA 315-4NE11	MP ² I-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, CP 343

Тур	Bestellnummer	Beschreibung
315SB/DPM	VIPA 315-2AG12	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master
315SN/NET	VIPA 315-4NE12	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, CP 343

Technologie- Version	 SPEED7-Technologie 512kByte Gesamtspei Speicher erweiterbar b 	und SPEED-Bus integriert cher (256kByte für Code, 256kByte für Daten) bis max. 2MByte (1MByte Code, 1MByte Daten)	
CPU 314ST/DPM 314-6CF01	 Profibus DP-Master integriert unterstützt DP-V0, DP-V1 MP²I-Schnittstelle MCC-Slot für externe Speichermedien und Speichererweiterung Status-LEDs für Betriebszustand und Diagnose Echtzeituhr akkugepuffert Ethernet-PG/OP-Schnittstelle integriert RS485-Schnittstelle konfigurierbar für Profibus DP-Masterbzw. PtP-Kommunikation Schnelle digitale E/As: DI 816xDC24V / DO 80xDC 24V, 0,5A Analoge E/As: AI 4x12Bit / AO 2x12Bit / AI 1xPt100 4 Zähler (100kHz) E/A-Adressbereich digital/analog 8191Byte 512 Zeiten \$192 Merker-Byte 		
DIO 16xDC24V 0 0 1 2 3 4 5 6 7 DIO 1 2 3 4 5 6 7 DIO 0 0 1 2 3 4 5 6 6 7 0 0 1 2 3 4 5 5 6 6 7 7 0 0 0 1 2 3 4 5 5 6 6 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0	VIPA CPU314ST PWR RUN STOP MCC MCC MCC MCC MCC MCC MCC MC	DIO 16x0C24V	

Тур	Bestellnummer	Beschreibung
314ST/DPM	VIPA 314-6CF01	MP ² I-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus,
		DI 816xDC24V / DO 80xDC 24V, 0,5A,
		AI 4x12Bit / AO 2x12Bit / AI 1xPt100, 4 Zähler

Fortsetzung Technologie- Version CPU 314ST/DPM 314-6CF02	 SPEED7-Technologie 512kByte Gesamtspei Speicher erweiterbar k Profibus DP-Master in MPI-Schnittstelle (Ans MCC-Slot für externe k Status-LEDs für Betrie Echtzeituhr akkugeput Ethernet-PG/OP-Schn RS485-Schnittstelle ko 	und SPEED-Bus integriert icher (256kByte für Code, 256kByte für Dater bis max. 2MByte (1MByte Code, 1MByte Date itegriert unterstützt DP-V0, DP-V1 schluss des Green Cable von VIPA nicht mög Speichermedien und Speichererweiterung ebszustand und Diagnose ffert nittstelle integriert onfigurierbar für Profibus DP-Master-	ı) ən) lich)
	 bzw. PtP-Kommunikat Schnelle digitale E/As: Analoge E/As: AI 4x12 4 Zähler (100kHz) E/A-Adressbereich dig 512 Zeiten 512 Zähler 8192 Merker-Byte 	tion : DI 816xDC24V / DO 80xDC 24V, 0,5A 2Bit / AO 2x12Bit / AI 1xPt100 ital/analog 8191Byte	
	IPA CPU314ST RUN ERR STOP DE STOP DE	DIO 16xDC24V	

Тур	Bestellnummer	Beschreibung
314ST/DPM	VIPA 314-6CF02	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus,
		DI 816xDC24V / DO 80xDC 24V, 0,5A,
		AI 4x12Bit / AO 2x12Bit / AI 1xPt100, 4 Zähler

Extension-	 SPEED7-Technologie und SPEED-Bus integriert
Version	 2MByte Gesamtspeicher (1MByte f ür Code, 1MByte f ür Daten)
	 Speicher erweiterbar bis max. 8MByte (4MByte Code, 4MByte Daten)
CPU 317SE/DPM 317-24.111	 Profibus DP-Master integriert (DP-V0, DP-V1)
	- MD ² I Sobrittatalla

CPU 317SN/NET 317-4NE11

- MP²I-Schnittstelle
- MCC-Slot für externe Speichermedien und Speichererweiterung
- Status-LEDs für Betriebszustand und Diagnose
- Echtzeituhr akkugepuffert
- Ethernet-PG/OP-Schnittstelle integriert
- RS485-Schnittstelle konfigurierbar für Profibus-DP-Master- bzw. PtP-Kommunikation
- CP 343 Kommunikationsprozessor integriert (nur VIPA 317-4NE11)
- E/A-Adressbereich digital/analog 8191Byte
- 512 Zeiten
- 512 Zähler
- 8192 Merker-Byte

Тур	Bestellnummer	Beschreibung
317SE/DPM	VIPA 317-2AJ11	MP ² I-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus
317SN/NET	VIPA 317-4NE11	MP ² I-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus, CP 343

Fortsetzung Extension Version

CPU 317SE/DPM 317-2AJ12

CPU 317SN/NET 317-4NE12

- SPEED7-Technologie und SPEED-Bus integriert
- 2MByte Gesamtspeicher (1MByte für Code, 1MByte für Daten)
- Speicher erweiterbar bis max. 8MByte (4MByte Code, 4MByte Daten)
- Profibus DP-Master integriert (DP-V0, DP-V1)
- MPI-Schnittstelle (Anschluss des Green Cable von VIPA nicht möglich)
- MCC-Slot für externe Speichermedien und Speichererweiterung
 - Status-LEDs für Betriebszustand und Diagnose
 - Echtzeituhr akkugepuffert
 - Ethernet-PG/OP-Schnittstelle integriert
 - RS485-Schnittstelle konfigurierbar für Profibus-DP-Master- bzw. PtP-Kommunikation
 - CP 343 Kommunikationsprozessor integriert (nur VIPA 317-4NE12)
 - E/A-Adressbereich digital/analog 8191Byte
 - 2048 Zeiten
 - 2048 Zähler
 - 16384 Merker-Byte

Тур	Bestellnummer	Beschreibung
317SE/DPM	VIPA 317-2AJ12	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus
317SN/NET	VIPA 317-4NE12	MPI-Interface, Karten-Slot, Echtzeituhr, Ethernet-Interface für
		PG/OP, Profibus DP-Master, SPEED-Bus, CP 343

Aufbau

CPU 315SB/DPM 315-2AG1x

CPU 315SN/NET 315-4NE1x

- [1] LEDs des integrierten Profibus-DP-Masters
- [2] Steckplatz für Speichermedien
- [3] LEDs des CPU-Teils
- [4] Betriebsarten-Schalter CPU

Folgende Komponenten befinden sich unter der Frontklappe

- [5] Anschluss für DC 24V Spannungsversorgung
- [6] Twisted Pair Schnittstelle für PG/OP-Kanal
- [7] 315-2AG10 MP²I-Schnittstelle 315-2AG12 MPI-Schnittstelle
- [8] Profibus-DP/PtP-Schnittstelle

- [1] LEDs des integrierten Profibus DP-Masters
- [2] Steckplatz für Speichermedien
- [3] LEDs des CPU-Teils
- [4] Betriebsarten-Schalter CPU

Folgende Komponenten befinden sich unter der Frontklappe

- [5] USB Anschluss
- [6] Twisted Pair Schnittstelle für PG/OP-Kanal
- [7] 315-4NE11 MP²I-Schnittstelle 315-4NE12 MPI-Schnittstelle
- [8] Profibus-DP/PtP-Schnittstelle
- [9] Twisted Pair Schnittstelle für CP 343
- [10] Anschluss für DC 24V Spannungsversorgung

CPU 314ST/DPM

314-6CF0x

CPU 317SE/DPM

317-2AJ1x

- [1] LEDs des integrierten Profibus DP-Masters
- [2] Steckplatz für Speichermedien
- [3] LEDs des CPU-Teils
- [4] LEDs des E/A-Teils
- [5] Betriebsarten-Schalter CPU

Folgende Komponenten befinden sich unter der Frontklappe

- [6] Anschluss für DC 24V Spannungsversorgung
- [7] Twisted Pair Schnittstelle für PG/OP-Kanal
- [8] 314-6CF01 MP²I-Schnittstelle 314-6CF02 MPI-Schnittstelle
- [9] Profibus-DP/PtP-Schnittstelle

- [1] LEDs des integrierten Profibus-DP-Masters
- [2] Steckplatz für Speichermedien
- [3] LEDs des CPU-Teils
- [4] Betriebsarten-Schalter CPU

Folgende Komponenten befinden sich unter der Frontklappe

- [5] USB Anschluss
- [6] Twisted Pair Schnittstelle für PG/OP-Kanal
- [7] 317-2AJ11 MP²I-Schnittstelle 317-2AJ12 MPI-Schnittstelle
- [8] Profibus-DP/PtP-Schnittstelle
- [9] Anschluss für DC 24V Spannungsversorgung

CPU 317SN/NET

317-4NE1x

- [1] LEDs des integrierten Profibus DP-Masters
- [2] Steckplatz für Speichermedien
- [3] LEDs des CPU-Teils
- [4] Betriebsarten-Schalter CPU

Folgende Komponenten befinden sich unter der Frontklappe

- [5] USB Anschluss
- [6] Twisted Pair Schnittstelle für PG/OP-Kanal
- [7] 317-4NE11 MP²I-Schnittstelle 317-4NE12 MPI-Schnittstelle
- [8] Profibus-DP/PtP-Schnittstelle
- [9] Twisted Pair Schnittstelle für CP 343
- [10] Anschluss für DC 24V Spannungsversorgung

Komponenten

CPU 31xS Die hier aufgeführten Komponenten sind Bestandteil jeder CPU 31xS.

LEDs CPU-Teil Die CPU besitzt auf der Front eine LED-Reihe. Die Verwendung und die jeweiligen Farben der LEDs finden Sie in der nachfolgenden Tabelle:

Bezeichnung	Farbe	Bedeutung	
PWR	grün	CPU-Teil wird intern mit 5V versorgt	
RUN	grün	CPU befindet sich im Zustand RUN	
STOP	gelb	CPU befindet sich im Zustand STOP	
SF	rot	Leuchtet bei System Fehler (Hardware-Defekt)	
FRCE	gelb	Leuchtet, sobald Variablen geforced (fixiert) werden.	
MCC	gelb	Blinkt bei Zugriff auf Speicherkarte.	
A	grün	Activity: an: physikalisch verbunden	
		aus: keine physikalische Verbindung	
		blinkt: zeigt Ethernet-Aktivität an	
S	grün	Speed: an: 100MBit	
		aus: 10MBit	

Hinweis!

Alle LEDs des CPU-Teils blinken dreimal, bei Zugriff auf eine ungültige Speicherkarte oder wenn diese während des Lesens gezogen wird.

Steckplatz fürÜber diesen Steckplatz können Sie eine MMC (Multimedia Card) alsSpeichermedienÜber diesen Steckplatz können Sie eine MMC (Multimedia Card) alsSpeichermedium für Programme und Firmware oder eine MCCSpeichererweiterungskarte stecken. Zusätzlich kann die MCC auch als
externes Speichermedium eingesetzt werden.

Beide VIPA-Speicherkarten sind mit dem PC-Format FAT16 vorformatiert und können mit einem Kartenlesegerät beschrieben werden. Ein Zugriff auf die Speicherkarten erfolgt immer nach Urlöschen und PowerON.

Spannungsversorgung

Die CPU besitzt ein eingebautes Netzteil. Das Netzteil ist mit DC 24V zu versorgen. Hierzu dient der DC 24V Anschluss, der sich unter der Frontklappe befindet.

Mit der Versorgungsspannung werden neben der CPU-Elektronik auch die angeschlossenen Module über den Rückwandbus versorgt.

Das Netzteil ist gegen Verpolung und Überstrom geschützt. Die interne Elektronik ist galvanisch an die Versorgungsspannung gebunden.

Bitte beachten Sie, dass das integrierte Netzteil den Rückwandbus (SPEED- und Standard-Bus) je nach CPU in der Summe mit max. 5A versorgen kann. Jede SPEED-Bus-Leiste besitzt eine Steckmöglichkeit für eine externe Spannungsversorgung. Hiermit können Sie den maximalen Strom am Rückwandbus um 6A erhöhen.

Betriebsarten-Schalter

Mit dem Betriebsartenschalter können Sie bei der CPU zwischen den Betriebsarten STOP und RUN wählen. Die Betriebsart ANLAUF wird von der CPU automatisch zwischen STOP und RUN ausgeführt.

Mit der Tasterstellung Memory Reset (MRES) fordern Sie das Urlöschen an mit anschließendem Laden von Speicherkarte (Projekt oder Firmware).

Speicher-
managementJede CPU 31xS hat einen Arbeitsspeicher integriert. Hiervon werden
während des Programmablaufs 50% für Programmcode und 50% für
Daten verwendet.Ab der CDU Firmware 200 beben Sie die Mögliebkeit den Cosemt

Ab der CPU-Firmware 3.0.0 haben Sie die Möglichkeit den Gesamtspeicher mittels einer MCC Speichererweiterungskarte bis zum Maximalspeicher zu erweitern.

MPI-Schnittstelle, MP²I-Schnittstelle in einer Buskommunikation können Sie mit bis zu 12MBaud Programme und Daten zwischen den CPUs transferieren, die über MPI verbunden sind. Zur seriellen Übertragung von Ihrem PC aus ist ein MPI-Umsetzer erforderlich. Sofern Ihre CPU eine MP²I-Schnittstelle besitzt, können Sie für den Datentransfer auch das "Green Cable" einsetzen. Das Green Cable erhalten Sie von VIPA unter der Best.-Nr. 950-0KB00. Sie dürfen das "Green Cable" nur direkt und ausschließlich bei CPUs mit MP²I-Schnittstelle einsetzen. Bitte beachten Sie hierzu auch die Hinweise im Kapitel "Grundlagen"! Bei einer MP²I-Schnittstelle ist die Übertragungsrate auf 1,5MBaud begrenzt. Die MPI-Buchse hat folgende Pinbelegung:

9polige	Buchse
---------	--------

Pin	Belegung
1	reserviert (darf nicht belegt sein) Siehe Hinweise zum Einsatz der MPI-Schnittstelle in Kapitel "Grundlagen".
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

Ethernet-PG/OP- KanalDie RJ45-Buchse dient als Schnittstelle zum Ethernet-PG/OP-Kanal. Mittels dieser Schnittstelle können Sie Ihre CPU programmieren bzw. fernwarten und auf die integrierte Web-Site zugreifen. Projektierbare Verbindungen sind nicht möglich. Die CPU verfügt über max. 2 PG/OP-Verbindungen bei einer Übertragungsrate von 10MBit (Halbduplex).

Damit Sie online auf den Ethernet-PG/OP-Kanal zugreifen können, müssem Sie diesem IP-Adress-Parameter zuweisen. Näheres hierzu finden Sie im Teil "Einsatz CPU 31xS" unter "Initalisierung des Ethernet-PG/OP-Kanals".

Die Buchse hat folgende Belegung:

Pin	Belegung	Pin	Belegung
1	Transmit +	5	-
2	Transmit -	6	Receive -
3	Receive +	7	-
4	-	8	-

Ο

Ο

Kommunikations- Komponenten	Zusätzlich zum Ethernet-PG/OP-Kanal besitzen folgende CPUs weitere Kommunikations-Komponenten:					
	• CPL	J 315SE	3/DPM	Pro	fibus DP-Master / PtP über RS485	
	• CPL	J 315SN	NNET	Pro	fibus DP-Master / PtP über RS485 und CP 343	
	• CPL	J 314ST	Γ/DPM	Pro	fibus DP-Master / PtP über RS485	
	• CPL	J 317SE	E/DPM	Pro	fibus DP-Master / PtP über RS485	
	• CPL	J 317SN	N/NET	Pro	fibus DP-Master / PtP über RS485 und CP 343	
RS485-Schnittstelle mit projektierbarer Funktionalität	Jede C Schnitt Hardwa	PU 31) stelle k are-Kon	kS besit können ifiguratio	zt eine Sie ül on der	e RS485-Schnittstelle. Die Funktionalität dieser ber den Parameter "Funktion RS485" in der CPU am SPEED-Bus einstellen.	
Profibus- Funktionalität	bus- tionalität In der Funktionalität <i>Profibus</i> binden Sie den integrierten Profibus-Ma über die RS485-Schnittstelle an Profibus an. Im Master-Betrieb haber Zugriff auf bis zu 125 DP-Slaves. Die Profibus-Projektierung erfolg Hardware-Konfigurator, von Siemens					
	Zur St Abhäng Auskur	atusan: gig von hft über	zeige k der Be den Be	oesitzt etriebsa triebsz	die CPU auf der Front eine LED-Reihe. art geben die LEDs nach folgendem Schema rustand des Profibus-Teils:	
Master-Betrieb	RUN grün	ERR rot	DE grün	IF rot	Bedeutung	
	0	0	0	0	Master hat keine Projektierung, d.h. die Schnittstelle ist deaktiviert bzw. PtP ist aktiv.	
	•	0	0	0	Master hat Busparameter und befindet sich im RUN ohne Slaves.	
	•	0	¢	0	Master befindet sich im "clear"-Zustand (sicherer Zustand). Die Eingänge der Slaves können gelesen werden. Die Ausgänge sind gesperrt.	
	•	0	•	0	Master befindet sich im "operate"-Zustand, d.h. er tauscht Daten mit den Slaves aus. Ausgänge können angesprochen werden.	
			¢	0	Es fehlt mindestens 1 Slave.	
	0	0	0		Initialisierungsfehler bei fehlerhafter Parametrierung.	
					Wartezustand auf Start-Kommando von der	

Slave-Betrieb	RUN	ERR	DE	IF	Bedeutung
	grün	rot	grün	rot	
	0	0	0	0	Slave hat keine Projektierung bzw. PtP ist aktiv
	ф	0	0	0	Slave ist ohne Master.
	¢	0	ф	0	Abwechselndes Blinken bei Projektierungsfehler (config. fault).
	•	0	•	0	Slave tauscht Daten mit dem Master aus.
	an: 🕒		aus: ()	blinkend: 🔆

CPU.

PtP-Funktionalität Mit der Funktionalität *PtP* ermöglicht die RS485-Schnittstelle eine serielle Punkt-zu-Punkt-Prozessankopplung zu verschiedenen Ziel- oder Quell-Systemen. Unterstützt werden die Protokolle ASCII, STX/ETX, 3964R, USS und Modbus-Master (ASCII, RTU).

RS485-Schnittstelle In beiden Funktionalitäten besitzt die RS485-Schnittstelle die gleiche Pinbelegung:

9-polige Profibus-SubD-Buchse:

Pin	Belegung
1	Schirm
2	M24V
3	RxD/TxD-P (Leitung B)
4	RTS
5	M5V
6	P5V
7	P24V
8	RxD/TxD-N (Leitung A)
9	n.c.

Kommunikations-Prozessor CP 343 bei CPU 315-4NE11). Die Projektierung erfolgt unter NetPro von Siemens als CP343-1EX11.

Über die RJ45-Buchse können Sie den CP 343 an Twisted-Pair-Ethernet anbinden.

Die Buchse hat folgende Belegung:

8-polige RJ45-Buchse:	8-polige	RJ45-Buchse:
-----------------------	----------	--------------

Pin	Belegung
1	Transmit +
2	Transmit -
3	Receive +
4	-
5	-
6	Receive -
7	-
8	-

Ein-/Ausgabe-Bereich CPU 314ST

Übersicht

Die CPU 314ST hat folgende analoge und digitalen Ein- und Ausgabe-Bereiche integriert:

- AI 4x12Bit, 1xPt100
- AO 2x12Bit
- DI 8xDC24V alarmfähig, hiervon die ersten 8 Eingänge als 4 Zähler (100kHz) parametrierbar
- DIO 8xDC24V, 0,5A

Analoger Bereich

Der analoge Bereich besteht aus 4 Eingabe-, 1 Pt100 und 2 Ausgabe-Kanälen. Im Prozessabbild werden für den Analog-Bereich 10Byte für Eingabe und 4Byte für Ausgabe verwendet.

Die Kanäle auf dem Modul sind gegenüber dem SPEED-Bus mittels DC/DC-Wandlern und Optokopplern galvanisch getrennt.

Achtung!

Vorübergehend nicht benutzte analoge Eingänge sind bei aktiviertem Kanal mit der zugehörigen Masse zu verbinden.

Steckerbelegung Statusanzeige

Pin	Belegung		Anschluss	LEDs		
1	Spannungsvers. DC 24V für Analogbereich	_	1 L+ DC 24V 2	+0 L+	1L+	LED (grün) Versorgungs-
2	Spannungsmess. Kanal 0		3 (V) CH0	0.		spannung liegt an
3	Strommessung Kanal 0		<u>4</u> (A)		_	
4	Masse Kanal 0		5		F	LED (rot)
5	Spannungsmess. Kanal 1		6 (V) CH1			Fehler
6	Strommessung Kanal 1		7 A	.5		
7	Masse Kanal 1		8	.6		
8	Spannungsmess. Kanal 2	AI —	9 V	.7		
9	Strommessung Kanal 2		10 A CH2			
10	Masse Kanal 2					
11	Spannungsmess. Kanal 3		12 V			
12	Strommessung Kanal 3		(A) CH3	.0		
13	Masse Kanal 3			11		
14	Pt 100 Kanal 4		15 Pt100	.2		
15	Pt 100 Kanal 4		16			
16	Ausgabe + Kanal 5		18 17 CH5			
17	Masse Ausgabe Kanal 5	0				
18	Ausgabe + Kanal 6		18 10 CH6	7		
19	Masse Ausgabe Kanal 6		<u>19</u>			
20	Masse Spannungsvers. für Analog-Bereich		20 M _{ANA}	<u>•01</u> F		

Hinweis!

Zur Vermeidung von Messfehlern sollte pro Kanal immer nur eine Messart beschaltet sein.

Digitaler Bereich Der digitale Bereich besteht aus 8 Eingängen und 8 Ein-/Ausgängen. Jeder dieser Ein- bzw. Ausgänge zeigt seinen Zustand über eine LED an. Über die Parametrierung können Sie jedem digitalen Eingang Alarm-Eigenschaften zuweisen. Zusätzlich lassen sich die digitalen Eingänge als Zähler parametrieren.

Die Ausgabe-Kanäle besitzen eine Diagnose-Funktion d.h. sobald ein Ausgang aktiv ist, wird der zugehörige Eingang auf "1" gesetzt. Bei einem Kurzschluss an der Last wird der Eingang auf "0" gezogen und durch Auswertung des Eingangs kann der Fehler erkannt werden.

Der DIO-Bereich ist extern mit DC 24V zu versorgen.

Steckerbelegung Statusanzeige

Achtung!

Bitte beachten Sie, dass die an einem Ausgabe-Kanal anliegende Spannung immer ≤ der über L+ anliegenden Versorgungsspannung ist.

Weiter ist zu beachten, dass aufgrund der Parallelschaltung von Ein- und Ausgabe-Kanal je Gruppe ein gesetzter Ausgang über ein anliegendes Eingabesignal versorgt werden kann.

Auch bei ausgeschalteter Versorgungsspannung und anliegendem Eingangssignal bleibt so ein gesetzter Ausgang aktiv. Bei Nichtbeachtung kann dies zur Zerstörung des Moduls führen.

Technische Daten

CPU 315SB/DPM

Elektrische Daten	VIPA 315-2AG10	VIPA 315-2AG12				
Spannungsversorgung	DC 24V					
Stromaufnahme	max. 1A					
Ausgangsstrom zum	max. 3A					
Rückwandbus						
Statusanzeigen (LEDs)	über LEDs auf der Frontseite					
Gesamtspeicher	1MByte (512kByte Code / 512kB	Byte Daten)				
über MCC erweiterbar bis	2MByte (1MByte Code / 1MByte	Daten)				
Externe Speichermedien	MMC (Memory Card), MCC Spe	ichererweiterungskarte				
Anschlüsse / Schnittstellen:						
MP ² I	MPI:	MPI:				
	8 statische / 8 dynamische	8 statische / 8 dynamische				
	Verbindungen (max. 1,5MBaud)	Verbindungen (max. 12MBaud)				
	RS232:					
	38,4kBaud (nur über Green					
	Cable von VIPA)					
RJ45-PG/OP-Kanal	PG/OP-Kanal über Ethernet mit	max. 2 Verbindungen				
RS485	Konfigurierbare Funktionalität über Projektierung: <i>deaktiviert</i> <i>Profibus-DP-Kommunikation</i> - Übertragungsrate: 9,6kBaud bis 12MBaud - max. Teilnehmeranzahl: 32 Stationen pro Segment ohne Repeater, mit Repeater erweiterbar auf 126 - Protokoll: DP-V0, DP-V1, PG/OP-Kommunikation <i>PtP-Kommunikation</i>					
	- Übertragungsrate: 0,15kBaud bis 115,2kBaud					
	- max. Teilnehmeranzahl: AS	CII, RTX/ETX, 3964R: 1				
	Modbus: 256 Stationen, USS	S: 64 Stationen				
	- Protokoll: ASCII, STX/ETX,	3964R, USS _{Master} ,				
	Modbus ASCII _{Master} /RTU _{Master}					
Detteriere fferense e. / Iller	Littling Alder OO To go Dofferen	- / i-				
Batterieputterung / Unr	Lithium-Akku, 30 Tage Pufferun	g / ja				
für Ditensration min	0.015.00	0.010.00				
für Worteneration, min.		0,010µs				
für Fostpunktarithmatik min		0,010µs				
für Gloitpunktarithmotik, min.						
Merkerbyte / Zeiton / Zöhlor						
Rausteine	0132/012/012					
Maße und Cowicht						
Abmessingen (PyHyT) in mm	40x125x120					
	200					
Gewicht in g	230					

CPU 315SN/NET

Elektrische Daten	VIPA 315-4NE11	VIPA 315-4NE12				
Spannungsversorgung	DC 24V					
Stromaufnahme	max. 1A					
Ausgangsstrom zum	max. 3A					
Rückwandbus						
Statusanzeigen (LEDs)	über LEDs auf der Frontseite					
Gesamtspeicher	1MByte (512kByte Code / 512kB	Byte Daten)				
über MCC erweiterbar bis	2MByte (1MByte Code / 1MByte	Daten)				
Externe Speichermedien	MMC (Memory Card), MCC Spe	eichererweiterungskarte				
Anschlüsse / Schnittstellen:						
MP ² I	MPI:	MPI:				
	8 statische / 8 dynamische	8 statische / 8 dynamische				
	Verbindungen (max. 1,5MBaud)	Verbindungen (max. 12MBaud)				
	RS232:					
	38,4kBaud (nur über Green					
	Cable von VIPA)					
RJ45-PG/OP-Kanal	PG/OP-Kanal über Ethernet mit	max. 2 Verbindungen				
RS485	Konfigurierbare Funktionalität ül	ber Proiektieruna:				
	deaktiviert					
	Profibus-DP-Kommunikation					
	- Übertragungsrate: 9,6kBaud	bis 12MBaud				
	- max. Teilnehmeranzahl: 32	Stationen pro Segment ohne				
	Repeater, mit Repeater erweiterbar auf 126					
	- Protokoll: DP-V0, DP-V1, PG/OP-Kommunikation					
	PtP-Kommunikation					
	- Übertragungsrate: 0,15kBau	ld bis 115,2kBaud				
	- max. Teilnehmeranzahl: AS	CII, RTX/ETX, 3964R: 1				
	Modbus: 256 Stationen, USS: 64 Stationen					
	- Protokoll: ASCII, STX/ETX,	3964R, USS _{Master} ,				
	Modbus ASCII _{Master} /RTU _{Master}					
RJ45-Ethernet	Twisted-Pair-Ethernet für CP-Ko	ommunikation:				
	- Übertragungsrate 10/100ME	Bit				
	- Gesamtlänge: max. 100m pi	ro Segment				
	- PG/OP-Kanäle: 8					
	 Projektierbare Verbindunger 	า: 8				
Batterieputferung / Uhr	Lithium-Akku, 30 Tage Pufferun	g / ja				
Bearbeitungszeiten CPU						
für Bitoperation, min.	0,015µs	0,010µs				
fur vvortoperation, min.		0,010µs				
fur Festpunktarithmetik, min.	0,015µs	0,010µs				
Tur Gieitpunktarithmetik, min.		ບ,ບວຽມຣ				
Merkerbyte / Zeiten / Zähler	8192 / 512 / 512					
Bausteine	FBS 2048, FCS 2048, DBS 4095					
Maise und Gewicht						
Abmessungen (BxHxT) in mm	80x125x120					
Gewicht in g	430					

CPU 314ST/DPM CPU 314ST/PtP

Elektrische Daten	VIPA 314-6CF01	VIPA 314-6CF02	
Spannungsversorgung	DC 24V		
Stromaufnahme	max. 1,5A		
Ausgangsstrom zum	max. 5A (Standard + SPEED-Bus)		
Rückwandbus			
Statusanzeigen (LEDs)	über LEDs auf der Frontseite		
Gesamtspeicher	512kByte (256kByte Code / 256	kByte Daten)	
über MCC erweiterbar bis	2MByte (1MByte Code / 1MByte	Daten)	
Externe Speichermedien	MMC (Memory Card), MCC Spe	ichererweiterungskarte	
Anschlüsse / Schnittstellen:			
MP ² I	MPI:	MPI:	
	8 statische / 8 dynamische Verbindungen (max. 1,5MBaud) RS232: 38 4kBaud (nur über Green	8 statische / 8 dynamische Verbindungen (max. 12MBaud)	
	Cable von VIPA)		
RJ45-PG/OP-Kanal RS485	PG/OP-Kanal über Ethernet mit max. 2 Verbindungen Konfigurierbare Funktionalität über Projektierung: <i>deaktiviert</i>		
	Prolibus-DP-Kommunikation	his 12MDaud	
	- Obertragungsrate. 9,6KBaud	DIS 12MBaud	
	- IIIax. Telliferinteratizani. 52	Stationen pro Segment	
	Protokoll: DP V/0 DP V/1 PC	COR Kommunikation	
	PtP-Kommunikation		
	- Übertragungsrate: 0 15kBau	d bis 115 2kBaud	
	- max Teilnehmeranzahl: AS	CII RTX/FTX 3964R ¹	
	Modbus: 256 Stationen, USS	S: 64 Stationen	
	- Protokoll: ASCII. STX/ETX.	3964R. USS _{Master} .	
	Modbus ASCII _{Master} /RTU _{Master}		
SPEED-Bus			
- Datenrate	64MBaud		
 Stromaufnahme 	400mA		
Batteriepufferung / Uhr	Lithium-Akku, 30 Tage Pufferun	g / ja	
Bearbeitungszeiten CPU			
für Bitoperation, min.	0,015µs	0,010µs	
für Wortoperation, min.	0,015µs	0,010µs	
für Festpunktarithmetik, min.	0,015µs	0,010µs	
für Gleitpunktarithmetik, min.	0,090µs	0,058µs	
Merkerbyte / Zeiten / Zähler	8192 / 512 / 512		
Bausteine	FBs 2048, FCs 2048, DBs 4095		
Digitale Eingabe	DI 8 16xDC24V alarmfähig		

Digitale Eingabe	DI 8 16xDC24V alarmfähig
Nenneingangsspannung	DC 24V
Signalspannung "0" / "1"	0 5V / 15 28,8V
2-Draht BERO zul. Ruhestrom:	1,5mA
Eingangsstrom	typ. 7mA
Verlustleistung	3,5W
Potenzialtrennung	500Veff (Feldspannung-Rückwandbus)

Nennlastspannung DC 24V über ext. Netzteil Stromaufnahme an L+ ohne Last 30mA (alle A.x=aus) Ausgangsstrom je Kanal 0,5A kurzschlussfest Potenzialtrennung in Gruppen zu je 8, 500Veff (Feldspannung zum Bus) Analoge Ein-Ausgabe AI 4x12Bit / AO 2x12Bit / AI 1xPt100 Anzahl der Kusgänge 1 Anzahl der Kusgänge 2 Leitungslange: geschirmt 200m Spannungen, Ströme, Potentiale DC 24V Verpolschutz ja Konstantstrom für Widerstandsgeber 1,25mA Verpolschutz ja - Kanal / Spannungsversorgung ja - kranal / Spannungsversorgung ja - swischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen (U _{CM}) DC 11V - aus Rückwandbus 85mA (ohne Last) - aus Rückwandbus 85mA (ohne Last) - aus Versorgungspannung L+ 200 - aus Versorgungspannung L+ 200 - aus Versorgungspannung L+ 200 - aus Rückwandbus - - aus Versorgungspannung 5	Digitale Ausgabe	DO 8.	0xDC	24V, 0,	5A				
Stromufnahme in L+ ohne Last Ausgangsstrom je Kanal 30mA (alle A x=aus) 0,5A kurzschlussfest in Gruppen zu je 8, 500Veff (Feldspannung zum Bus) Anazind der Strom-/Spannungseingånge Anzahl der Widerstandseingånge Anzahl der Widerstandseingånge Anzahl der Widerstandseingånge Anzahl der Miderstandseingånge Anzahl der Miderstandseingånge Anzahl der Miderstandseingånge Anzahl der Kursdange Elektromk Image Strom-/Spannungseingånge Anzahl der Kursdange Elektromk Spannungsversorgung Elektronik DC 24V - Verpolschutz ja Konstantstrom für Widerstandsgeber Bus) Not Kanal / Spannungsversorgung Elektronik - zwischen den Engängen (Ucw) - zwischen den Eingängen (Ucw) - zwischen den Eingängen (Ucw) Stormaufnahme DC 15V / AC 60V - aus Rückwandbus - - aus Rückwandbus - - - aus Versorgungsspannung L+ evensultigtung des Moduls - - - - aus Versorgungsspannung L+ evensultigtung des Moduls - - - - - - - - - - - - - - - - - - -	Nennlastspannung	DC 24	V über	ext. Ne	tzteil				
Ausgangsstom je Kanal 0,5A kurzschlussfest → 14 kr12bit / AO 2x12Bit / AI 1xPt100 Analoge Ein-/Ausgabe AI 4x12bit / AO 2x12Bit / AI 1xPt100 → Anzahl der Viderstandseingänge 4 → → Anzahl der Viderstandseingänge 1 → → → Anzahl der Viderstandseingänge 2 > → → → Spannungen, Ströme, Potentiale 200m > > → <td>Stromaufnahme an L+ ohne Last</td> <td>30mA</td> <td>(alle A.</td> <td>x=aus)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Stromaufnahme an L+ ohne Last	30mA	(alle A.	x=aus)					
Potenzialtrennung in Gruppen zu je 8, 500Veff (Feldspannung zum Bus) Analoge Ein-/Ausgabe All 4x12Bit / AO 2x12Bit / AI 1xPt100 Anzahl der Strom-/Spannungseingänge 4 Anzahl der Widerstandseingänge 1 Anzahl der Ausgahage 2 Leitungslänge: geschirmt 200m Spannungsversorgung L+ DC 24V - Verpolschutz ja Konstantstrom für Widerstandsgeber Potenzialtrennung - Kanal / Spannungsversorgung Elektronik ja - zwischen den Kanälen nein - zwischen den Kanälen nein - zwischen den Eingängen und Mirrenv (Uso) DC 75V / AC 60V Stoating reprüft mit DC 75V / AC 60V Stoating reprüft DC 75V / AC 60V Stormaufnahme - - aus Rückwandbus -	Ausgangsstrom je Kanal	0,5A k	urzschl	ussfest					
Analoge Ein-/Ausgabe Al 4x12Bit / AO 2x12Bit / AI 1xPt100 Anzahl der Widerstandseingånge 4 Anzahl der Widerstandseingånge 1 Anzahl der Widerstandseingånge 2 Leitungslänge: geschirmt 200m Spannungen, Ströme, Potentiale 2 Spannungsersorgung L+ DC 24V Verpolschutz ja Konstantstrom für Widerstandsgeber ja Stand / Rückwandbus (SPEED-Bus) ja Stand / Rückwandbus (SPEED-Bus) ja - zwischen den Eingången (UGw) DC 11V - zwischen den Eingången (UGw) DC 11V - zwischen den Eingången (UGw) DC 500V Stromaufnahme - - aus Rückwandbus	Potenzialtrennung	in Gru	ppen zı	ı je 8, 5	00Veff	(Feldsp	annung	zum B	us)
Anzahi der Strom-/Spannungseingånge 4 Anzahi der Ausgånge 2 Leitungslänge: geschirmt 200m Spannungsversorgung L+ DC 24V - Verpolschutz ja Konstantstrom für Widerstandsgeber J. 25mA Potenzialtrennung - Kanal / Rückwandbus (SPEED- Bus) - Kanal / Rückwandbus (SPEED- Bus) ja - zwischen den Kanälen nein Zulässige Potenzialtifferenz - Versonden Eingängen (Un) - zwischen den Eingängen (Un) DC 11V - zwischen den Eingängen (Un) DC 75V / AC 60V Stormufnahme - - aus Rückwandbus - - aus Rückwandbus - - aus Versorgungsspannung L+ 200 Verlustleistung des Moduls 2W Manaloymethöldung Eingänge 200 Martigereich 10 12 14 15 16 16 16 Störspannungsvert (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16	Analoge Ein-/Ausgabe	AI 4x1	2Bit / A	O 2x12	Bit / Al	1xPt10)		
Anzahl der Widerstandseingänge 1 Anzahl der Ausgänge 2 Leitungslänge: geschirmt 200m Spannungen, Ströme, Potentiale DC 24V Spannungsversorgung L+ DC 24V Verpolschutz ja Konstantstrom für Widerstandsgeber 1,25mA Potenzialtrennung 1,25mA - Kanal / Rückwandbus (SPEED- Bus) ja - Kanal / Spannungsversorgung Elektronik nein - zwischen den Kanälen DC 11V - zwischen den Eingängen (U _{GM}) DC 75V / AC 60V - zwischen den Eingängen (U _{GM}) DC 75V / AC 60V Stromaufnahme - - aus Rückwandbus - - aus Rückwandbus - - aus Versorgungspannung L+ Verlustleistung des Moduls - aus Versorgungspannung L+ 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Grundwandlungszeit	Anzahl der Strom-/Spannungseingänge	4							
Anzahl der Ausgänge 2 Leitungslänge: geschirmt 200m Spannungen, Ströme, Potentiale	Anzahl der Widerstandseingänge	1							
Leitungslänge: geschirmt 200m Spannungen, Ströme, Potentiale Spannungeversorgung L+ - Verpolschutz 'a Konstantstrom für Widerstandsgeber' Potenzialtrennung - Kanal / Rückwandbus (SPEED- Bus) Kanal / Spannungsversorgung Elektronik - zwischen den Eingängen (U _{CM}) - zwischen den Eingänge - aus Rückwandbus - aus Rückwandbus - aus Rückwandbus - aus Rückwandbus - aus Versorgungspannung L+ Verlustleistung des Moduls 2W Analogwertbildung Eingänge - aus Versorgungsperich - finde für gegeben) - finde für des f	Anzahl der Ausgänge	2							
Spannungen, Ströme, Potentiale DC 24V Spannungsversorgung L+ DC 24V - Verpolschutz ja Konstantstrom für Widerstandsgeber 1,25mA Potenzialtrennung 1,25mA - Kanal / Rückwandbus (SPEED- Bus) ja - Kanal / Rückwandbus (SPEED- Bus) ja - Kanal / Spannungsversorgung Elektronik ja - zwischen den Eingången (U _{CM}) DC 11V - zwischen den Eingången und MiNTERN (UISO) DC 75V / AC 60V Isolation geprüft mit DC 500V Stomaufnahme - - aus Versorgungsspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 2W Analogwertbildung Eingånge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar ja Wandlungsgeschwindigkeit (Hz) 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 5 6 7 <t< td=""><td>Leitungslänge: geschirmt</td><td>200m</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Leitungslänge: geschirmt	200m							
Spannungsversorgung L+ - Verpolschutz DC 24V ja Konstantstrom für Widerstandsgeber Potenzialtrennung 1,25mA - Kanal / Rückwandbus (SPEED- Bus) ja - Kanal / Spannungsversorgung Elektronik ja - zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen und M _{MTERN} (U _{ISO}) DC 75V / AC 60V Stormaufnahme - - aus Rückwandbus - - Grundszeit (ms) - - Grundszeit (ms) - - Grundszeit (ms) - - Grundszeit (ms) - - Grundszeit (murgszeit des Moduls in ms (alle Kanäle freigegeben) - - Sürfereguenz 11 in Hz	Spannungen, Ströme, Potentiale								
- Verpolschutz ja Konstantstrom für Widerstandsgeber ja Potenzialtrennung 1,25mA Busy ja - Kanal / Rückwandbus (SPEED- Busy) ja - Kanal / Spannungsversorgung Elektronik ja - Zulassige Potenzialtiffernz nein - zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen und Murtere, (Ulso) DC 75V / AC 60V Stormaufnahme - - aus Ruckwandbus - - aus Versorgungsspannung L+ 200 Verlustleistung des Moduls 2W Manalogwerbildung Eingänge Wandlungszeit/Auftösung (pro Kanal) Messprinzip - parametrierbar - Wandlungsgeschwindigkeit (Hz) 120 60 30 15 7.5 3.7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 Störfrequenz 11 in Hz - - - - - - Grundwasführungszeit d	Spannungsversorgung L+	DC 24	V						
Konstantistrom für Widerstandsgeber Potenzialtrennung 1,25mA - Kanal / Rückwandbus (SPEED- Bus) ja - Kanal / Spannungsversorgung Elektronik ja - zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen und M _{NTEER} (U _{SO}) DC 75V / AC 60V Isolation geprüft mit DC 500V Stromaufnahme - - aus Rückwandbus - - aus Versorgungspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 200 Manalogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip - parametrierbar - Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7.5 3.7 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bt) 10 12 14 15 16 16 16 Störfrequerz f1 in Hz - -	- Verpolschutz	ja							
Potenzialtrennung - Kanal / Rückwandbus (SPEED- Bus) - Kanal / Spannungsversorgung Elektronik - zwischen den Kanälen 2ulässige Potenzialdifferenz - zwischen den Eingängen und M _{NTERN} (U _{SO}) Isolation geprüft mit Stromaufnahme - aus Rückwandbus - aus Versorgungsspannung L+ Verlustleistung des Moduls ZW Analogwertbildung Eingänge Wandlungszeit (ms) Grundwandlungszeit (ms) Auffösung (Bit) inkl. Übersteuerungsbereich Störfrequenz f1 in Hz Grundausführungszeit des Moduls in ms (alle Kanäle freigegeben) Glättung der Messwerte Analogwertbildung Lest ±10V, ±20mA 0 10V, 020mA +10Bit Wandlungszeit (pro Kanal) 1.0 ms Einschwingzeit - ohmsche Last 0,2ms - induktive Last 0,2ms	Konstantstrom für Widerstandsgeber	1,25m	А						
- Kanal / Rückwandbus (SPEED- Bus) - Kanal / Spannungsversorgung Elektronik - zwischen den Kanälen - zwischen den Eingängen (U _{CM}) - zwischen den Eingängen und M _{INTERN} (U _{ISO}) Stromaufnahme - aus Versorgungsspannung L+ Verlustleistung des Moduls - aus Versorgungsget (ms) Auflösung (Bit) inkl. Übersteuerungsbereich ±10/, ±20 mA 0 10V, 0 20mA ±10K, ±20mA - aus Quer Messwerte - aus Quer Messwerte - ausorgungsget - ohmsche Last - ohmsche Last	Potenzialtrennung								
Bus) - Kanal / Spannungsversorgung Elektronik - zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingången (U _{CM}) DC 11V - zwischen den Eingången (U _{CM}) DC 75V / AC 60V - zwischen den Eingången und M _{MTERN} (U _{ISO}) DC 75V / AC 60V Isolation geprüft mit DC 500V Stromaufnahme - - aus Versorgungsspannung L+ 2W Verlustleistung des Moduls - Analogwertbildung Eingånge Wandlungszeit/Auflösung (pro Kanal) Messprinzip - parametrierbar - Vandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 Störspannungsuhterdrückung für stöfrequenz f1 in Hz - - - -	- Kanal / Rückwandbus (SPEED-	ja							
- Kanal / Spannungsversorgung Elektronik ja - Zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingången (U _{CM}) DC 11V - zwischen den Eingången und M _{MTERN} (U _{ISO}) DC 11V - zwischen den Eingången und M _{MTERN} (U _{ISO}) DC 75V / AC 60V Isolation geprüft mit DC 500V Stromaufnahme - - aus Rückwandbus - - aus Kückwandbus 2W Analogwertbildung Eingånge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar ja Vandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für nein 50 und 60Hz 50 50 45 90 170 340 670 1340 Glätung der Messwerte keine <t< td=""><td>Bus)</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Bus)	-							
Elektronik nein - zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingängen und DC 11V - zwischen den Eingängen und DC 75V / AC 60V Mintren (Uiso) DC 500V Stromaufnahme - - aus Rückwandbus - - aus Versorgungsspannung L+ 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 Störspannungsunterdrückung für nein 50 und 60Hz 50 und 60Hz 50 und 60Hz Grundausführungszeit des Moduls in 30 35 45 90 170 340 670 1340 Glättung der Messwerte keine Keine Auflösung inkl. Überste	- Kanal / Spannungsversorgung	ja							
- zwischen den Kanälen nein Zulässige Potenzialdifferenz - - zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen (U _{SO}) DC 75V / AC 60V Isolation geprüft mit DC 500V Stromaufnahme - - aus Rückwandbus - - aus Versorgungsspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip - parametrierbar ja Mandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störfrequenz f1 in Hz rein 50 und 60Hz 50 und 60Hz 50 und 60Hz 50 und 60Hz 60 maint 1340 670 1340 Grundausführungszeit des Moduls in ms (alle Kanäle freigegeben) 30 35 45 90 170 <td< td=""><td>Elektronik</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Elektronik	-							
Zulässige Potenzialdifferenz	- zwischen den Kanälen	nein							
- zwischen den Eingängen (U _{CM}) DC 11V - zwischen den Eingängen und M _{INTERN} (U _{ISO}) DC 75V / AC 60V Isolation gerüft mit DC 500V Stromaufnahme - - aus Rückwandbus - - aus Versorgungsspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Ka=al) Messprinzip - parametrierbar - Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 Störspannungsunterdrückung für Störspannungsunterdrückung für S0 35 45 90 170 340 670 1340 Glättung der Messwerte - - - - - - - Auflösung inkl. Übersteuerungsbereich 11Bit + Vorzeichen 10Bit - - - <td>Zulässige Potenzialdifferenz</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Zulässige Potenzialdifferenz								
- zwischen den Eingängen und M _{NTTERN} (U _{ISO}) Isolation geprüft mit - aus Rückwandbus - aus Rückwandbus - aus Versorgungsspannung L+ Verlustleistung des Moduls Analogwertbildung Eingänge Massprinzip parametrierbar Vandlungsgeschwindigkeit (Hz) Integrationszeit (ms) Grundwandlungszeit (ms) Auflösung (Bit) inkl. Übersteuerungsbereich Mis (alle Kanäle freigegeben) Glättung der Messwerte Analogwertbildung Ausgänge Auflösung inkl. Übersteuerungsbereich ± 10V, 120M Mis (alle Kanäle freigegeben) Glättung der Messwerte Auflösung inkl. Übersteuerungsbereich ± 10V, 120M Mis (Jersteuerungsbereich ± 10V, 200M Mis (Jersteuerungsbereich ± 10V, 120M Mis (Jersteuerungsbereich ± 10V, 200M Mis (Jersteuerungsbereich ± 10V, 200M Mis (Jersteuerungsbereich ± 10V, 120M Mis (Jersteuerungsbereich ± 10V, 200M Mis (Jersteuerungsbereich ± 10V, 420M Mis (Jersteue	- zwischen den Eingängen (U _{см})	DC 11	V						
M _{INTERN} (U _{ISO}) DC 75V / AC 60V Isolation geprüft mit DC 500V Stromaufnahme - - aus Rückwandbus - - aus Rückwandbus - - aus Versorgungsspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar - Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 Störspannungsunterdrückung für nein 50 und 60Hz 50 und 60Hz 50 und 60Hz Grundausführungszeit des Moduls in 30 35 45 90 170 340 670 1340 Glättung der Messwerte keine Keine 420mA 11Bit Vorz	- zwischen den Eingängen und								
Isolation geprüft mit Stromaufnahme DC 500V - aus Rückwandbus - - aus Rückwandbus - - aus Versorgungsspannung L+ 85mA (ohne Last) Verlustleistung des Moduls 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip ja parametrierbar - Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für Störfrequenz f1 in Hz nein 50 und 60Hz 50 und 60Hz 50 und 60Hz Grundausführungszeit des Moduls in sna (alle Kanäle freigegeben) 30 35 45 90 170 340 670 1340 Glättung der Messwerte - - - - - - - Auflösung inkl. Übersteuerungsbereich ±10V, ±20mA 11Bit + Vorzeichen - - -<	M _{INTERN} (U _{ISO})	DC 75	V / AC	60V					
Stromaufnahme - aus Rückwandbus - aus Versorgungsspannung L+ Verlustleistung des Moduls- 85mA (ohne Last)Analogwertbildung Eingänge parametrierbarWandlungszeit/Auflösung (pro Kanal)MessprinzipSigma-DeltaparametrierbarjaWandlungsgeschwindigkeit (Hz) furtegrationszeit (ms)2001701206030157,53,7Integrationszeit (ms)568173367133270Grundwandlungszeit (ms)679183468134268Auflösung (Bit) inkl. Übersteuerungsbereich10121415161616Störrspannungsunterdrückung für störfrequenz 11 in Hznein50und 60Hz501340Grundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der Messwerte	Isolation geprüft mit	DC 50	0V						
- aus Rückwandbus - aus Versorgungsspannung L+ Verlustleistung des Moduls Analogwertbildung Eingänge Messprinzip parametrierbar Wandlungsgeschwindigkeit (Hz) parametrierbar Wandlungsgeschwindigkeit (Hz) Integrationszeit (ms) Grundwandlungszeit (ms) Grundwandlungszeit (ms) Auflösung (Bit) inkl. Übersteuerungsbereich Störspannungsunterdrückung für Störspannungsunterdrückung für Störfrequenz f1 in Hz Grundausführungszeit des Moduls in ms (alle Kanäle freigegeben) Glättung der Messwerte Auflösung inkl. Übersteuerungsbereich ±10V, ±20mA 0 10V, 0 20mA Malogwertbildung Ausgänge Auflösung inkl. Übersteuerungsbereich ±10V, ±20mA 0 10V, 0 20mA Mandlungszeit (pro Kanal) Einschwingzeit - ohmsche Last 0,2ms - induktive Last 0,2ms	Stromaufnahme								
- aus Versorgungsspannung L+ Verlustleistung des Moduls 85mA (ohne Last) 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip ja parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für Störfrequenz f1 in Hz 30 35 45 90 170 340 670 1340 Glättung der Messwerte keine Analogwertbildung Ausgänge keine Auflösung inkl. Übersteuerungsbereich ±10V, ±20mA 11Bit + Vorzeichen 1340 670 1340 Glättung der Messwerte 11Bit + Vorzeichen 14 15 16 670 1340 Gundausgünge 1	 aus Rückwandbus 	-							
Verlustleistung des Moduls 2W Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für rein rein 50 und 60Hz 50 und 60Hz Grundausführungszeit des Moduls in 30 35 45 90 170 340 670 1340 Glättung der Messwerte keine keine </td <td> aus Versorgungsspannung L+ </td> <td colspan="2">85mA (ohne Last)</td> <td></td>	 aus Versorgungsspannung L+ 	85mA (ohne Last)							
Analogwertbildung Eingänge Wandlungszeit/Auflösung (pro Kanal) Messprinzip Sigma-Delta parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für 50 mein 50 und 60Hz 50 und 60Hz Störspannungsunterdrückung für 30 35 45 90 170 340 670 1340 Glättung der Messwerte keine Auflösung inkl. Übersteuerungsbereich 11Bit + Vorzeichen 118: 4 .20mA 670 1340 Glättung der Messwerte 11Bit 4	Verlustleistung des Moduls	2W							
Messprinzip Sigma-Delta parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für 50 mein 10 12 14 15 16 16 16 16 Störspannungsunterdrückung für 10 12 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1340 16 16 16 16 16 16 16 16 16 16 16 16 16 16 <td>Analogwertbildung Eingänge</td> <td></td> <td>Wa</td> <td>ndlungs</td> <td>zeit/Au</td> <td>flösung</td> <td>(pro Ka</td> <td>inal)</td> <td></td>	Analogwertbildung Eingänge		Wa	ndlungs	zeit/Au	flösung	(pro Ka	inal)	
parametrierbar ja Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 16 16 16 16 Störspannungsunterdrückung für 5 rein rein 50 und 60Hz 16	Messprinzip				Sigma	-Delta			
Wandlungsgeschwindigkeit (Hz) 200 170 120 60 30 15 7,5 3,7 Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16<	parametrierbar				j	а			
Integrationszeit (ms) 5 6 8 17 33 67 133 270 Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16	Wandlungsgeschwindigkeit (Hz)	200	170	120	60	30	15	7,5	3,7
Grundwandlungszeit (ms) 6 7 9 18 34 68 134 268 Auflösung (Bit) 10 12 14 15 16 1	Integrationszeit (ms)	5	6	8	17	33	67	133	270
Auflösung (Bit) inkl. Übersteuerungsbereich1012141516161616Störspannungsunterdrückung für Störfrequenz f1 in Hznein50 und 60HzGrundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeinekeinekeinekeinekeinekeineAnalogwertbildung Ausgänge11Bit + Vorzeichen11Bit + Vorzeichen11Bit + Vorzeichenkeinekeine0 10V, 0 20mA11Bit10Bit10Bit10BitkeinekeinekeineWandlungszeit (pro Kanal)1,0ms0,2ms0,2mskeinekeinekeineeinschwingzeit - ohmsche Last - induktive Last0,2ms0,2mskeinekeinekeine	Grundwandlungszeit (ms)	6	7	9	18	34	68	134	268
inkl. Übersteuerungsbereich101214151616161616Störspannungsunterdrückung für Störfrequenz f1 in Hznein50 und 60HzGrundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeineAnalogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen11 <td>Auflösung (Bit)</td> <td>10</td> <td>40</td> <td>4.4</td> <td>45</td> <td>10</td> <td>10</td> <td>10</td> <td>10</td>	Auflösung (Bit)	10	40	4.4	45	10	10	10	10
Störspannungsunterdrückung für Störfrequenz f1 in Hznein50 und 60HzGrundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeineAnalogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit 10Bit4 20mA10Bit 1,0msEinschwingzeit - ohmsche Last - induktive Last0,2ms- induktive Last - induktive Last0,2ms	inkl. Übersteuerungsbereich	10	12	14	15	16	16	16	16
Störfrequenz f1 in Hznein50 und 60HzGrundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeineAnalogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit 1,0ms10Bit </td <td>Störspannungsunterdrückung für</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>50</td> <td></td> <td></td>	Störspannungsunterdrückung für						50		
Grundausführungszeit des Moduls in ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeineAnalogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit 10Bit4 20mA10BitWandlungszeit (pro Kanal)1,0msEinschwingzeit - ohmsche Last - induktive Last0,2ms- induktive Last0,2ms	Störfrequenz f1 in Hz		ne	ein			50 und	1 60HZ	
ms (alle Kanäle freigegeben)303545901703406701340Glättung der MesswertekeineAnalogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit 10Bit4 20mA10BitWandlungszeit (pro Kanal)1,0msEinschwingzeit - ohmsche Last - kapazitive Last0,2ms- induktive Last0,2ms	Grundausführungszeit des Moduls in	00	05	4.5	00	470	0.40	070	10.10
Glättung der Messwerte keine Analogwertbildung Ausgänge	ms (alle Kanäle freigegeben)	30	35	45	90	170	340	670	1340
Analogwertbildung AusgängeAuflösung inkl. Übersteuerungsbereich ±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit 4 20mA4 20mA10BitWandlungszeit (pro Kanal)1,0msEinschwingzeit - ohmsche Last0,2ms - induktive Last0,2ms- induktive Last0,2ms	Glättung der Messwerte	keine							
Auflösung inkl. Übersteuerungsbereich ±10V, ±20mA 11Bit + Vorzeichen 0 10V, 0 20mA 11Bit 4 20mA 10Bit Wandlungszeit (pro Kanal) 1,0ms Einschwingzeit 0,2ms - ohmsche Last 0,5ms - induktive Last 0,2ms	Analogwertbildung Ausgänge								
±10V, ±20mA11Bit + Vorzeichen0 10V, 0 20mA11Bit4 20mA10BitWandlungszeit (pro Kanal)1,0msEinschwingzeit0,2ms- ohmsche Last0,5ms- induktive Last0,2ms	Auflösung inkl. Übersteuerungsbereich								
0 10V, 0 20mA11Bit4 20mA10BitWandlungszeit (pro Kanal)1,0msEinschwingzeit0,2ms- ohmsche Last0,5ms- induktive Last0,2ms	±10V. ±20mA	11Bit	+ Vorze	ichen					
4 20mA 10Bit Wandlungszeit (pro Kanal) 1,0ms Einschwingzeit 0,2ms - ohmsche Last 0,5ms - induktive Last 0,2ms	0 10V. 0 20mA	11Bit							
Wandlungszeit (pro Kanal)1,0msEinschwingzeit - ohmsche Last0,2ms- kapazitive Last0,5ms- induktive Last0,2ms	4 20mA	10Bit							
Einschwingzeit 0,2ms - ohmsche Last 0,5ms - induktive Last 0,2ms	Wandlungszeit (pro Kanal)	1,0ms							
- ohmsche Last0,2ms- kapazitive Last0,5ms- induktive Last0.2ms	Einschwingzeit	,,,,,,,,							
- kapazitive Last 0,5ms - induktive Last 0.2ms	- ohmsche Last	0.2ms							
- induktive Last 0.2ms	- kapazitive Last	0,5ms							
	- induktive Last	0,2ms							

... Fortsetzung Technische Daten

... Fortsetzung Technische Daten

Störunterdrückung, Fehlergrenzen Eingänge			
Störunterdrückung für f=n x (f1 ±1%) (f1	=Störfrequenz, n=1,2,)		
Gleichtaktstörung (U _{CM} < 11V)	> 80dB		
Gegentaktstörung	> 80dB		
(Spitzenwert der Störung < Nennwert			
des Eingangsbereiches)			
Übersprechen zwischen den	> 50dB		
Eingängen			
Gebrauchsfehlergrenze (nur bis 120W/s	s gültig)		
(im gesamten Temperaturbereich, bezo	gen auf den Eingangsbereich)		
	Messbereich	Toleranz	
Spannungseingang	0 10V	±0,4%	
	±10V	±0,3%	
Stromeingang	±20mA	±0,3%	
	0 20mA	±0,6%	
	4 20mA	±0,8%	
Widerstand	0 600Ω	±0,4%	
Widerstandsthermometer	Pt100, Pt1000	±0,6%	
	Ni100, Ni1000	±1,0%	
Grundfehlergrenze (nur bis 120W/s gültig)			
(Gebrauchsfehlergrenze bei 25°C, bezogen auf den Eingangsbereich)			
Spannungseingang	0 10V	±0,3%	
	±10V	±0,2%	
Stromeingang	±20mA	±0,2%	
	0 20mA	±0,4%	
	4 20mA	±0,5%	
Widerstand	0 600Ω	±0,2%	
Widerstandsthermometer	Pt100, Pt1000	±0,4%	
	Ni100, Ni1000	±0,5%	
Temperaturfehler			
(bezogen auf den Eingangsbereich)		±0,005%/K	
Linearitätsfehler			
(bezogen auf den Eingangsbereich)		±0,02%	
Wiederholgenauigkeit			
(eingeschwungener Zustand bei 25°C,		±0,05%	
bezogen auf den Eingangsbereich)			
Störunterdrückung, Fehlergrenzen Ausgänge			
Ubersprechen zwischen den	> 400	dB	
Ausgängen			
Gebrauchsfehlergrenze (im gesamten T	emperaturbereich bezogen au	f den Ausgangsbereich)	
	Messbereich	Toleranz	
Spannungsausgang	0 10V	±0,8%	
	±10V	±0,4%	
Stromausgang	±20mA	±0,4% ¹⁾	
	0 20mA	±0,6% ¹⁾	
	4 20mA	±0,8% ¹⁾	

... Fortsetzung Technische Daten

Grundfehlergrenze (Gebrauchsfehlergrenze, bei 25°C, bezogen auf den Ausgangsbereich)			
	Messbereich	Toleranz	
Spannungsausgang	0 10V	±0,6%	
	±10V	±0,3%	
Stromausgang	±20mA	$\pm 0.3\%^{1)}$	
	0 20mA	±0,4% ¹⁾	
	4 20mA	±0,5% ¹⁾	
Temperaturfehler	±0,01%/K	,	
(bezogen auf Ausgangsbereich)			
Linearitätsfehler	±0,05%		
(bezogen auf Ausgangsbereich)			
Wiederholgenauigkeit	±0,05%		
(im eingeschwungenen Zustand bei			
25°C bezogen auf Ausgangsbereich)			
Ausgangswelligkeit;	±0,05%		
Bandbreite 0 bis 50kHz			
(bezogen auf Ausgangsbereich)			
Status, Alarme, Diagnose			
Diagnosealarm	parametrierbar		
Diagnosefunktionen			
- Sammelfehleranzeige	rote LED (SF)		
 Diagnoseinformation auslesbar 	möglich		
Ersatzwerte aufschaltbar	ja		
Daten zur Auswahl des Gebers			
Spannungseingang			
±10V, 0 10V	120kΩ		
Stromeingang			
±20mA, 0 20mA, 4 20mA	33Ω		
Widerstand			
0600Ω	10ΜΩ		
Widerstandsthermometer			
Pt100, Pt1000, Ni100, Ni1000	10ΜΩ		
Zulässige Eingangsspannung für	25V		
Spannungseingang (Zerstörgrenze)			
Zulässige Eingangsstrom für	30mA		
Stromeingang (Zerstörgrenze)			
Anschluss der Signalgeber			
- Spannungsmessung	ja		
- Strommessung			
als 2-Drahtmessumformer	möglich mit externer Versorgung		
als 4-Drahtmessumformer	ja		
- Widerstandsmessung			
mit 2-Leiteranschluss	ja		
Kennlinien-Linearisierung			
- für Widerstandsthermometer	Pt100, Pt1000, Ni100, Ni1000		

... Fortsetzung Technische Daten

Daten zur Auswahl des Aktors	
Ausgangsbereiche (Nennwerte)	
- Spannung	0 10V, ±10V
- Strom	4 20mA, 0 20mA, ±20mA
Bürdenwiderstand	
(im Nennbereich des Ausgangs)	
 Spannungsausgänge 	min. 1kΩ
kapazitive Last	max. 1μF
- Stromausgänge	max. 500Ω
induktive Last	max. 10mH
Spannungsausgang	
- Kurzschlussschutz	ja
- Kurzschlussstrom	max. 31mA
Stromausgang	
- Leerlaufspannung	max. 13V
Zerstörgrenze gegen von außen	
angelegte Spannungen/Ströme	
 Spannung an den Ausgängen 	max. 15V
gegen M _{ANA}	
- Strom	max. 30mA
Anschluss der Aktoren	
 Spannungsausgang 	2-Leiteranschluss
- Stromausgang	2-Leiteranschluss
Maße und Gewicht	
Abmessungen (BxHxT)	80x125x120
Gewicht	480g

 $^{1)}$ Die Fehlergrenzen wurden mit einer Last von R=10 $\!\Omega$ ermittelt.

CPU 317SE/DPM

Elektrische Daten	VIPA 317-2AJ11	VIPA 317-2AJ12	
Spannungsversorgung	DC 24V		
Stromaufnahme	max. 1,5A		
Ausgangsstrom zum	max. 5A (Standard + SPEED-Bu	us)	
Rückwandbus			
Statusanzeigen (LEDs)	über LEDs auf der Frontseite		
Gesamtspeicher	2MByte (1MByte Code / 1MByte	e Daten)	
über MCC erweiterbar bis	8MBvte (4MBvte Code / 4MBvte	Daten)	
Externe Speichermedien	MMC (Memory Card), MCC Spe	chererweiterungskarte	
Anschlüsse / Schnittstellen:		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
MP ² I	MPI:	MPI:	
	8 statische / 8 dynamische	8 statische / 8 dynamische	
	Verbindungen (max.1,5MBaud)	Verbindungen (max.12MBaud)	
	RS232:		
	38,4kBaud (nur über Green		
	Cable von VIPA)		
RJ45-PG/OP-Kanal	PG/OP-Kanal über Ethernet mit	max. 2 Verbindungen	
RS485	Konfigurierbare Funktionalität ül	ber Projektierung:	
	deaktiviert		
	Profibus-DP-Kommunikation		
	- Ubertragungsrate: 9,6kBaud	bis 12MBaud	
	- max. Teilnehmeranzahl: 32	Stationen pro Segment ohne	
	Repeater, mit Repeater erwe	eiterbar auf 126.	
	- Protokoli: DP-V0, DP-V1, PC	5/OP-Kommunikation	
	PtP-Kommunikation	d his 115 OkDaud	
	- Obertragungsrate: 0,15kBau		
	- max. Telinenmeranzani: AS	CII, RIA/EIA, 3904R. I	
	- PTOLOKOII. ASCII, STA/ETA,	J904R, USS _{Master} ,	
	Moubus ASCHMaster/111	2 Master	
- Datenrate	64MBaud		
- Stromaufnahme	400mA		
Batteriepufferung / Uhr	Lithium-Akku, 30 Tage Pufferun	g/ia	
Bearbeitungszeiten CPU		<u>ع</u> الم	
für Bitoperation. min.	0.015µs	0.010µs	
für Wortoperation, min.	0.015us	0.010us	
für Festpunktarithmetik. min.	0.015us	0.010us	
für Gleitpunktarithmetik, min.	0,090µs	0,058µs	
Merkerbyte / Zeiten / Zähler	8192 / 512 / 512	16384 / 2048 / 2048	
Bausteine	FBs 2048, FCs 2048,	FBs 8192, FCs 8192,	
	DBs 4095	DBs 8190	
Profibus Schnittstelle			
Schnittstelle	RS485		
Übertragungsrate	9,6kBaud bis 12MBaud		
Gesamtlänge	ohne Repeater 100m, bei 12MBaud mit Repeater bis 1000m		
max. Teilnehmeranzahl	32 Stationen in jedem Segment ohne Repeater.		
	Mit Repeater erweiterbar auf 126.		
Protokoll	DP-V0, PG/OP-Kommunikation		
Maße und Gewicht			
Abmessungen (BxHxT) in mm	80x125x120		
Gewicht in g	420		

CPU 317SN/NET

Elektrische Daten	VIPA 317-4NE11	VIPA 317-4NE12
Spannungsversorgung	DC 24V	
Stromaufnahme	max. 1,5A	
Ausgangsstrom zum	max. 5A (Standard + SPEED-B	us)
Rückwandbus		
Statusanzeigen (LEDs)	über LEDs auf der Frontseite	
Gesamtspeicher	2MByte (1MByte Code / 1MByte	e Daten)
über MCC erweiterbar bis	8MByte (4MByte Code / 4MByte	e Daten)
Externe Speichermedien	MMC (Memory Card), MCC Spe	eichererweiterungskarte
Anschlüsse / Schnittstellen:		
MP ² I	MPI:	MPI:
	8 statische / 8 dynamische	8 statische / 8 dynamische
	Verbindungen (max.1,5MBaud)	Verbindungen (max.12MBaud)
	RS232:	
	38,4kBaud (nur über Green	
	Cable von VIPA)	
RJ45-PG/OP-Kanal	PG/OP-Kanal über Ethernet mit	max. 2 Verbindungen
RS485	Konfigurierbare Funktionalität ü	ber Projektierung:
	deaktiviert	
	Profibus-DP-Kommunikation	
	- Ubertragungsrate: 9,6kBauc	bis 12MBaud
	- max. Teilnehmeranzahl: 32	Stationen pro Segment ohne
	Repeater, mit Repeater erwe	eiterbar auf 126
	- Protokoll: DP-V0/DP-V1, PG	G/OP-Kommunikation
	PtP-Kommunikation	
	- Ubertragungsrate: 0,15kBau	id bis 115,2kBaud
	- max. Teilnehmeranzahl: AS	CII, RTX/ETX, 3964R: 1
	Modbus: 256 Stationen, US	S: 64 Stationen
	- Protokoll: ASCII, STX/ETX,	3964R, USS _{Master} ,
		J _{Master}
RJ45-Ethernet	I wisted-Pair-Ethernet für CP-Ko	ommunikation:
	- Ubertragungsrate 10/100ME	
	- Gesamtlange: max. 100m pl	ro Segment
	- PG/OP-Kanale: 8	- 16
		1. 10
Datenzate	64MBaud	
- Stromaufnahme	400mA	
Batterienufferung / Uhr	Lithium Akku 20 Taga Pufforung / ja	
Bearbeitungszeiten CPU		
für Bitoperation min	0.015us	0.010us
für Wortoperation, min	0.015us	0.010us
für Festnunktarithmetik min	0.015us	0.010us
für Gleitpunktarithmetik, min	0.090us	0.058us
Merkerbyte / Zeiten / Zähler	8192 / 512 / 512	16384 / 2048 / 2048
Bausteine	FBs 2048 FCs 2048	FBs 8192 FCs 8192
	DBs 4095	DBs 8190
Maße und Gewicht		
Abmessungen (BxHxT) in mm	80x125x120	
Gewicht in a	440	
	• • •	

Teil 4 Einsatz CPU 31xS

Überblick	In diesem Kapitel ist der Einsatz einer CPU 31xS mit SPEED7-Technologie im System 300 beschrieben. Die Beschreibung bezieht sich hierbei auf die CPU direkt und auf den Einsatz in Verbindung mit Peripherie-Modulen, die sich zusammen mit der CPU am SPEED- bzw. Standard-Bus auf einer Profilschiene befinden und über den Rückwandbus verbunden sind.
	Nachfolgend sind beschrieben:
	Grundsätzliches zu Montage und Bedienung der CPU
	Anlaufverhalten und Adressierung
	 Zugriff auf Web-Site über Ethernet-PG/OP-Kanal
	 Projektierung und Parametrierung
	Betriebszustände und Urlöschen
	 MCC-Speichererweiterung, Firmwareupdate und Know-how-Schutz
	VIPA-spezifische Diagnoseeinträge
	Testfunktionen zum Steuern und Beobachten von Variablen
Inhalt	Thema Seite
	Teil 4 Einsatz CPU 31xS4-1
	Montage SPEED-Bus 4-2
	Anlaufverhalten
	Adressierung
	Initialisierung des Ethernet-PG/OP-Kanals4-8
	Zugriff auf integrierte Web-Seite4-11
	Projektierung4-13
	Einstellung der CPU-Parameter4-19
	Parametrierung von Modulen4-24
	Projekt transferieren
	Betriebszustände4-30
	Urlöschen
	Firmwareupdate4-35
	Rücksetzen auf Werkseinstellung 4-38
	Speichererweiterung mit MCC4-39
	Erweiterter Know-how-Schutz
	MMC-Cmd - Autobefehle
	VIPA-spezifische Diagnose-Einträge
	Mit Testfunktionen Variablen steuern und beobachten

Hinweis!

Die Angaben gelten für alle in diesem Handbuch aufgeführten CPUs, da die Rückwandbus-Kommunikation zwischen CPU und Peripherie-Modulen immer gleich ist!

Montage SPEED-Bus

Vorkonfektionierte SPEED-Bus-Profil-Schiene

Für den Einsatz von SPEED-Bus-Modulen ist eine vorkonfektionierte SPEED-Bus-Steckleiste erforderlich. Diese erhalten Sie, schon montiert, auf einer Profilschiene mit 2, 6, 10 oder 16 Erweiterungs-Steckplätzen.

0

6

- Beachten Sie beim Aufbau die hierbei zulässigen Umgebungstemperaturen:
 - waagrechter Aufbau: von 0 bis 60°C
 senkrechter/liegender Aufbau: von 0 bis 40°C
 - Montieren Sie die Profilschiene so, dass mindestens 65mm Raum oberhalb und 40mm unterhalb der Profilschiene bleibt.
 - Achten Sie auf eine niederohmige Verbindung zwischen Profilschiene und Untergrund und verbinden Sie die Profilschiene über den Stehbolzen mit Ihrem Schutzleiter (mind. 10mm²).
 - Montieren Sie die Spannungsversorgung links vom SPEED-Bus.
 - Zur Montage von SPEED-Bus-Modulen setzen Sie diese zwischen den dreieckförmigen Positionierhilfen an einem mit "SLOT ..." bezeichneten Steckplatz an und klappen sie diese nach unten.
 - Nur auf "SLOT1 DCDC" können Sie anstelle eines SPEED-Bus-Moduls eine Zusatzspannungsversorgung stecken.
 - Sollen auch Standard-Module gesteckt werden, nehmen Sie einen System 300 Busverbinder und stecken Sie ihn, wie gezeigt, von hinten an die CPU. Soll die SPEED7-CPU ausschließlich am SPEED-Bus betrieben werden, ist dies nicht erforderlich.
 - Setzen Sie, wie gezeigt, die CPU zwischen den beiden Positionierhilfen an dem mit "CPU SPEED7" bezeichneten Steckplatz an und klappen sie diese nach unten.
 - Montieren Sie auf diese Weise Ihre Peripherie-Module, indem Sie einen Rückwandbus-Verbinder stecken, Ihr Modul rechts des Vorgänger-Moduls einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.

Montage ohne SPEED-Bus-Profil-Schiene

Vorgehensweise

1 Nm

- Die Montage und Erdung der Standard-Bus-Schiene erfolgt auf die gleiche Weise, wie beim SPEED-Bus.
- Hängen Sie die Spannungsversorgung ein und schieben Sie diese nach links bis ca. 5mm vor den Erdungsbolzen der Profilschiene.
- Nehmen Sie einen Busverbinder und stecken Sie ihn, wie gezeigt, von hinten an die CPU.
- Montieren Sie die CPU rechts der Spannungsversorgung.
- Verfahren Sie auf die gleiche Weise mit Ihren Peripherie-Modulen, indem Sie jeweils einen Rückwandbus-Verbinder stecken, Ihr Modul rechts des Vorgänger-Moduls einhängen, dieses nach unten klappen, in den Rückwandbus-Verbinder des Vorgängermoduls einrasten lassen und das Modul festschrauben.
- Schrauben Sie alle Module fest.

Näheres zur Montage und Verdrahtung finden Sie im Kapitel "Montage und Aufbaurichtlinien".

Gefahr!

- Die Spannungsversorgungen sind vor dem Beginn von Installations- und Instandhaltungsarbeiten unbedingt freizuschalten, d.h. vor Arbeiten an einer Spannungsversorgung oder an der Zuleitung, ist die Spannungszuführung stromlos zu schalten (Stecker ziehen, bei Festanschluss ist die zugehörige Sicherung abzuschalten)!
- Anschluss und Änderungen dürfen nur durch ausgebildetes Elektro-Fachpersonal ausgeführt werden.

Anlaufverhalten

Stromversorgung einschalten Nach dem Einschalten der Stromversorgung geht die CPU in den Betriebszustand über, der am Betriebsartenschalter eingestellt ist. Sie können jetzt aus Ihrem Projektier-Tool heraus über MPI Ihr Projekt in die CPU übertragen bzw. eine MMC mit Ihrem Projekt stecken und Urlöschen ausführen.

Urlöschen

Die nachfolgende Abbildung zeigt die Vorgehensweise:

Hinweis!

Das Übertragen des Anwenderprogramms von der MMC in die CPU erfolgt immer nach Urlöschen!

Auslieferungs-
zustandIm Auslieferungszustand ist die CPU urgelöscht. Nach einem STOP→RUN
Übergang geht die CPU ohne Programm in RUN.

Anlauf mit gültigenDie CPU geht mit dem Programm, das sich im batteriegepufferten RAMDaten in der CPUbefindet, in RUN.

Anlauf bei leeremDer Akku wird direkt über die eingebaute Spannungsversorgung über eine
Ladeelektronik geladen und gewährleistet eine Pufferung für min. 30 Tage.
Wird dieser Zeitraum überschritten, kann es zur vollkommenen Entladung
des Akkus kommen. Hierbei wird das batteriegepufferte RAM gelöscht.

In diesem Zustand führt die CPU ein Urlöschen durch. Ist eine MMC gesteckt, werden Programmcode und Datenbausteine von der MMC in den Arbeitsspeicher der CPU übertragen.

Ist keine MMC gesteckt, transferiert die CPU permanent abgelegte "protected" Bausteine, falls diese vorhanden sind, in den Arbeitsspeicher.

Informationen, wie sie Bausteine geschützt in der CPU ablegen, finden Sie in diesem Kapitel unter "Erweiterter Know-how-Schutz".

Abhängig von der Stellung des RUN/STOP-Schalters geht die CPU in RUN bzw. bleibt im STOP.

Dieser Vorgang wird im Diagnosepuffer unter folgendem Eintrag festgehalten: "Start Urlöschen automatisch (ungepuffert NETZ-EIN)".

Adressierung

Übersicht	Damit die gesteckten Peripheriemodule gezielt angesprochen werden kön- nen, müssen ihnen bestimmte Adressen in der CPU zugeordnet werden. Beim Hochlauf der CPU vergibt diese steckplatzabhängig automatisch von 0 an aufsteigend Peripherieadressen für digitale Ein-/Ausgabe-Module. Sofern keine Hardwareprojektierung vorliegt, legt die CPU Analog-Module bei der automatischen Adressierung auf gerade Adressen ab 256 ab. Module am SPEED-Bus werden ebenfalls bei der automatischen Adres- sierung berücksichtigt. Hierbei werden digitale E/As ab Adresse 128 und analoge E/As, FMs und CPs ab Adresse 2048 abgelegt.
Adressierung Rückwandbus Peripherie	 Bei der SPEED7-CPU gibt es einen Peripheriebereich (Adresse 0 8191) und ein Prozessabbild der Ein- und Ausgänge (je Adresse 0 255). Beim Prozessabbild werden die Signalzustände der unteren Adresse (0 255) zusätzlich in einem besonderen Speicherbereich gespeichert. Das Prozessabbild ist in zwei Teile gegliedert: Prozessabbild der Eingänge (PAE) Prozessabbild der Ausgänge (PAA)

Nach jedem Zyklusdurchlauf wird das Prozessabbild aktualisiert.

Maximale Anzahl steckbarer Module Module am Standard-Bus und zusätzlich 16 Module am SPEED-Bus ansteuern. Hier gehen CPs und DP-Master, da diese zusätzlich virtuell am Standard-Bus zu projektieren sind, in die Summe von 32 Modulen am Standard-Bus mit ein.

> Für die Projektierung von Modulen, die über die Anzahl von 8 hinausgehen, können virtuell Zeilenanschaltungen verwendet werden. Hierbei setzen Sie im Hardware-Konfigurator auf Ihre 1. Profilschiene auf Steckplatz 3 die Anschaltung IM 360 aus dem Hardware-Katalog. Nun können Sie Ihr System um bis zu 3 Profilschienen ergänzen, indem Sie jede auf Steckplatz 3 mit einer IM 361 von Siemens beginnen.

Über Hardware- Konfiguration Adressen definieren	Über Lese- bzw. Schr Prozessabbild können S Mit einer Hardware-Kor System durch Einbind Klicken Sie hierzu auf o stellen Sie die gewünsch	eibzugriffe auf die Peripheriebytes oder auf das sie die Module ansprechen. Ifiguration können Sie über ein virtuelles Profibus- ung der SPEEDBUS.GSD Adressen definieren. lie Eigenschaften des entsprechenden Moduls und nte Adresse ein.
$\underline{\wedge}$	Achtung! Bitte beachten Sie, das Master - zur Projektierun Adressdoppelbelegung führt bei externen DP-M	s Sie bei Anbindungen über externe Profibus DP- ng eines SPEED-Bus-Systemes erforderlich - keine projektieren! Der Siemens Hardware-Konfigurator aster-Systemen keine Adressüberprüfung durch!
Automatische Adressierung	 Falls Sie keine Hardware-Konfiguration verwenden möchten, tritt eine automatische Adressierung in Kraft. Bei der automatischen Adressierung belegen steckplatzabhängig DIOs immer 4Byte und AIOs, FMs, CPs immer 16Byte am Standard-Bus und 256Byte am SPEED-Bus. Nach folgenden Formeln wird steckplatzabhängig die Anfangsadresse ermittelt, ab der das entsprechende Modul im Adressbereich abgelegt wird: 	
Standard-Bus	DIOs: AIOs, FMs, CPs:	Anfangsadresse = 4 (Steckplatz-1) Anfangsadresse = 16 (Steckplatz-1)+256
SPEED-Bus	DIOs: AIOs, FMs, CPs: Alle Informationen hierz	Anfangsadresse = 4.(Steckplatz-101)+128 Anfangsadresse = 256.(Steckplatz-101)+2048 u finden Sie in der nachfolgenden Abbildung:

Beispiel Automatische Adressierung

In dem nachfolgenden Beispiel ist die Funktionsweise der automatischen Adressierung getrennt nach Standard-Bus und SPEED-Bus nochmals aufgeführt:

Initialisierung des Ethernet-PG/OP-Kanals

Übersicht	Jede CPU 31xS hat einen Ethernet-PG/OP-Kanal integriert. Über diesen Kanal können Sie mit max. 2 Verbindungen Ihre CPU programmieren und fernwarten.					
	Mit dem PG/OP-Kanal haben Sie auch Zugriff auf die interne Web-Seite, auf der Sie Informationen zu Firmwarestand, angebundene Peripherie, aktuelle Zvklus-Zeiten usw. finden.					
	Damit Sie online über den Ethernet-PG/OP-Kanal auf die CPU zugreifen können, müssen Sie diesem gültige IP-Adress-Parameter über den Siemens SIMATIC Manager zuordnen. Diesen Vorgang nennt man "Initialisierung" oder "Urtaufe".					
Möglichkeiten der "Urtaufe"	 Für die Zuweisung von IP-Adress-Parametern (Urtaufe) haben Sie folgende Möglichkeiten: Zielsystemfunktionen über <i>Ethernet-Adresse vergeben</i> (ab Eirmware V, 16.0) 					
	 Hardwareprojektierung mit CP (Minimalprojekt) 					
Voraussetzung	Hierzu ist folgende Software erforderlich:SIMATIC Manager von Siemens ab V. 5.1SIMATIC NET					
"Urtaufe" über Zielsystem- funktionen	Bitte beachten Sie, dass diese Funktionalität ab der Firmware-Version V. 1.6.0 unterstützt wird. Die Urtaufe über die Zielsystemfunktion erfolgt nach folgender Vorgehensweise:					

• Ermitteln Sie die aktuelle Ethernet (MAC) Adresse Ihres Ethernet PG/OP-Kanals. Sie finden diese immer als 1. Adresse unter der Frontklappe der CPU auf einem Aufkleber auf der linken Seite.

Ethernet-Address 1. Ethernet-PG/OP

- Stellen Sie eine Netzwerkverbindung zwischen dem Ethernet-PG/OP-Kanal der CPU und Ihrem PC her.
- Starten Sie auf Ihrem PC den Siemens SIMATIC Manager.
- Stellen Sie über **Extras** > *PG/PC-Schnittstelle einstellen* den *Zugriffsweg* auf "TCP/IP -> Netzwerkkarte Protokoll RFC 1006" ein.
- Öffnen Sie mit **Zielsystem** > *Ethernet-Adresse vergeben* das Dialogfenster zur "Taufe" einer Station.

Ethernet-Adresse verg	eben	<u>></u>	٢
Zu taufende Station wä	hlen	Online erreichbare Baugruppen	
MAC- <u>A</u> dresse:		Durchsuchen	
- IP-Parameter zuordnen			
IP-Adresse:		Netzübergang <u>K</u> einen Router verwenden	
Sub <u>n</u> etzmaske:		C <u>B</u> outer verwenden	
		Adr <u>e</u> sse:	
Adresse <u>z</u> uweisen			
<u>S</u> chließen		Hilfe	

• Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbare CPU-Komponente zu ermitteln.

Solange der Ethernet-PG/OP-Kanal noch nicht initialisiert wurde, besitzt dieser die IP-Adresse 0.0.0.0 und den Stationsnamen "Onboard PG/OP".

<u>S</u> tarten	MAC-Adresse	IP-Adresse	Stationsname	Stationstyp	4
	08-00-06-95-DC-63	172.16.1	TW-STATIO	S7-300 CP	
An <u>h</u> alten	00-20-D5-77-09-59	172.16.1	342-1IA70	VIPA Speed7 PG/(
	00-20-D5-77-09-AF	172.16.1	TESTCPU	VIPA Speed7 PG/(
	00-20-D5-77-10-4D	172.16.1	Onboard PG	VIPA Speed7 PG/(
	00-20-D5-77-10-55	172.16.1	TW-STATIO	VIPA Speed7 PG/0	
	08-00-06-01-FD-01	172.16.1	TESTCPU	343-1EX11	
	00-20-D5-73-05-09	172.16.1	TW-STATIO	343-1EX11	
	00-20-D5-83-0B-CC	172.16.1	TW-STATIO	CP243	
	00-20-D5-77-17-74	0.0.0.0	Onboard PG	VIPA Speed7 PG/0	I
	00-20-05-73-05-08	172.16.1	TW-STATIU	343-1EX11	
	00-20-D5-83-0B-F8	172.16.1	SIMATIC 30	CP243	
	00-20-D5-73-04-AA	172.16.1	TW-STATIO	317-4NE10	
	00-20-D5-83-FF-F6	172.16.1	CPU21Xneu	CP243	
	00-20-D5-73-04-18	172.16.1	TW-STATIO	317-4NE10	1
	•			•	
-	MAC-Adresse:	00-20-D5-77-	17-74		

- Wählen Sie die ermittelte Baugruppe an und klicken Sie auf [OK].
- Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnet-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client-ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestich "-", 0-9, a-z, A-Z
- Bestätigen Sie Ihre Eingabe mit der Schaltfläche [Adresse zuweisen].

Direkt nach der Zuweisung ist die CPU-Komponente mit dem Siemens SIMATIC Manager über die angegebenen IP-Adress-Parameter und dem *Zugriffsweg* "TCP/IP -> Netzwerkkarte Protokoll RFC 1006" erreichbar.

• Stellen Sie eine Netzwerkverbindung zwischen dem Ethernet-PG/OP- Kanal der CPU und Ihrem PC her.
• Starten Sie den Siemens SIMATIC Manager und legen Sie ein neues Projekt an.
• Fügen Sie mit Einfügen > <i>Station</i> > <i>SIMATIC 300-Station</i> eine neue System 300-Station ein.

- Aktivieren Sie die Station "SIMATIC 300" und öffnen Sie den Hardware-Konfigurator indem Sie auf "Hardware" klicken.
- Projektieren Sie ein Rack (SIMATIC 300 \ Rack-300 \ Profilschiene)
- Da die SPEED7-CPUs als CPU 318-2 projektiert werden, projektieren Sie aus dem Hardwarekatalog die CPU 318-2 mit der Best.-Nr. 6ES7 318-2AJ00-0AB0 V3.0. Sie finden diese unter SIMATIC 300 \ CPU 300 \ CPU 318-2.
- Binden Sie auf Steckplatz 4 den CP 343-1EX11 ein (SIMATIC 300 \ CP 300 \ Industrial Ethernet \ CP 343-1).

- Geben Sie unter "Eigenschaften" des CP 343-1 die gewünschte IP-Adresse und Subnetzmaske an und vernetzen Sie den CP mit "Ethernet"
- Speichern und übersetzen Sie Ihr Projekt.
- Übertragen Sie Ihr Projekt via MPI oder MMC in Ihre CPU. Näheres zu den Transfermethoden finden Sie unter "Projekt transferieren".

Direkt nach der Projektübertragung ist der Ethernet-PG/OP-Kanal mit dem Siemens SIMATIC Manager über die angegebenen IP-Adress-Parameter und dem *Zugriffsweg* auf "TCP/IP -> Netzwerkkarte Protokoll RFC 1006" erreichbar.

Zugriff auf integrierte Web-Seite

Zugriff auf
Web-SeiteÜber die IP-Adresse des Ethernet-PG/OP-Kanals steht Ihnen eine Web-
Seite zur Verfügung, die Sie mit einem Internet-Browser aufrufen können.
Auf der Web-Seite finden Sie Informationen zu Firmwarestand, aktuelle
Zyklus-Zeiten usw.Mit dem MMC-Cmd WEBPAGE wird der aktuelle Inhalt der Web-Site auf
MMC gespeichert. Nähere Informationen hierzu finden Sie unter "MMC-
Cmd - Autobefehle".

Voraussetzung Es wird vorausgesetzt, dass zwischen dem PC mit Internet-Browser und CPU 31xS eine Verbindung über den PG/OP-Kanal besteht. Dies können Sie testen über *Ping* auf die IP-Adresse des Ethernet-PG/OP-Kanals.

Web-Seite	Der Zugriff auf die Web-Site erfolgt über die IP-Adresse des Ethernet-
	PG/OP-Kanals. Die Web-Seite dient ausschließlich der Informations-
Addr: 177, 18, 129, 236	ausgabe. Die angezeigten Werte können nicht geändert werden.
IP PG/OP	

CPU WITH ETHERNET-PG/OP Slot 100	
VIPA 317-4NE11 V2.0.6 Px000006.pkg, SERIALNUMBER 000638	BestNr., Firmware-Vers., Package, Serien-Nr.
SUPPORTDATA : PRODUCT V2060, HARDWARE V0111, 5679B-V11, Bx000152 V5060, Ax000055 V1090, Ax000056 V0200, FlashFileSystem:V102	Angaben für den Support:
OnBoardEthernet : MacAddress : 0020d590001a, IP-Address : , SubnetMask : , Gateway :	Ethernet-PG/OP: Adressangaben
Cpu state : Stop FunctionRS485 : DPM-async	CPU-Statusangabe RS485-Funktion
Cycletime [microseconds] : min=0 cur=0 ave=0 max=0	CPU-Zykluszeit: min= minimale
	cur= aktuelle max= maximale
MCC_Trial_Time. 70.22	Verbleibende Zeit his bei gezogener
Met IIIal IIme. 70.25	MCC der Erweiterungsspeicher wieder deaktiviert wird.
	Zusätzliche CPU-Komponenten:
Slot 201	Slot 201 (DP-Master):
VIPA 342-1DA70 V3.0.1 Px000003.pkg,	Name, Firmware-Version, Package
SUPPORTDATA : PRODUCT V3010, BB000154 V5010, AB000051 V4000, AB000049 V3030 ModuleType CB2C0010, Cycletime [microseconds] : min=65535000 cur=0 ave=0 max=0 cnt=0	Angaben für den Support:
	Fortsetzung

... Fortsetzung

Slot 202

```
VIPA 343-1EX71 V1.8.0 Px000005.pkg,
SUPPORTDATA :
Bb000165 V1800, AB000060 V0320, AB000061
V0310 PRODUCT V1800,
ModuleType ACDB0000
Address Input 1024...1039
Address Output 1024...1039
```

SPEED-BUS

```
Slot 101
VIPA 323-1BH70 V1.0.0 Px000031.pkg
SUPPORTDATA :
BB000191 V1002, AB000078 V1008,
PRODUCT V1002, Hx000015 V1000,
ModuleType 3FD20001
Address Input 128...131
Address Output 128...131
```

Standard Bus 8 Bit Mode
Slot 4: ModulType:9FC3: Digital Input 32
Baseaddress Input 0

Slot 202 (CP 343 oder E/As bei der CPU 31xST): Name, Firmware-Version, Package Angaben für den Support:

Module am SPEED-Bus

Best.-Nr., Firmware-Vers., Package Angaben für den Support:

Module am Standard-Bus Typkennung des Moduls Projektierte Basis-Adresse

Projektierung

Übersicht

Projektierung eines SPEED-Bus-Systems erfolgt im Hardware-Konfigurator von Siemens und besteht aus folgenden Teilen:

- Projektierung SPEED7-CPU als CPU 318-2DP (318-2AJ00-0AB00 V3.0)
- Projektierung der reell gesteckten Module
- Projektierung Ethernet-PG/OP-Kanal als CP 343-1 (343-1EX11)
- Projektierung und Vernetzung SPEED-Bus Ethernet-CP 343 und SPEED-Bus DP-Master als CP 343-1 (343-1EX11) bzw. CP 342-5 (342-5DA02 V5.0)
- Projektierung aller SPEED-Bus-Module als einzelne DP-Slaves (SPEEDBUS.GSD) in einem virtuellen DP-Master-Modul CP 342-5 (342-5DA02 V5.0).

Schnelleinstieg

Für den Einsatz der System 300S Module von VIPA am SPEED-Bus ist die Einbindung der System 300S Module über die GSD-Datei von VIPA im Hardwarekatalog erforderlich.

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind folgende Schritte durchzuführen:

- Hardware-Konfigurator von Siemens starten und SPEEDBUS.GSD für SPEED7 von VIPA einbinden.
- CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) von Siemens projektieren. Über den internen DP-Master der CPU 318-2DP projektieren und vernetzen Sie einen eventuell vorhandenen internen DP-Master Ihrer SPEED7-CPU. Belassen Sie MPI/DP der CPU 318-2DP in der Betriebsart MPI. Die Betriebsart Profibus wird nicht unterstützt.
- Beginnend mit Steckplatz 4, die System 300 Module am Standard-Bus in gesteckter Reihenfolge platzieren.
- Für den internen Ethernet-PG/OP-Kanal, den jede SPEED7-CPU besitzt, ist <u>immer als 1. Modul</u> unterhalb der reell gesteckten Module ein Siemens CP 343-1 (343-1EX11) zu platzieren.
- Falls vorhanden den integrierten CP 343 einer CPU 31xSN/NET immer als 2. Modul unterhalb des zuvor platzierten Ethernet-PG/OP-Kanals projektieren. Ansonsten ab hier für jeden Ethernet-CP 343 -SPEED-Bus einen CP 343-1 (343-1EX11) bzw. für jeden SPEED-Bus Profibus-DP-Master einen CP 342-5DA02 V5.0 platzieren und vernetzen.
- Für den SPEED-Bus immer als letztes Modul den DP-Master CP 342-5 (342-5DA02 V5.0) einbinden, vernetzen und in die Betriebsart DP-Master parametrieren. An dieses Mastersystem jedes einzelne SPEED-Bus-Modul als VIPA_SPEEDBUS-Slave anbinden. Hierbei geben Sie über die Profibus-Adresse die SPEED-Bus-Steckplatz-Nr., beginnend mit 100 für die CPU, an. Auf dem Steckplatz 0 jedes Slaves das ihm zugeordnete Modul platzieren und ggf. Parameter anpassen.
- Lassen Sie bei den CPs bzw. DP-Master (auch virtuelle SPEED-Bus-Master) unter Optionen die Einstellung "Projektierdaten in der CPU speichern" aktiviert!

Standard-Bus

virtueller DP-Master für CPU und alle SPEED-Bus-Module

Voraussetzung Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC Managers. Er dient der Projektierung. Die Module, die hier projektiert werden können, entnehmen Sie dem Hardware-Katalog. Für den Einsatz der System 300S Module am SPEED-Bus ist die Einbindung

der System 300S Module über die GSD-Datei SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich.

Hinweis!

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator vorausgesetzt!

SPEED7-GSD-Datei einbinden

Die GSD (**G**eräte-**S**tamm-**D**atei) ist in folgenden Sprachversionen online verfügbar. Weitere Sprachen erhalten Sie auf Anfrage:

Name	Sprache
SPEEDBUS.GSD	deutsch (default)
SPEEDBUS.GSG	deutsch
SPEEDBUS.GSE	englisch

Die GSD-Dateien finden Sie auf www.vipa.de im Service-Bereich und auf dem VIPA-ftp-Server unter ftp.vipa.de/support/profibus_gsd_files.

Die Einbindung der SPEEDBUS.GSD erfolgt nach folgender Vorgehensweise:

- Gehen Sie auf www.vipa.de.
- Klicken Sie auf Service > Download > GSD- und EDS-Files > Profibus.
- Laden Sie die Datei *Cx000023_Vxxx*.
- Extrahieren Sie die Datei in Ihr Arbeitsverzeichnis. Die SPEEDBUS.GSD befindet sich im Verzeichnis VIPA_System_300S.
- Starten Sie den Hardware-Konfigurator von Siemens.
- Schließen Sie alle Projekte.
- Gehen Sie auf **Extras** > *Neue GSD-Datei installieren*.
- Navigieren Sie in das Verzeichnis *VIPA_System_300S* und geben Sie **SPEEDBUS.GSD** an.

Die Module des System 300S von VIPA sind jetzt im Hardwarekatalog unter *Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS* enthalten.

Schritte der
ProjektierungNachfolgend wird die Vorgehensweise der Projektierung im Hardware-
Konfigurator von Siemens an einem abstrakten Beispiel gezeigt.
Die Projektierung gliedert sich in folgende 5 Teile:

- Projektierung der CPU
- Projektierung der reell gesteckten Module am Standard-Bus
- Projektierung PG/OP-Kanal und CP 343 (nur CPU 31xSN/NET)
- Projektierung aller SPEED-Bus-CPs und -DP-Master
- Projektierung der SPEED-Bus-Module in einem virtuellen Master-System

Hardwareaufbau

Projektierung der CPU als CPU 318-2DP

- Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)
- Über den internen DP-Master der CPU 318-2DP projektieren und vernetzen Sie einen eventuell vorhanden internen DP-Master Ihrer SPEED7-CPU. Belassen Sie *MPI/DP* der CPU 318-2DP in der Betriebsart *MPI*. Die Betriebsart *Profibus* wird nicht unterstützt.

Projektierung der Module am Standard-Bus

Die am Standard-Bus rechts der CPU befindlichen Module sind nach folgenden Vorgehensweisen zu projektieren:

- Binden Sie beginnend mit Steckplatz 4 Ihre System 300V Module auf dem Standard-Bus in der gesteckten Reihenfolge ein.
- Parametrieren Sie ggf. die CPU bzw. die Module. Das Parameterfenster wird geöffnet, sobald Sie auf das entsprechende Modul doppelklicken.

Projektierung Ethernet-PG/OP-Kanal und CP 343 als 343-1EX11 Für den internen Ethernet-PG/OP-Kanal, den jede SPEED7-CPU besitzt, ist <u>immer</u> als 1. Modul unterhalb der reell gesteckten Module ein Siemens CP 343-1 (343-1EX11) zu platzieren. Sie finden diesen im Hardware-Katalog unter SIMATIC 300 \ CP 300 \ Industrial Ethernet \ CP 343-1 \ 6GK7 343-1EX11 0XE0.

Falls vorhanden projektieren und vernetzen Sie den integrierten CP 343 der CPU 31xSN/NET als CP 343-1 (343-1EX11) aber immer unterhalb des zuvor platzierten PG/OP-Kanals.

IP-Parameter einstellen

Öffnen Sie durch Doppelklick auf den jeweiligen CP 343-1EX11 die "Objekteigenschaften". Klicken Sie unter "Allgemein" auf [Eigenschaften]. Geben Sie für den CP *IP-Adresse*, *Subnet-Maske* und *Gateway* an und wählen Sie das gewünschte *Subnetz* aus.

Projektierung und Vernetzung aller SPEED-Bus CP 343 und DP-Master am Standard-Bus Da sich der Ethernet-CP 343 - SPEED-Bus und der SPEED-Bus DP-Master in der Projektierung und Parametrierung gleich verhalten wie die entsprechenden CPs von Siemens, ist für jeden CP am SPEED-Bus der entsprechende CP von Siemens zu platzieren und zu vernetzen. Hierbei entspricht die Reihenfolge der Module der Reihenfolge innerhalb einer Funktionsgruppe (CP bzw. DP-Master) am SPEED-Bus von rechts nach links.

Verwenden Sie für jeden Ethernet-CP 343 - SPEED-Bus einen Siemens CP 343-1 (343-1EX11) und für jeden SPEED-Bus Profibus DP-Master einen Siemens CP 342-5DA02 V5.0.

Systemerweiterung mit IM 360 und IM 361 Da die SPEED7-CPU bis zu 32 Module in einer Reihe adressieren kann, der Siemens SIMATIC Manager aber nur 8 Module in einer Reihe unterstützt, haben Sie die Möglichkeit für die Projektierung aus dem Hardware-Katalog die IM 360 als virtuelle Buserweiterung zu verwenden. Hier können Sie bis zu 3 Erweiterungs-Racks über die IM 361 virtuell anbinden. Die Buserweiterungen dürfen immer nur auf Steckplatz 3 platziert werden. Platzieren Sie die Systemerweiterung und projektieren Sie die restlichen CPs.

Projektierung aller
SPEED-Bus-
Module in einem
virtuellen Master-
SystemDie Steckplatzzuordnung der CPU mit ihren SPEED-Bus-Modulen und die
Parametrierung der Ein-/Ausgabe-Peripherie hat über ein virtuelles
Profibus-DP-Master-System zu erfolgen. Platzieren Sie hierzu immer als
letztes Modul einen Siemens DP-Master (342-5DA02 V5.0) mit Master-
system.SystemEür den Einsetz der System 2005 Module am SPEED Bus ist die Ein

Für den Einsatz der System 300S Module am SPEED-Bus ist die Einbindung der System 300S Module über die GSD-Datei SPEEDBUS.GSD von VIPA im Hardwarekatalog erforderlich.

Nach der Installation der SPEEDBUS.GSD finden Sie unter *Profibus-DP / Weitere Feldgeräte / I/O / VIPA_SPEEDBUS* das DP-Slave-System VIPA_SPEEDBUS.

Binden Sie nun für die CPU und jedes Modul am SPEED-Bus ein Slave-System "VIPA_SPEEDBUS" an.

Stellen Sie als Profibus-Adresse die Steckplatz-Nr. 100 für die CPU und 101...116 für die Module ein und platzieren Sie auf Steckplatz 0 des Slave-Systems die entsprechende CPU bzw. das entsprechende Modul aus dem Hardwarekatalog von VIPA_SPEEDBUS.

Das entsprechende Modul ist aus dem HW-Katalog von vipa_speedbus auf Steckplatz 0 zu übernehmen

Hinweis!

Lassen Sie bei den CPs bzw. DP-Master (auch bei dem virtuellen SPEED-Bus-Master) unter *Optionen* die Einstellung "Projektierdaten in der CPU speichern" aktiviert!

Auf den Folgeseiten erhalten Sie nähere Informationen, wie Sie Ihre CPU und Module parametrieren können und Ihr Projekt in die CPU transferieren.

Einstellung der CPU-Parameter

ÜbersichtMit Ausnahme der VIPA-spezifischen CPU-Parameter erfolgt die CPU-
Parametrierung im Parameter-Dialog der Siemens CPU 318-2DP.Die VIPA-spezifischen CPU-Parameter, wie das Verhalten der RS485-
Schnittstelle, der Synchronisation zwischen CPU und DP-Master und
zusätzlicher Weckalarm-OBs (Priorität, Ausführung, Phasenverschiebung),
können Sie im Parameter-Dialog der SPEED-Bus-CPU angeben.

Parametrierung
über Siemens
CPU 318-2DPDa die SPEED7 CPUs im Hardware-Konfigurator von Siemens als
Siemens CPU 318-2DP zu projektieren sind, können Sie bei der Hardware-
Konfiguration unter den "Eigenschaften" der CPU 318-2DP die Parameter
für die SPEED7 CPU einstellen.

Durch Doppelklick auf die CPU 318-2 DP gelangen Sie in das Parametrierfenster für die CPU. Über die Register haben Sie Zugriff auf alle Parameter Ihrer CPU.

HW Konfig - [Station 1 (Konfiguration)	speed7] n Ansicht Extras Fenster Hilfe					
						en: Mt Mi
	igenschaften - CPU 318-2 - (R0/!	52)		×	Profil:	Standard 💌
🚍 (0) UR	Alarme Uhrzeitalarme	Weckalarme	Diagnose / Uhr	Schutz		PROFIBUS-DP
1 A CPU 318-2	Kurzbezeichnung: CPU 318-	2 Zykius 7 Taktineikei	neinarienz	speicher		SIMATIC 300
X2 DP X7 MPI/DP 3 4	Arbeitssp oder DP-S Empfangs S7-Komm	- eicher 256KB; 0,3ms/kAW; Slave); mehrzeiliger Aufbau I (fähigkeit für direkten Daten unikation (ladbare FBs/FCs)	MPI+ DP-Anschluß (DP bis 32 Baugruppen; Sen austausch; Äquidistanz; ; Firmware V3.0	'Master ▲ de-und :Routing; ▼	E	CP-300 CP-300 CPU-300 CPU-300 CPU-312 CPU-312
<u>5</u> 6	Bestell-Nr. / Firmware 6ES7 318	-24J00-04B0 / V3.0				CPU 312 CPU 312 CPU 312 CPU 312 CPU 313
7	Name: CPU 318	-2				
	Anlagenkennzeichen:					
•	1				•	CPU 314 IFM CPU 314C-2 DP
(0) UR	4					⊕
Steckplatz Baugruppe	Kommentar:					⊕ 🧰 CPU 315-2 DP ⊕ 👜 CPU 315F-2 DP
1 2 CPU 318-2				-		⊕
X1 MFI/DP						
4			Abbrechen	Hilfe		
6						E-ES7 318-2AJ00-0ABI
8						
9 10						
					6ES7	' 318-2AJ00-0AB0 tsspeicher 256KB: 0.3ms/kAW: ▲ ₹<
					MPI+ DP-S	DP-Anschluß (DP-Master oder lave); mehrzeiliger Aufbau bis
, Drücken Sie F1, um Hilfe zu erhalten.					5	Änd

Die CPU wertet nicht alle Parameter aus, die Sie bei der Hardware-Parameter, die Konfiguration einstellen können. Folgende Parameter werden zur Zeit in unterstützt werden der CPU ausgewertet: Allgemein : Uhrzeitalarm : Name, Anlagenkennzeichen, OB10: Prio., Ausführung, Aktiv Kommentar Startdatum, Uhrzeit MPI-Adresse der CPU* Prio., Ausführung, Aktiv OB11: Baudrate (10,2kB, 187,5kB, 1,5MB)* Startdatum, Uhrzeit maximale MPI-Adresse* Weckalarm: Anlauf · OB32: Priorität, Ausführung, Anlauf bei Sollausbau ungleich Phasenverschiebung Istausbau OB35: Prio., Ausf., Phasenv. Fertigmeldung durch Baugruppen Zyklus / Taktmerker: Übertragung der Parameter an OB1-Prozessabbild zyklisch Baugruppen aktualisieren Remanenz : Zyklusüberwachungszeit Anzahl Merkerbytes ab MB0 Mindestzykluszeit Anzahl S7-Timer ab T0 Zyklusbelastung durch Kommunikation (%) Anzahl S7-Zähler ab Z0 Größe des Prozessabbilds der Schutz: Eingänge Schutzstufe / Passwort Größe des Prozessabbilds der Speicher: Ausgänge Lokaldaten **OB85-Aufruf bei** Maximale Größe Lokalstack Peripheriezugriffsfehler Taktmerker mit Merkerbytenummer

*) über Eigenschaften MPI/DP

Standard-Bus

VIPA-spezifische Parameter über SPEED7-CPU

otuniau	
Steckpl.	Modul
1	
2	CPU 318-2
X2	DP
X1	MPI/DP
3	
- Modul - intern - SPEE	e am Standard-Bus PG/OP, CP D-Bus CPs, DPMs
Immer 342-5	als letzes Modul DA02 V5.0
virtueller und alle	DP-Master für CPU SPEED-Bus-Module
	בנה זהור הנה אחר הנה הנה הנה הנה הנה הנה היו היו היו היו היו היו היו היו היו הי
(n) VIPA	(100) VIPA CPU: SPEEDbuse Adr.: 100
	VIPA_SPEEDbus Steckpl. BestNr. 0 CPU auf Steckpl. 100
	Objekteigenschaften

Über eine Hardware-Konfiguration können Sie die VIPA-spezifischen Parameter der SPEED7-CPU einstellen.

Sie gelangen in das Parametrierfenster für die SPEED7-CPU, indem Sie auf die am SPEED-Bus-Slave eingefügte CPU 31xS doppelklicken.

Sobald Sie Ihr Projekt zusammen mit Ihrem SPS-Programm in die CPU übertragen, werden die Parameter nach dem Hochlauf übernommen.

Eine Beschreibung der VIPA-spezifischen Parameter der CPU 31xS finden Sie auf den Folgeseiten.

Standardmäßig wird bei jeder CPU 31xS die RS485-Schnittstelle für den **Funktion RS485** Profibus-DP-Master verwendet. Mit diesem Parameter können Sie die RS485-Schnittstelle auf PtP-Kommunikation (point to point) umschalten bzw. das Synchronisationsverhalten zwischen DP-Master-System und CPU vorgeben: Deaktiviert Deaktiviert die RS485-Schnittstelle PtP In dieser Betriebsart wird der Profibus-DP-Master deaktiviert und die RS485-Schnittstelle arbeitet als Schnittstelle für serielle Punkt-zu-Punkt-Kommunikation. Hier können Sie unter Einsatz von Protokollen seriell zwischen zwei Stationen Daten austauschen. Näheres zum "Einsatz der RS485-Schnittstelle für PtP-Kommunikation" finden Sie im gleichnamigen Teil in diesem Handbuch. Profibus-DP async Profibus-DP-Master-Betrieb asynchron zum CPU-Zyklus Hat Ihre CPU 31xS einen Profibus-DP-Master integriert, ist die RS485-Schnittstelle defaultmäßig auf Profibus-DP async eingestellt. Hier laufen CPU-Zyklus und die Zyklen aller SPEED-Bus-DP-Master unabhängig voneinander. Profibus-DP syncln CPU wartet auf DP-Master-Eingangsdaten. Profbus-DP syncOut DP-Master-System wartet auf CPU-Ausgangsdaten. Profibus-DP synclnOut CPU und DP-Master-System warten aufeinander und bilden damit einen Zyklus.

Default: Profibus-DP async

Synchronisation zwischen Master-System und CPU Normalerweise laufen die Zyklen von CPU und DP-Master unabhängig voneinander. Die Zykluszeit der CPU ist die Zeit, die die CPU für einen OB1-Durchlauf und für das Lesen bzw. Schreiben der Ein- bzw. Ausgänge benötigt. Da die Zykluszeit eines DP-Masters unter anderem abhängig ist von der Anzahl der angebunden DP-Slaves und der Baud-Rate, entsteht bei jedem angebundenen DP-Master eine andere Zykluszeit. Aufgrund der Asynchronität von CPU und DP-Master ergeben sich für das Gesamtsystem relativ hohe Reaktionszeiten.

Über eine Hardware-Konfiguration können Sie, wie oben gezeigt, das Synchronisations-Verhalten zwischen allen Profibus-DP-Master am SPEED-Bus und der SPEED7-CPU parametrieren.

Die verschiedenen Modi für die Synchronisation sind nachfolgend beschrieben.

Profibus-DPIm Profibus-DP SyncInOut warten CPU und DP-Master-System jeweilsSyncInOutaufeinander und bilden damit einen Zyklus. Hierbei ist der Gesamtzyklus
die Summe aus dem längsten DP-Master-Zyklus und CPU-Zyklus.

Durch diesen Synchronisations-Modus erhalten Sie global konsistente Ein-/ Ausgabedaten, da innerhalb des Gesamtzyklus CPU und das DP-Master-System nacheinander mit den gleichen Ein- bzw. Ausgabedaten arbeiten.

Gegebenenfalls müssen Sie in diesem Modus die Ansprechüberwachungszeit in den Bus-Parametern erhöhen.

Profibus-DP In dieser Betriebsart richtet sich der Zyklus des DP-Master-Systems am SyncOut SPEED-Bus nach dem CPU-Zyklus. Geht die CPU in RUN, werden die DP-Master synchronisiert. Sobald deren Zyklus durchlaufen ist, warten diese auf den nächsten Synchronisationsimpuls mit Ausgabedaten der CPU. Auf diese Weise können Sie die Reaktionszeit Ihres Systems verbessern, da Ausgangsdaten möglichst schnell an die DP-Master übergeben werden. Gegebenenfalls müssen Sie in diesem Modus die *Ansprechüberwachungszeit* in den Bus-Parametern erhöhen.

Profibus-DP In der Betriebsart *Profibus-DP Syncln* wird der CPU-Zyklus auf den Zyklus des Profibus-DP-Master-Systems am SPEED-Bus synchronisiert. Hierbei richtet sich der CPU-Zyklus nach dem SPEED-Bus DP-Master mit der längsten Zykluszeit. Geht die CPU in RUN, wird diese mit allen SPEED-Bus DP-Master synchronisiert. Sobald die CPU ihren Zyklus durchlaufen hat, wartet diese, bis das DP-Master-System mit dem Synchronimpuls neue Eingangsdaten liefert.

Gegebenenfalls müssen Sie in diesem Modus die *Zyklusüberwachungszeit* der CPU erhöhen.

Anzahl Remanenz- Merker	Hier geben Sie die Anzahl der Merker-Bytes an. Durch Eingabe von 0 wird der Wert übernommen, den Sie in den Parametern der Siemens CPU 318- 2DP unter <i>Remanenz</i> > <i>Anzahl Merker-Bytes ab MB0</i> angegeben haben. Ansonsten wird der hier angegebene Wert (1 8192) übernommen. Default: 0
Phasenver- schiebung und Ausführung von OB33 und OB34	Die CPUs stellen Ihnen zusätzliche Weckalarm-OBs zur Verfügung, welche die zyklische Programmbearbeitung in bestimmten Abständen unter- brechen. Startzeitpunkt des Zeittaktes ist der Betriebszustandswechsel von STOP nach RUN.
	Um zu verhindern ,dass die Weckalarme verschiedener Weckalarm-OBs zum gleichen Zeitpunkt eine Startaufforderung erhalten und dadurch möglicherweise ein Zeitfehler (Zykluszeitüberschreitung) entsteht, haben Sie die Möglichkeit, eine Phasenverschiebung bzw. eine Ausführzeit vorzugeben.
	Die <i>Phasenverschiebung</i> (0 60000ms) sorgt dafür, dass die Bearbeitung eines Weckalarms nach Ablauf des Zeittaktes um einen bestimmten Zeitraum verschoben wird.
	Mit der <i>Ausführung</i> (1 60000ms) geben Sie die Zeitabstände in ms an, in denen die Weckalarm-OBs zu bearbeiten sind.
	Default: Phasenverschiebung: 0 Ausführung: OB33: 500ms OB34: 200ms
Priorität von OB28, OB29, OB33 und OB34	Die Priorität legt die Reihenfolge der Unterbrechung des entsprechenden Alarm-OBs fest. Hierbei werden folgende Prioritäten unterstützt:

Hierbei werden folgende Prioritäten unterstützt: 0 (Alarm-OB ist deaktiviert), 2,3,4,9,12,16,17, 24 Default: 24

Parametrierung von Modulen

Vorgehensweise Durch Einsatz des Siemens SIMATIC Managers können Sie jederzeit für parametrierbare System 300 Module Parameter vorgeben. Doppelklicken Sie hierzu bei der Projektierung in Ihrer Steckplatzübersicht auf das zu parametrierende Modul. In dem sich öffnenden Dialogfenster können Sie dann Ihre Parametereinstellungen vornehmen.

W Konfig - [Station 2 (Konfiguration) sp Station Bearbeiten Einfügen Zielsystem A	peed7] msicht Extras Fenster Hilfe					
	🛍 🗈 🔜 🕺 😒					
1 • 2 CPU 318-2 X2 DP X7 MPVDP 3 • 4 • 5 D116xDC24V 6 Al8x12Bit 7 • 8 •	igenschaften - A18×12Bit - (Allgemein Adressen Eingän Freigabe	(R0/56) ge ozeßalarm bei G	renzwertübersch	rreitung		×
9	Eingang	0.1	2.3	4 - 5	6-7	1
	Diagnose Sammeldiagnose: mit Drahtbruchprüfung:					
Steckplatz Baugruppe B	Messung Meßart:	U	U	U	U	
2 CPU 318-2 6E X2 DP	Meisbereich: Stellung des Meßbereichsmoduls:	[#7-10V	[#7-10 V	[B]	[B]	
3 4 ≒ CP 343-1 6G	Störfrequenz	50 Hz	50 Hz	50 Hz	50 Hz	
5 DI16xDC24V 6E 6 Al8x12Bit 6E 7 H∎ CP 342-5 6G 8	Ausloser für Prozeibalarm Oberer Grenzwert: Unterer Grenzwert:	Kanal U	Kanal 2			
9 10 11	ОК			Abt	prechen	- Illfe

Parametrierung zur Laufzeit

Unter Einsatz der SFCs 55, 56 und 57 können Sie zur Laufzeit Parameter ändern und an die entsprechenden Module übertragen.

Hierbei sind die modulspezifischen Parameter in sogenannten "Datensätzen" abzulegen.

Näheres zum Aufbau der Datensätze finden Sie in der Beschreibung zu den Modulen.

Projekt transferieren

Übersicht	 Sie haben folgende Möglichkeiten für den Projekt-Transfer in die CPU: Transfer über MPI bzw. Profibus Transfer über MMC Transfer über Ethernet-PG/OP-Kanal (Initialisierung erforderlich)
Transfer über MPI bzw. Profibus	 Da die SPEED7-CPUs eine MPI- bzw. Profibus-Buchse besitzen, haben Sie folgende Übertragungsmöglichkeiten: Transfer mit MPI-Programmierkabel (MPI-/Profibus-Kommunikation) Nur MP²I-Buchse: Transfer mit VIPA Green Cable als serielle Kommu- nikation über MP²I - nicht Profibus
Transfer mit MPI- Programmierkabel über MPI bzw. Profibus	Die MPI-Programmierkabel erhalten Sie in verschiedenen Varianten von VIPA. Der Einsatz dieser Kabel ist identisch. Die Kabel bieten einen busfähigen RS485-Anschluss für die MPI-Buchse (auch MP ² I-Buchse) der CPU und einen RS232 bzw. USB-Anschluss für den PC. Aufgrund des RS485-Anschlusses dürfen Sie die MPI-Programmierkabel direkt auf einen an der MPI-Buchse schon gesteckten MPI-Stecker aufstecken. Jeder Busteilnehmer identifiziert sich mit einer eindeutigen MPI-Adresse am Bus, wobei die Adresse 0 für Programmiergeräte reserviert ist. Der Aufbau eines MPI-Netzes ist prinzipiell gleich dem Aufbau eines 1,5MBaud Profibus-Netzes. Das heißt, es gelten dieselben Regeln und Sie verwenden für beide Netze die gleichen Komponenten zum Aufbau. Die einzelnen Teilnehmer werden über Busanschlussstecker und Profibus-Kabel verbunden. Ihre CPU 31xS unterstützt Übertragungsraten von bis zu 1,5MBaud. Defaultmäßig wird das MPI-Netz mit 187,5kBaud betrieben. VIPA-CPUs werden mit der MPI-Adresse 2 ausgeliefert.
Abschluss- widerstand	Eine Leitung muss mit ihrem Wellenwiderstand abgeschlossen werden. Hierzu schalten Sie den Abschlusswiderstand am ersten und am letzten Teilnehmer eines Netzes oder eines Segments zu. Achten Sie darauf, dass die Teilnehmer, an denen der Abschlusswiderstand zugeschaltet ist, wäh- rend des Hochlaufs und des Betriebs immer mit Spannung versorgt sind.
STEP7 von Siemens	Abschluss Kabel

Vorgehensweise Transfer über MPI Maximal 32 PG/OP-Verbindungen sind unter MPI möglich. Der Transfer über MPI erfolgt nach folgender Vorgehensweise:

- Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der MPIbzw. MP²I-Buchse Ihrer CPU.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü **Extras** > *PG/PC-Schnittstelle einstellen*
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Stellen Sie im Register *MPI* die Übertragungsparameter Ihres MPI-Netzes ein und geben Sie eine gültige *Adresse* an.
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für die MPI-Programmierkabel von VIPA die Übertragungsrate 38400Baud ein.
- Mit Zielsystem > Laden in Baugruppe können Sie Ihr Projekt über MPI in die CPU übertragen und mit Zielsystem > RAM nach ROM kopieren auf einer MMC sichern, falls diese gesteckt ist.

Vorgehensweise Transfer über Profibus Der Profibus-Transfer kann ausschließlich über einen DP-Master erfolgen, sofern dieser zuvor als DP-Master projektiert und diesem eine Profibus-Adresse zugeteilt wurde. Maximal 31 PG/OP-Verbindungen sind bei Profibus möglich.

Der Transfer über Profibus erfolgt nach folgender Vorgehensweise:

- Verbinden Sie Ihren PC über ein MPI-Programmierkabel mit der Profibus DP Master Buchse Ihrer CPU.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
- Wählen Sie in der Auswahlliste "PC Adapter (Profibus)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Stellen Sie im Register *Profibus* die Übertragungsparameter Ihres Profibus-Netzes ein und geben Sie eine gültige *Profibus-Adresse* an. Die *Profibus-Adresse* muss zuvor über ein Projekt Ihrem DP-Master zugewiesen sein.
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für die MPI-Programmierkabel von VIPA die Übertragungsrate 38400Baud ein.
- Mit **Zielsystem** > Laden in Baugruppe können Sie Ihr Projekt über Profibus in die CPU übertragen und mit **Zielsystem** > RAM nach ROM kopieren auf einer MMC sichern, falls diese gesteckt ist.

Transfer mit Green Cable (nur an MP²I-Buchse möglich) Das "Green Cable" ist ein Programmier- und Download-Kabel, das ausschließlich <u>direkt</u> an VIPA-Komponenten mit MP²I-Buchse eingesetzt werden darf. Der Betrieb an einer "normalen" MPI-Buchse ist nicht möglich Durch Stecken des Green Cable auf einer MP²I-Buchse können Sie eine serielle Verbindung zwischen der RS232-Schnittstelle Ihres PCs und der MP²I-Schnittstelle Ihrer CPU herstellen.

Achtung!

Bitte beachten Sie, dass Sie das "Green Cable" ausschließlich <u>direkt</u> und nur auf einer **MP²I-Schnittstelle** von VIPA-CPUs einsetzen dürfen!

Vorgehensweise

- Verbinden Sie die RS232-Schnittstelle des PC und die MP²I-Schnittstelle der CPU mit dem Green Cable.
- Laden Sie im Siemens SIMATIC Manager Ihr Projekt.
- Wählen Sie im Menü Extras > PG/PC-Schnittstelle einstellen
- Wählen Sie in der Auswahlliste "PC Adapter (MPI)" aus; ggf. müssen Sie diesen erst hinzufügen und klicken Sie auf [Eigenschaften].
- Wechseln Sie in das Register Lokaler Anschluss
- Geben Sie den COM-Port des PCs an und stellen Sie für die MPI-Programmierkabel von VIPA die Übertragungsrate 38400Baud ein. Die Einstellungen im Register *MPI* werden bei Green Cable Einsatz ignoriert.
- Mit Zielsystem > Laden in Baugruppe können Sie Ihr Projekt in die CPU übertragen und mit Zielsystem > RAM nach ROM kopieren auf MMC sichern, falls diese gesteckt ist.

Transfer über
MMCAls externes Speichermedium kommt eine MMC zum Einsatz.Die MMC (Memory Card) dient auch als externes Transfermedium für
Programme und Firmware, da Sie unter anderem das PC-kompatible
FAT16 Filesystem besitzt. Mit Urlöschen oder PowerON wird automatisch
von der MMC gelesen. Es dürfen sich mehrere Projekte und
Unterverzeichnisse auf einem MMC-Speichermodul befinden. Bitte
beachten Sie, dass sich Ihre aktuelle Projektierung im Root-Verzeichnis
befindet. Für das Lesen von MMC sind folgende Dateinamen zu verwenden:

- Lesen nach Urlöschen: S7PROG.WLD (S7-Projekt-Datei)
 PROTECT.WLD (Erweiterter Know-how-Schutz)
- Lesen nach PowerON: **AUTOLOAD.WLD** (S7-Projekt-Datei)
- Transfer Bei einer in der CPU gesteckten MMC wird durch ein Schreibbefehl der CPU → MMC Inhalt des batteriegepufferten RAMs als S7PROG.WLD auf die MMC übertragen. Den Schreibbefehl starten Sie aus dem Hardware-Konfigurator von Siemens über Zielsystem > RAM nach ROM kopieren. Während des Schreibvorgangs blinkt die "MCC"-LED. Erlischt die LED, ist der Schreibvorgang beendet.
- Kontrolle des Transfervorgangs Nach einem Schreibvorgang auf die MMC wird ein entsprechendes ID-Ereignis im Diagnosepuffer der CPU eingetragen. Zur Anzeige der Diagnoseeinträge gehen Sie im Siemens SIMATIC Manager auf **Zielsystem** > *Baugruppenzustand*. Über das Register "Diagnosepuffer" gelangen Sie in das Diagnosefenster. Bei einem erfolgreichen Schreibvorgang finden Sie 0xE200 im Diagnosepuffer.

Folgende Ereignisse können beim Schreiben auf eine MMC auftreten:

Ereignis-ID	Bedeutung
0xE100	MMC-Zugriffsfehler
0xE101	MMC-Fehler Filesystem
0xE102	MMC-Fehler FAT
0xE200	MMC schreiben beendet

TransferDas Übertragen des Anwenderprogramms von der MMC in die CPU erfolgtMMC → CPUje nach Dateiname nach Urlöschen oder nach PowerON. Das Blinken der
LED "MCC" der CPU kennzeichnet den Übertragungsvorgang.

Ist kein gültiges Anwenderprogramm auf der gesteckten MMC oder scheitert die Übertragung, so erfolgt das Urlöschen der CPU und die STOP-LED blinkt dreimal.

Hinweis!

Ist das Anwenderprogramm größer als der Anwenderspeicher in der CPU, wird der Inhalt der MMC nicht in die CPU übertragen.

Führen Sie vor der Übertragung eine Komprimierung durch, da keine automatische Komprimierung durchgeführt wird.

Transfer über Ethernet-PG/OP-Kanal (Initialisierung erforderlich) Für den Online-Zugriff auf den Ethernet-PG/OP-Kanal müssen Sie diesem durch die "Initialisierung" bzw. "Urtaufe" IP-Adress-Parameter zuweisen. Nach Zuweisung können Sie über diese IP-Adress-Parameter auf den Ethernet-PG/OP-Kanal zugreifen.

Initialisierung

Nachfolgend sind die Schritte der Initialisierung kurz aufgeführt. Nähere Informationen hierzu finden Sie unter "Initialisierung des PG/OP-Kanals.

• Ethernet (MAC) Adresse des EthernetPG/OP-Kanals ermitteln. Sie finden diese immer als 1. Adresse unter der Frontklappe der CPU auf einem Aufkleber auf der linken Seite.

Ethernet-Address 1. Ethernet-PG/OP 2. CP343 (optional)

- Netzwerkverbindung zwischen dem Ethernet-PG/OP-Kanal der CPU und PC herstellen.
- Im Siemens SIMATIC Manager über Extras > PG/PC-Schnittstelle einstellen den Zugriffsweg auf "TCP/IP -> Netzwerkkarte Protokoll RFC 1006" einstellen.
- Mit **Zielsystem** > *Ethernet-Adresse vergeben* das Dialogfenster zur "Taufe" einer Station öffnen.
- Die Station mit der entsprechenden Ethernet (MAC) Adresse suchen und die gewünschten IP-Adress-Parameter zuweisen. Solange der Ethernet-PG/OP-Kanal noch nicht initialisiert wurde, besitzt dieser die IP-Adresse 0.0.0.0 und den Stationsnamen "Onboard PG/OP".
- TransferDirekt nach der Initalisierung ist der Ethernet-PG/OP-Kanal der CPU mit
dem Siemens SIMATIC Manager über die angegebenen IP-Adress-
Parameter erreichbar.

Der Transfer erfolgt nach folgender Vorgehensweise:

- Öffnen Sie Ihr Projekt im Siemens SIMATIC Manager.
- Stellen Sie über **Extras** > *PG/PC-Schnittstelle einstellen* den *Zugriffsweg* "TCP/IP -> Netzwerkkarte Protokoll RFC 1006" ein.
- Gehen Sie auf Zielsystem > Laden in Baugruppe → es öffnet sich das Dialogfenster "Zielbaugruppe auswählen". Wählen Sie die Zielbaugruppe aus und geben Sie als Teilnehmeradresse die IP-Adress-Parameter des Ethernet-PG/OP-Kanals an. Sofern keine neue Hardware-Konfiguration in die CPU übertragen wird, wird der hier angegebene Ethernet-PG/OP-Kanal dauerhaft als Transferkanal im Projekt gespeichert.
- Starten Sie mit [OK] den Transfer. Systembedingt erhalten Sie eine Meldung, dass sich die projektierte von der Zielbaugruppe unterscheidet. Quittieren Sie diese Meldung mit [OK] → Ihr Projekt wird übertragen und kann nach der Übertragung in der CPU ausgeführt werden.

Betriebszustände

Übersicht	 Die CPU kennt 4 Betriebszustände: Betriebszustand STOP Betriebszustand ANLAUF Betriebszustand RUN Betriebszustand HALT In den Betriebszuständen ANLAUF und RUN können bestimmte Ereignisse auftreten, auf die das Systemprogramm reagieren muss. In vielen Fällen wird dabei ein für das Ereignis vorgesehener Organisationsbaustein als Anwenderschnittstelle aufgerufen.
Betriebszustand STOP	 Das Anwenderprogramm wird nicht bearbeitet. Hat zuvor eine Programmbearbeitung stattgefunden, bleiben die Werte von Zählern, Zeiten, Merkern und des Prozessabbilds beim Übergang in den STOP-Zustand erhalten. Die Befehlsausgabe ist gesperrt, d.h. alle digitalen Ausgaben sind gesperrt. RUN-LED aus STOP-LED an
Betriebszustand ANLAUF	 Während des Übergangs von STOP nach RUN erfolgt ein Sprung in den Anlauf-Organisationsbaustein OB 100. Die Länge des OBs ist nicht beschränkt. Auch wird der Ablauf zeitlich nicht überwacht. Im Anlauf-OB können weitere Bausteine aufgerufen werden. Beim Anlauf sind alle digitalen Ausgaben gesperrt, d.h. die Befehlsaus- gabesperre ist aktiv. RUN-LED blinkt STOP-LED aus Wenn die CPU einen Anlauf fertig bearbeitet hat, geht Sie in den Betriebs- zustand RUN über.
Betriebszustand RUN	 Das Anwenderprogramm im OB 1 wird zyklisch bearbeitet, wobei zusätzlich alarmgesteuert weitere Programmteile eingeschachtelt werden können. Alle im Programm gestarteten Zeiten und Zähler laufen und das Prozessabbild wird zyklisch aktualisiert. Das BASP-Signal (Befehlsausgabesperre) wird deaktiviert, d.h. alle digitalen Ausgänge sind freigegeben. RUN-LED an STOP-LED aus

Betriebszustand HALT	Die CPU 31xS bietet Ihnen die Möglichkeit bis zu 4 Haltepunkte zur Programmdiagnose einzusetzen. Das Setzen und Löschen von Halte- punkten erfolgt in Ihrer Programmierumgebung. Sobald ein Haltepunkt erreicht ist, können Sie schrittweise Ihre Befehlszeilen abarbeiten, wobei Ein- und Ausgänge aktiviert werden können.
Voraussetzung	 Für die Verwendung von Haltepunkten müssen folgende Voraussetzungen erfüllt sein: Das Testen im Einzelschrittmodus ist nur in AWL möglich, ggf. über Ansicht > AWL Ansicht in AWL ändern Der Baustein muss online geöffnet und darf nicht geschützt sein. Der geöffnete Baustein darf im Editor nicht verändert worden sein.
Vorgehensweise zur Arbeit mit Haltepunkten	 Blenden Sie über Ansicht > Haltepunktleiste diese ein. Setzen Sie Ihren Cursor auf die Anweisungszeile, in der ein Haltepunkt gesetzt werden soll. Setzen Sie den Haltepunkt mit Test > Haltepunkt setzen. Die Anweisungszeile wird mit einem Kreisring markiert. Zur Aktivierung des Haltepunkts gehen Sie auf Test > Haltepunkt aktiv. Der Kreisring wird zu einer Kreisfläche. Bringen Sie Ihre CPU in RUN. Wenn Ihr Programm auf den Haltepunkt trifft, geht Ihre CPU in den Zustand HALT über, der Haltepunkt wird mit einem Pfeil markiert und die Registerinhalte werden eingeblendet. Nun können Sie mit Test > Nächste Anweisung ausführen schrittweise Ihren Programmcode durchfahren oder über Test > Fortsetzen Ihre Programmausführung bis zum nächsten Haltepunkt fortsetzen. Mit Test > (Alle) Haltepunkte löschen können Sie (alle) Haltepunkte wieder löschen.
Verhalten im Betriebszustand HALT	 LED RUN blinkt, LED STOP leuchtet. Die Bearbeitung des Codes ist angehalten. Alle Ablaufebenen werden nicht weiterbearbeitet. Alle Zeiten werden eingefroren. Echtzeituhr läuft weiter. Ausgänge werden abgeschaltet, können zu Testzwecken aber freigegeben werden. Passive CP-Kommunikation ist möglich.
	Hinweis!

Der Einsatz von Haltepunkten ist immer möglich. Eine Umschaltung in die Betriebsart Testbetrieb ist nicht erforderlich.

Sobald Sie mehr als 3 Haltepunkte gesetzt haben, ist eine Einzelschritt-Bearbeitung nicht mehr möglich.

Funktions-
sicherheitDie CPUs besitzen Sicherheitsmechanismen, wie einen Watchdog (100ms)
und eine parametrierbare Zykluszeitüberwachung (parametrierbar min.
1ms), die im Fehlerfall die CPU stoppen bzw. einen RESET auf der CPU
durchführen und diese in einen definierten STOP-Zustand versetzen.
Die CPUs von VIPA sind funktionssicher ausgelegt und besitzen folgende
Systemeigenschaften:

Ereignis	betrifft	Effekt
$RUN \to STOP$	allgemein	BASP (B efehls- A usgabe- Sp erre) wird gesetzt.
	zentrale digitale Ausgänge	Die Ausgänge werden auf 0V gesetzt.
	zentrale analoge Ausgänge	Die Spannungsversorgung für die Ausgabe- Kanäle wird abgeschaltet.
	dezentrale Ausgänge	Die Ausgänge werden auf 0V gesetzt.
	dezentrale Eingänge	Die Eingänge werden vom Slave konstant gelesen und die aktuellen Werte zur Verfügung gestellt.
$STOP \to RUN$	allgemein	Zuerst wird das PAE gelöscht, danach erfolgt der
bzw. Netz-Ein		Aufruf des OB 100. Nachdem dieser abgearbeitet ist, wird das BASP zurückgesetzt und der Zyklus gestartet mit: PAA löschen \rightarrow PAE lesen \rightarrow OB 1.
	zentrale analoge Ausgänge	Das Verhalten der Ausgänge bei Neustart kann voreingestellt werden.
	dezentrale Eingänge	Die Eingänge werden vom Slave konstant gelesen und die aktuellen Werte zur Verfügung gestellt.
RUN	allgemein	Der Programmablauf ist zyklisch und damit vorhersehbar: PAE lesen \rightarrow OB 1 \rightarrow PAA schreiben.

PAE = Prozessabbild der Eingänge

PAA = Prozessabbild der Ausgänge

Urlöschen

Übersicht

Beim Urlöschen wird der komplette Anwenderspeicher gelöscht. Ihre Daten auf der Memory Card bleiben erhalten.

Sie haben 2 Möglichkeiten zum Urlöschen:

- Urlöschen über Betriebsartenschalter
- Urlöschen über Siemens SIMATIC Manager

Hinweis!

Vor dem Laden Ihres Anwenderprogramms in Ihre CPU sollten Sie die CPU immer urlöschen, um sicherzustellen, dass sich kein alter Baustein mehr in Ihrer CPU befindet.

Urlöschen über Betriebsartenschalter

Voraussetzung

Ihre CPU muss sich im STOP-Zustand befinden. Stellen Sie hierzu den CPU-Betriebsartenschalter auf "STOP" \rightarrow die STOP-LED leuchtet.

Urlöschen

- Bringen Sie den Betriebsartenschalter in Stellung MRES und halten Sie Ihn ca. 3 Sekunden. → Die STOP-LED geht von Blinken über in Dauerlicht.
- Bringen Sie den Betriebsartenschalter in Stellung STOP und innerhalb von 3 Sekunden kurz in MRES dann wieder auf STOP.
 → Die STOP-LED blinkt (Urlösch-Vorgang).
- Das Urlöschen ist abgeschlossen, wenn die STOP-LED in Dauerlicht übergeht \rightarrow Die STOP-LED leuchtet.

Die nachfolgende Abbildung zeigt nochmals die Vorgehensweise:

Automatisch nachladen	Nun versucht die CPU ihr Anwenderprogramm von der Memory Card neu zu laden. \rightarrow Die MCC-LED blinkt.	
	Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.	
Urlöschen über Siemens SIMATIC	Voraussetzung	
Manager	Mit dem Menübefehl Zielsystem > <i>Betriebszustand</i> bringen Sie Ihre CPU in STOP.	
	Urlöschen	
	Über den Menübefehl Zielsystem > <i>Urlöschen</i> fordern Sie das Urlöschen an.	
	In dem Dialogfenster können Sie, wenn noch nicht geschehen, Ihre CPU in STOP bringen und das Urlöschen starten.	
	Während des Urlöschvorgangs blinkt die STOP-LED.	
	Geht die STOP-LED in Dauerlicht über, ist der Urlöschvorgang abge- schlossen.	
Automatisch nachladen	Nun versucht die CPU ihr Anwenderprogramm von der Memory Card neu zu laden. \rightarrow Die MCC-LED blinkt.	
	Nach dem Nachladen erlischt die LED. Abhängig von der Einstellung des Betriebsartenschalters bleibt die CPU in STOP bzw. geht in RUN.	
Dücksstrop auf	Die felgende Vergebeneweise läseht des internen RAM der CRU	
Werkseinstellung	vollständig und bringt diese zurück in den Auslieferungszustand.	
	zurückgestellt wird!	
	• Drücken Sie den Reset-Schalter für ca. 30 Sekunden nach unten. Hierbei blinkt die ST-LED. Nach ein paar Sekunden wechselt die Anzeige zu statischem Licht. Zählen Sie die Anzahl des statischen Lichts, da die Anzeige jetzt wechselt zwischen statischem Licht und Blinken.	
	 Nach dem 6. Mal statischem Licht lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken. Jetzt leuchtet die grüne RUN-LED einmal auf. Das bedeutet, dass das RAM vollständig gelöscht ist. 	
	Schalten Sie die Stromzufuhr aus und wieder an.	
	Nähere Informationen hierzu finden Sie unter "Rücksetzen auf Werkseinstellung" weiter unten.	

Firmwareupdate

Übersicht

Sie haben die Möglichkeit ab der Firmware-Version 1.0.0 unter Einsatz einer MMC für die am SPEED-Bus befindlichen Module und die CPU ein Firmwareupdate durchzuführen. Hierzu muss sich in der CPU beim Hochlauf eine entsprechend vorbereitete MMC befinden.

Damit eine Firmwaredatei beim Hochlauf erkannt und zugeordnet werden kann, ist für jede update-fähige Komponente und jeden Hardware-Ausgabestand ein pkg-Dateiname reserviert, der mit "px" beginnt und sich in einer 6-stelligen Ziffer unterscheidet. Bei jedem updatefähigen Modul finden Sie den pkg-Dateinamen unter der Frontklappe auf einem Aufkleber auf der rechten Seite des Moduls.

Sobald sich beim Hochlauf eine entsprechende pkg-Datei auf der MMC befindet und es sich bei Firmware um eine aktuellere Firmware handelt als in den Komponenten, werden alle der pkg-Datei zugeordneten Komponenten innerhalb der CPU und am SPEED-Bus mit der neuen Firmware beschrieben.

Firmware Package and Version 1. CPU 31xS 2. Profibus DP master

3. CP 343 (optional)

Aktuelle Firmware auf ftp.vipa.de

Die 2 aktuellsten Firmwarestände finden Sie auf www.vipa.de im Service-Bereich und auf dem VIPA-ftp-Server unter ftp.vipa.de/support/firmware. Beispielsweise sind für den Firmwareupdate der CPU 317-4NE11 und Ihrer Komponenten (Profibus, Ethernet-CP 343) für den Ausgabestand 1 folgende Dateien erforderlich:

• 317-4NE11, Ausgabestand 1:

PX000035_	v142.zip

~~~~~

Profibus DP-Master (integriert/SPEED-Bus):
 Ethernot CP 343 (integriert/SPEED Bus):

Px000009\_V112.zip Px000005 V179.zip

. . .

• Ethernet-CP 343 (integriert/SPEED-Bus):



## Achtung!

Beim Aufspielen einer neuen Firmware ist äußerste Vorsicht geboten. Unter Umständen kann Ihre CPU unbrauchbar werden, wenn beispielsweise während der Übertragung die Spannungsversorgung unterbrochen wird oder die Firmware-Datei fehlerhaft ist. Setzen Sie sich in diesem Fall mit der VIPA-Hotline in Verbindung!

Bitte beachten Sie auch, dass sich die zu überschreibende Firmware-Version von der Update-Version unterscheidet, ansonsten erfolgt kein Update.

| Firmwarestand des<br>SPEED7-Systems<br>über Web-Seite<br>ausgeben | Jede SPEED7-CPU hat eine Web-Seite integriert, die auch Informationen<br>zum Firmwarestand der SPEED7-Komponenten bereitstellt. Über den<br>Ethernet-PG/OP-Kanal haben Sie Zugriff auf diese Web-Seite.<br>Zur Aktivierung des PG/OP-Kanals müssen Sie diesem IP-Parameter<br>zuweisen. Dies kann im Siemens SIMATIC Manager entweder über eine<br>Hardware-Konfiguration erfolgen, die Sie über MMC bzw. MPI einspielen<br>oder über Ethernet durch Angabe der MAC-Adresse unter <b>Zielsystem</b> ><br><i>Ethernet-Adresse vergeben</i> . |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                   | Danach können Sie mit einem Web-Browser über die angegebene IP-<br>Adresse auf den PG/OP-Kanal zugreifen. Näheres hierzu finden Sie im<br>Handbuch zur SPEED7-CPU unter "Zugriff auf Ethernet-PG/OP-Kanal und<br>Web-Seite".                                                                                                                                                                                                                                                                                                                |  |
| Firmware laden<br>und auf MMC<br>übertragen                       | <ul> <li>Gehen Sie auf www.vipa.de.</li> <li>Klicken Sie auf Service &gt; Download &gt; Firmware Updates.</li> <li>Klicken Sie auf "Firmware für System 300S".</li> <li>Wählen Sie die entsprechenden Baugruppen (CPU, DPM, CP) aus und laden Sie die Firmware Pxzip auf Ihren PC.</li> <li>Entpacken Sie die zip-Datei und kopieren Sie die extrahierte Datei auf Ihre MMC.</li> <li>Übertragen Sie auf diese Weise alle erforderlichen Firmware-Dateien auf Ihre MMC.</li> </ul>                                                          |  |
| Voraussetzungen<br>für ftp-Zugriff                                | Zur Ansicht von ftp-Seiten in Ihrem Web-Browser sind ggf. folgende<br>Einstellungen vorzunehmen:<br>Internet Explorer<br>ftp-Zugriff nur möglich ab Version 5.5<br>Extras > Internetoptionen, Register "Erweitert" im Bereich Browsing:<br>- aktivieren: "Ordneransicht für ftp-Sites aktivieren"<br>- aktivieren: "Passives ftp verwenden"<br>Netscape<br>ftp-Zugriff nur möglich ab Version 6.0.                                                                                                                                          |  |
|                                                                   | Es sind keine zusätzlichen Einstellungen erforderlich.<br>Sollte es immer noch Probleme mit dem ftp-Zugriff geben, fragen Sie Ihren<br>Systemverwalter.                                                                                                                                                                                                                                                                                                                                                                                     |  |



## Achtung!

Beim Firmwareupdate wird automatisch ein Urlöschen durchgeführt. Sollte sich Ihr Programm nur im Ladespeicher der CPU befinden, so wird es hierbei gelöscht! Sichern Sie Ihr Programm, bevor Sie ein Firmwareupdate durchführen! Auch sollten Sie nach dem Firmwareupdate ein "Rücksetzen auf Werkseinstellung" durchführen (siehe Folgeseite).

Firmware von MMC in CPU übertragen

- Bringen Sie den RUN-STOP-Schalter Ihrer CPU in Stellung STOP. Schalten Sie die Spannungsversorgung aus. Stecken Sie die MMC mit den Firmware-Dateien in die CPU. Achten Sie hierbei auf die Steckrichtung der MMC. Schalten Sie die Spannungsversorgung ein.
  - 2. Nach einer kurzen Hochlaufzeit zeigt das abwechselnde Blinken der LEDs SF und FRCE an, dass auf der MMC mindestens eine aktuellere Firmware-Datei gefunden wurde.
  - 3. Sie starten die Übertragung der Firmware, sobald Sie innerhalb von 10s den RUN/STOP-Schalter kurz nach MRES tippen und dann den Schalter in der STOP-Position belassen.
  - 4. Während des Update-Vorgangs blinken die LEDs SF und FRCE abwechselnd und die MCC-LED leuchtet. Dieser Vorgang kann mehrere Minuten dauern.
  - 5. Das Update ist fehlerfrei beendet, wenn die LEDs PWR, STOP, SF, FRCE und MCC leuchten. Blinken diese schnell, ist ein Fehler aufgetreten.
  - 6. Schalten Sie die Spannungsversorgung aus und wieder ein. Jetzt prüft die CPU, ob noch weitere Firmware-Updates durchzuführen sind. Ist dies der Fall, blinken, wiederum nach einer kurzen Hochlaufzeit, die LEDs SF und FRCE. Fahren Sie mit Punkt 3 fort.

Blinken die LEDs nicht, ist das Firmware-Update abgeschlossen.

Führen Sie jetzt wie nachfolgend beschrieben ein *Rücksetzen auf Werkseinstellungen* durch. Danach ist die CPU wieder einsatzbereit.



## Rücksetzen auf Werkseinstellung

**Vorgehensweise** Die folgende Vorgehensweise löscht das interne RAM der CPU vollständig und bringt diese zurück in den Auslieferungszustand.

Bitte beachten Sie, dass hierbei auch die MPI-Adresse auf 2 und die IP-Adresse des Ethernet-PG/OP-Kanals auf 0.0.0.0 zurückgestellt wird!

Sie können auch das Rücksetzen auf Werkseinstellung mit dem MMC-Cmd FACTORY\_RESET ausführen. Nähere Informationen hierzu finden Sie unter "MMC-Cmd - Autobefehle".

- 1. Bringen Sie die CPU in STOP.
- Drücken Sie den Betriebsarten-Schalter für ca. 30 Sekunden nach unten in Stellung MRES. Hierbei blinkt die STOP-LED. Nach ein paar Sekunden leuchtet die STOP-LED. Die STOP-LED wechselt jetzt von Leuchten in Blinken. Zählen Sie, wie oft die STOP-LED leuchtet.
- 3. Nach dem 6. Mal Leuchten der STOP-LED lassen Sie den Reset-Schalter wieder los, um ihn nochmals kurzzeitig nach unten zu drücken.
- 4. Zur Bestätigung des Rücksetzvorgangs leuchtet die grüne RUN-LED für ca. 0,5 Sekunden auf. Leuchtet diese nicht, wurde nur urgelöscht und das Rücksetzen auf Werkseinstellung ist fehlgeschlagen. In diesem Fall können Sie den Vorgang wiederholen. Das Rücksetzen auf Werkseinstellung wird nur dann ausgeführt, wenn die STOP-LED genau 6 Mal geleuchtet hat.
- 5. Nach dem Rücksetzen auf Werkseinstellung ist die Spannungsversorgung aus- und wieder einzuschalten.

Die nachfolgende Abbildung soll die Vorgehensweise nochmals verdeutlichen:



## Hinweis!

Bitte führen Sie nach einem Firmwareupdate der CPU immer ein *Rücksetzen auf Werkseinstellung* durch.

## Speichererweiterung mit MCC

#### Übersicht



Ab der CPU-Firmware-Version 3.0.0 haben Sie die Möglichkeit den Arbeitsspeicher Ihrer CPU zu erweitern.

Hierzu ist bei VIPA eine MCC Speichererweiterungskarte verfügbar. Bei der MCC handelt es sich um eine speziell vorbereitete MMC (**M**ultimedia **C**ard). Durch Stecken der MCC im MCC-Slot und anschließendem Urlöschen wird die entsprechende Speichererweiterung freigeschaltet. Es kann immer nur eine Speichererweiterung aktiviert sein.

Auf der MCC befindet sich die Datei *memory.key*. Diese Datei darf weder bearbeitet noch gelöscht werden. Sie können die MCC auch als "normale" MMC zur Speicherung Ihrer Projekte verwenden.

## **Vorgehensweise** Zur Erweiterung des Speichers stecken Sie die MCC in den mit "MCC" bezeichneten Kartenslot der CPU und führen Sie Urlöschen durch.



Sollte die Speichererweiterung auf der MCC den maximal erweiterbaren Speicherbereich der CPU überschreiten, wird automatisch der maximal mögliche Speicher der CPU verwendet.

Den aktuellen Speicherausbau können Sie im Siemens SIMATIC Manager über den *Baugruppenzustand* unter "Speicher" ermitteln.



## Achtung!

Bitte beachten Sie, dass, sobald Sie eine Speichererweiterung auf Ihrer CPU durchgeführt haben, die MCC gesteckt bleiben muss. Ansonsten geht die CPU nach 48h in STOP. Auch kann die MCC <u>nicht</u> gegen eine MCC mit gleicher Speicherkonfiguration getauscht werden.

Verhalten

Wurde die MCC-Speicherkonfiguration übernommen, finden Sie den Diagnoseeintrag 0xE400 im Diagnosepuffer der CPU.

Nach Ziehen der MCC erfolgt der Eintrag 0xE401 im Diagnosepuffer, die SF-LED leuchtet und nach 48h geht die CPU in STOP. Hier ist ein Anlauf erst wieder möglich nach Stecken der MCC oder nach Urlöschen.

Nach erneutem Stecken der MCC erlischt die SF-LED und 0xE400 wird im Diagnosepuffer eingetragen.

Sie können jederzeit die Speicherkonfiguration Ihrer CPU auf den ursprünglichen Zustand wieder zurücksetzen, indem Sie Urlöschen ohne MCC ausführen.

## **Erweiterter Know-how-Schutz**

Übersicht Neben dem "Standard" Know-how-Schutz besitzen die SPEED7-CPUs von VIPA einen "erweiterten" Know-how-Schutz, der einen sicheren Baustein-Schutz vor Zugriff Dritter bietet.

Standard-Schutz Beim Standard-Schutz von Siemens werden auch geschützte Bausteine in das PG übertragen, aber deren Inhalt nicht dargestellt. Durch entsprechende Manipulation ist der Know-how-Schutz aber nicht sichergestellt.

Erweiterter Schutz Mit dem von VIPA entwickelten "erweiterten" Know-how-Schutz besteht aber die Möglichkeit Bausteine permanent in der CPU zu speichern. Beim "erweiterten" Schutz übertragen Sie die zu schützenden Bausteine in eine WLD-Datei mit Namen protect.wld. Durch Stecken der MMC und anschließendem Urlöschen werden die in protect.wld gespeicherten Bausteine permanent in der CPU abgelegt.

Geschützt werden können OBs, FBs und FCs.

Beim Zurücklesen von geschützten Bausteinen in Ihr PG werden ausschließlich die Baustein-Header geladen. Der Source bleibt in der CPU und somit vor dem Zugriff Dritter geschützt.



## Bausteine mit protect.wld schützen

Erzeugen Sie in Ihrem Projektiertool mit **Datei** > *Memory Card Datei* > *Neu* eine WLD-Datei und benennen Sie diese um in "protect.wld". Übertragen Sie die zu schützenden Bausteine in die Datei, indem Sie diese

mit der Maus aus Ihrem Projekt in das Dateifenster von protect.wld ziehen.

## protect.wld mit Urlöschen in CPU übertragen

Übertragen Sie die Datei protect.wld auf eine MMC-Speicherkarte, stecken Sie die MMC in Ihre CPU und führen Sie nach folgender Vorgehensweise Urlöschen durch:



Mit Urlöschen werden die in protect.wld enthaltenen Bausteine, permanent vor Zugriffen Dritter geschützt, in der CPU abgelegt.

Schutzverhalten Geschützte Bausteine werden durch eine neue protect.wld überschrieben. Mit einem PG können Dritte auf geschützte Bausteine zugreifen, hierbei wird aber ausschließlich der Baustein-Header in das PG übertragen. Der schützenswerte Baustein-Code bleibt in der CPU und kann nicht ausgelesen werden.

Geschützte Bau-<br/>steine über-<br/>schreiben bzw.Sie haben jederzeit die Möglichkeit geschützte Bausteine durch<br/>gleichnamige Bausteine im RAM der CPU zu überschreiben. Diese<br/>Änderung bleibt bis zum nächsten Urlöschen erhalten.IöschenGeschützte Bausteine können nur dann vom PG dauerhaft überschrieben<br/>werden, wenn diese zuvor aus der protect.wld gelöscht wurden.<br/>Durch Übertragen einer leeren protect.wld von der MMC können Sie in der

CPU alle geschützten Bausteine löschen.

Einsatz von<br/>geschütztenDa beim Auslesen eines "protected" Bausteins aus der CPU die Symbol-<br/>Bezeichnungen fehlen, ist es ratsam dem Endanwender die "Baustein-<br/>hüllen" zur Verfügung zu stellen.BausteinenErstellen Sie hierzu aus allen geschützten Bausteinen ein Projekt. Löschen<br/>Sie aus diesen Bausteinen alle Netzwerke, so dass diese ausschließlich<br/>die Variablen-Definitionen in der entsprechenden Symbolik beinhalten.

## **MMC-Cmd - Autobefehle**

ÜbersichtAb Firmwarestand 3.0.8 kann eine Kommando-Datei auf einer MMC<br/>automatisch ausgeführt werden sobald die MMC gesteckt ist und die CPU<br/>sich im STOP befindet. Solange die MMC gesteckt ist wird die Kommando-<br/>Datei bei CPU-STOP einmalig bis zum nächsten Power ON ausgeführt.

Bei der *Kommando-Datei* handelt es sich um eine Text-Datei mit einer Befehlsabfolge, die unter dem Namen *vipa\_cmd.mmc* im Root-Verzeichnis der MMC abzulegen ist. Die Datei muss mit dem 1. Befehl *CMD\_START* beginnen, gefolgt von den gewünschten Befehlen (kein anderer Text) und ist immer mit dem letzten Befehl *CMD\_END* abzuschließen.

Texte wie beispielsweise Kommentare nach dem letzten Befehl *CMD\_END* sind zulässig, da diese ignoriert werden. Sobald eine Kommandodatei erkannt und ausgeführt wird, werden die Aktionen in der Datei Logfile.txt auf der MMC gespeichert. Zusätzlich finden Sie für jeden ausgeführten Befehl einen Diagnoseeintrag im Diagnosepuffer.

| Befehle | Nachfolgend finden Sie eine Übersicht der Befehle. Bitte beachten Sie, |
|---------|------------------------------------------------------------------------|
|         | dass Sie immer Ihre Befehlsabfolge mit CMD_START beginnen und mit      |
|         | CMD_END beenden.                                                       |

| Kommando      | Beschreibung                                           | Diagnoseeintrag |
|---------------|--------------------------------------------------------|-----------------|
| CMD START     | In der ersten Zeile muss CMD START stehen.             | 0xE801          |
| -             | Fehlt CMD_START erfolgt ein Diagnoseeintrag            | 0xE8FE          |
| WAIT1SECOND   | Wartet ca. 1 Sekunde.                                  | 0xE803          |
| WEBPAGE       | Speichert die Web-Site der CPU als Datei               | 0xE804          |
|               | "webpage.htm" auf der MMC.                             |                 |
| LOAD_PROJECT  | Ruft die Funktion "Urlöschen mit Nachladen von der     | 0xE805          |
|               | MMC" auf. Durch Angabe einer wld-Datei nach dem        |                 |
|               | Kommando, wird diese wld-Datei nachgeladen,            |                 |
|               | ansonsten wird die Datei "s7prog.wld" geladen.         |                 |
| SAVE_PROJECT  | Speichert das Anwenderprojekt (Bausteine und Hard-     | 0xE806          |
|               | warekonfiguration) auf der MMC als "s7prog.wld".       |                 |
|               | Falls bereits eine Datei mit dem Namen "s7prog.wld"    |                 |
|               | existiert, wird diese in "s7prog.old" umbenannt.       |                 |
| FACTORY_RESET | Führt "Rücksetzen auf Werkseinstellung" durch.         | 0xE807          |
| DIAGBUF       | Speichert den Diagnosebuffer der CPU als Datei         | 0xE80B          |
|               | "diagbuff.txt" auf der MMC.                            |                 |
| SET_NETWORK   | Mit diesem Kommando können Sie die IP-Parameter für    | 0xE80E          |
|               | den Ethernet-PG/OP-Kanal einstellen.                   |                 |
|               | Die IP-Parameter sind in der Reihenfolge IP-Adresse,   |                 |
|               | Subnetz-Maske und Gateway jeweils getrennt durch ein   |                 |
|               | Komma im Format von xxx.xxx.xxx einzugeben.            |                 |
|               | Wird kein Gateway verwendet, tragen Sie die IP-Adresse |                 |
|               | als Gateway ein.                                       |                 |
| CMD_END       | In der letzten Zeile muss CMD_END stehen.              | 0xE802          |
BeispieleNachfolgend ist der Aufbau einer Kommando-Datei an Beispielen gezeigt.<br/>Den jeweiligen Diagnoseeintrag finden Sie in Klammern gesetzt.

Beispiel 1

| CMD_START             | Kennzeichnet den Start der Befehlsliste (0xE801)             |
|-----------------------|--------------------------------------------------------------|
| LOAD_PROJECT proj.wld | Urlöschen und Nachladen von "proj.wld" (0xE805)              |
| WAIT1SECOND           | Wartet ca. 1 Sekunde (0xE803)                                |
| WEBPAGE               | Web-Site als "webpage.htm" speichern (0xE804)                |
| DIAGBUF               | Diagnosebuffer der CPU als "diagbuff.txt" speichern (0xE80B) |
| CMD_END               | Kennzeichnet das Ende der Befehlsliste (0xE802)              |
| beliebiger Text       | Texte nach dem CMD_END werden nicht mehr ausgewertet.        |

**Beispiel 2** 

| CMD_START                | Kennzeichnet den Start der Befehlsliste (0xE80  | 1)            |
|--------------------------|-------------------------------------------------|---------------|
| LOAD_PROJECT proj2.wld   | Urlöschen und Nachladen von "proj2.wld" (0xE8   | 305)          |
| WAIT1SECOND              | Wartet ca. 1 Sekunde (0xE803)                   |               |
| WAIT1SECOND              | Wartet ca. 1 Sekunde (0xE803)                   |               |
| SET_NETWORK172.16.129.21 | 0,255.255.224.0,172.16.129.210                  | IP-Parameter  |
|                          |                                                 | (0xE80E)      |
| WAIT1SECOND              | Wartet ca. 1 Sekunde (0xE803)                   |               |
| WAIT1SECOND              | Wartet ca. 1 Sekunde (0xE803)                   |               |
| WEBPAGE                  | Web-Site als "webpage.htm" speichern (0xE804    | 4)            |
| DIAGBUF                  | Diagnosebuffer der CPU als "diagbuff.txt" speic | hern (0xE80B) |
| CMD_END                  | Kennzeichnet das Ende der Befehlsliste (0xE80   | )2)           |
| beliebiger Text          | Texte nach dem CMD_END werden nicht mehr        | ausgewertet.  |



#### Hinweis!

Die Parameter IP-Adresse, Subnetz-Maske und Gateway erhalten Sie von Ihrem Systemadministrator.

Wird kein Gateway verwendet, tragen Sie die IP-Adresse als Gateway ein.

## VIPA-spezifische Diagnose-Einträge

Einträge im<br/>DiagnosepufferSie haben die Möglichkeit im Siemens SIMATIC Manager den<br/>Diagnosepuffer der CPU auszulesen. Neben den Standardeinträgen im<br/>Diagnosepuffer gibt es in den CPUs der VIPA noch zusätzliche Einträge,<br/>die ausschließlich in Form einer Ereignis-ID angezeigt werden.<br/>Mit dem MMC-Cmd DIAGBUF wird der aktuelle Inhalt des Diagnosepuffers<br/>auf MMC gespeichert. Nähere Informationen hierzu finden Sie unter "MMC-<br/>Cmd - Autobefehle".

Anzeige derZur Anzeige der Diagnoseeinträge gehen Sie in Ihrem Siemens SIMATICDiagnoseeinträgeManager auf Zielsystem > Baugruppenzustand. Über das Register"Diagnosepuffer" gelangen Sie in das Diagnosefenster:

| Θ           | 🔁 Baugruppenzustand - CPU 318-2                                                                                                                                                                                     |                     |                         |                                                         |          |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------------------------------------|----------|
| <u>P</u> fa | 2fad: Erreichbare Teilnehmer/MPI = 2 (direkt) Betriebszustand der CPU: 🚸 RUN                                                                                                                                        |                     |                         |                                                         |          |
| Sta         | atus:                                                                                                                                                                                                               |                     |                         | Kein Forceauftrag                                       |          |
| A           | llgem                                                                                                                                                                                                               | ein Diagnosepuf     | fer Speicher            | Zykluszeit Zeitsystem Leistungsdaten Kommunikation      | Stacks   |
|             | <u>E</u> reig                                                                                                                                                                                                       | nisse: 🔽            | <u>F</u> ilter-Einstell | ungen aktiv 🛛 🗖 Uhrzeit incl. Zeitunterschied CPU/Jokal |          |
|             | Nr.                                                                                                                                                                                                                 | Uhrzeit             | Datum                   | Ereignis                                                |          |
|             | 8                                                                                                                                                                                                                   | 13:18:15:203        | 28.03.06                | Automatische Neustart (Warmstart)-Anforderung           |          |
|             | 9                                                                                                                                                                                                                   | 13:18:15:203        | 28.03.06                | Betriebszustandsübergang von STOP nach ANLAUF           |          |
|             | 10                                                                                                                                                                                                                  | 13:18:11:370        | 28.03.06                | STOP durch Stopschalter-Bedienung                       |          |
|             | 11                                                                                                                                                                                                                  | 02:39:35:498        | 28.03.06                | Ereignis-ID: 16# EOCC 🧲                                 |          |
|             | 12                                                                                                                                                                                                                  | 02:39:10:768        | 28.03.06                | Betriebszustandsübergang von ANLAUT poch RUN            |          |
|             | 13                                                                                                                                                                                                                  | 02:39:10:768        | 28.03.06                | Automatische Neustart (Warmstart V PA-D                 |          |
|             | 14                                                                                                                                                                                                                  | 02:39:10:768        | 28.03.06                | Betriebszustandsübergang von STUP nach ANLAUF           |          |
|             | 15                                                                                                                                                                                                                  | 02:38:55:603        | 28.03.06                | Ereignis-ID: 16# EOCC <                                 | <b>_</b> |
|             | De <u>t</u> ai                                                                                                                                                                                                      | ils zum Ereignis: 1 | von 30                  | Ereignis-ID: 16# 4302                                   |          |
|             | Betriebszustandstübergang von ANLAUF nach RUN Anlaufinformation: - Soll-/Istdifferenz vorhanden - Uhr für Zeitstempel bei letztem NETZ-EIN gepuffert - Einprozessorbetrieb Aktuelle/letzte durchoeführte Anlaufart: |                     |                         |                                                         |          |
|             | Speichern unter         Einstellungen         Baustein öffnen         Hilfe zum Ereignis                                                                                                                            |                     |                         |                                                         |          |
|             | Schließen Aktualisieren Drucken Hilfe                                                                                                                                                                               |                     |                         |                                                         |          |

Für die Diagnose ist der Betriebszustand der CPU irrelevant. Es können maximal 100 Diagnoseeinträge in der CPU gespeichert werden.

Auf der Folgeseite finden Sie eine Übersicht der VIPA-spezifischen Ereignis-IDs.

#### Übersicht der Ereignis-ID

| Ereignis-ID | Bedeutung                                                                              |
|-------------|----------------------------------------------------------------------------------------|
| 0xE003      | Fehler beim Zugriff auf Peripherie                                                     |
|             | Zinfo1: Peripherie-Adresse                                                             |
|             | Zinfo2: Steckplatz                                                                     |
| 0xE004      | Mehrfach-Parametrierung einer Peripherieadresse                                        |
|             | Zinfo1: Peripherie-Adresse                                                             |
|             | Zinfo2: Steckplatz                                                                     |
| 0xE005      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                             |
| 0xE006      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                             |
| 0xE007      | Konfigurierte Ein-/Ausgangsbytes passen nicht in Peripheriebereich                     |
| 0xE008      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                             |
| 0xE009      | Fehler beim Zugriff auf Standard-Rückwandbus                                           |
| 0xE010      | Nicht definierte Baugruppe am Rückwandbus erkannt                                      |
|             | Zinfo2: Steckplatz                                                                     |
|             | Zinfo3: Typkennung                                                                     |
| 0xE011      | Masterprojektierung auf Slave-CPU nicht möglich oder fehlerhafte<br>Slavekonfiguration |
| 0xE012      | Fehler bei Parametrierung                                                              |
| 0xE013      | Fehler bei Schieberegisterzugriff auf VBUS Digitalmodule                               |
| 0xE014      | Fehler bei Check_Sys                                                                   |
| 0xE015      | Fehler beim Zugriff auf Master                                                         |
|             | Zinfo2: Steckplatz des Masters (32=Kachelmaster)                                       |
| 0xE016      | Maximale Blockgröße bei Mastertransfer überschritten                                   |
|             | Zinfo1: Peripherie-Adresse                                                             |
|             | Zinfo2: Steckplatz                                                                     |
| 0xE017      | Fehler beim Zugriff auf integrierten Slave                                             |
| 0xE018      | Fehler beim Mappen der Masterperipherie                                                |
| 0xE019      | Fehler bei Erkennung des Standard Rückwandbus Systems                                  |
| 0xE01A      | Fehler bei Erkennung der Betriebsart (8 / 9 Bit)                                       |
|             |                                                                                        |
| 0xE0B0      | Speed7 kann nicht mehr gestoppt werden (evtl. undefinierter BCD-Wert bei Timer)        |
| 0xE0C0      | Nicht genug Speicherplatz im Arbeitsspeicher für Codebaustein (Baustein zu groß)       |
| 0xE0CC      | Kommunikationsfehler MPI / Seriell                                                     |
|             |                                                                                        |
| 0xE100      | MMC-Zugriffsfehler                                                                     |
| 0xE101      | MMC-Fehler Filesystem                                                                  |
| 0xE102      | MMC-Fehler FAT                                                                         |
| 0xE104      | MMC Fehler beim Speichern                                                              |
| 0xE200      | MMC schreiben beendet (Copy Ram2Rom)                                                   |
| 0xE210      | MMC Lesen beendet (Nachladen nach Urlöschen)                                           |

Fortsetzung ...

### ... Fortsetzung

| Ereignis-ID | Bedeutung                                                                                     |  |  |
|-------------|-----------------------------------------------------------------------------------------------|--|--|
| 0xE400      | Speichererweiterungs-MCC wurde gesteckt                                                       |  |  |
| 0xE401      | Speichererweiterungs-MCC wurde gezogen                                                        |  |  |
|             |                                                                                               |  |  |
| 0xE801      | MMC-Cmd: CMD_START erkannt und erfolgreich ausgeführt                                         |  |  |
| 0xE802      | MMC-Cmd: CMD_END erkannt und erfolgreich ausgeführt                                           |  |  |
| 0xE803      | MMC-Cmd: WAIT1SECOND erkannt und erfolgreich ausgeführt                                       |  |  |
| 0xE804      | MMC-Cmd: WEBPAGE erkannt und erfolgreich ausgeführt                                           |  |  |
| 0xE805      | MMC-Cmd: LOAD_PROJECT erkannt und erfolgreich ausgeführt                                      |  |  |
| 0xE806      | MMC-Cmd: SAVE_PROJECT erkannt und erfolgreich ausgeführt                                      |  |  |
| 0xE807      | MMC-Cmd: FACTORY_RESET erkannt und erfolgreich ausgeführt                                     |  |  |
| 0xE80B      | MMC-Cmd: DIAGBUF erkannt und erfolgreich ausgeführt                                           |  |  |
| 0xE80E      | MMC-Cmd: SET_NETWORK erkannt und erfolgreich ausgeführt                                       |  |  |
| 0xE8FB      | MMC-Cmd: Fehler: Initialisierung des Ethernet-PG/OP-Kanals mittels<br>SET_NETWORK fehlerhaft. |  |  |
| 0xE8FC      | MMC-Cmd: Fehler: In SET_NETWORK wurden nicht alle IP-Parameter angegeben.                     |  |  |
| 0xE8FE      | MMC-Cmd: Fehler: CMD_START nicht gefunden                                                     |  |  |
| 0xE8FF      | MMC-Cmd: Fehler: Fehler beim Lesen des CMD-Files (MMC-Fehler)                                 |  |  |
|             |                                                                                               |  |  |
| 0xE901      | Checksummen-Fehler                                                                            |  |  |
|             |                                                                                               |  |  |
| 0xEA00      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                                    |  |  |
| 0xEA01      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                                    |  |  |
| 0xEA04      | SBUS: Mehrfach-Parametrierung einer Peripherieadresse                                         |  |  |
|             | Zinfo1: Peripherie-Adresse                                                                    |  |  |
|             | Zinfo2: Steckplatz                                                                            |  |  |
|             | Zinfo3: Datenbreite                                                                           |  |  |
| 0xEA05      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                                    |  |  |
| 0xEA07      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!                                    |  |  |
| 0xEA08      | SBUS: Parametrierte Eingangsdatenbreite ungleich der gesteckten                               |  |  |
|             | Zinfo1: Parametrierte Eingangsdatenbreite                                                     |  |  |
|             | Zinto1: 1 aramethene Lingangsdatenbreite<br>Zinto2: Stecknlatz                                |  |  |
|             | Zinfo2: Steckplatz<br>Zinfo3: Eingangsdatenbreite der gesteckten Baugruppe                    |  |  |
| 0xFA09      | SBLIS: Parametrierte Ausgangsdatenbreite ungleich der gesteckten                              |  |  |
| 0/1/00      | Ausgangsdatenbreite                                                                           |  |  |
|             | Zinfo1: Parametrierte Ausgangsdatenbreite                                                     |  |  |
|             | Zinfo2: Steckplatz                                                                            |  |  |
|             | Zinfo3: Ausgangsdatenbreite der gesteckten Baugruppe                                          |  |  |
| 0xEA10      | SBUS: Eingangs-Peripherieadresse außerhalb des Peripheriebereiches                            |  |  |
|             | Zinfo1: Peripherie-Adresse                                                                    |  |  |
|             | Zinfo2: Steckplatz                                                                            |  |  |
|             | Zinfo3: Datenbreite                                                                           |  |  |

Fortsetzung ...

#### ... Fortsetzung

| Ereignis-ID | Bedeutung                                                               |
|-------------|-------------------------------------------------------------------------|
| 0xEA11      | SBUS: Ausgangs-Peripherieadresse außerhalb des Peripheriebereiches      |
|             | Zinfo1: Peripherie-Adresse                                              |
|             | Zinfo2: Steckplatz                                                      |
|             | Zinfo3: Datenbreite                                                     |
| 0xEA12      | SBUS: Fehler beim Datensatz schreiben                                   |
|             | Zinfo1: Steckplatz                                                      |
|             | Zinfo2: Datensatznummer                                                 |
|             | Zinfo3: Datensatzlänge                                                  |
| 0xEA14      | SBUS: Mehrfach-Parametrierung einer Peripherieadresse (Diagnoseadresse) |
|             | Zinfo1: Peripherie-Adresse                                              |
|             | Zinfo2: Steckplatz                                                      |
|             | Zinfo3: Datenbreite                                                     |
| 0xEA15      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!              |
| 0xEA18      | SBUS: Fehler beim Mappen der Masterperipherie                           |
|             | Zinfo2: Steckplatz des Masters                                          |
| 0xEA19      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!              |
|             |                                                                         |
| 0xEA98      | Timeout beim Warten, dass ein SBUS-Modul (Server) rebootet hat          |
| 0xEA99      | Fehler beim File-Lesen über SBUS                                        |
|             |                                                                         |
| 0xEE00      | Interner Fehler - Kontaktieren Sie bitte die VIPA-Hotline!              |

## Mit Testfunktionen Variablen steuern und beobachten

Übersicht Zur Fehlersuche und zur Ausgabe von Variablenzuständen können Sie in Ihrem Siemens SIMATIC Manager unter dem Menüpunkt Test verschiedene Testfunktionen aufrufen.

Mit der Testfunktion **Test** > *Beobachten* können die Signalzustände von Operanden und das VKE angezeigt werden.

Mit der Testfunktion **Zielsystem** > Variablen beobachten/steuern können die Signalzustände von Variablen geändert und angezeigt werden.

Test > BeobachtenDiese Testfunktion zeigt die aktuellen Signalzustände und das VKE der<br/>einzelnen Operanden während der Programmbearbeitung an.<br/>Es können außerdem Korrekturen am Programm durchgeführt werden.

1

#### Hinweis!

Die CPU muss bei der Testfunktion "Beobachten" in der Betriebsart RUN sein!

Die Statusbearbeitung kann durch Sprungbefehle oder Zeit- und Prozessalarme unterbrochen werden. Die CPU hört an der Unterbrechungsstelle auf, Daten für die Statusanzeige zu sammeln und übergibt dem PG anstelle der noch benötigten Daten nur Daten mit dem Wert 0.

Deshalb kann es bei Verwendung von Sprungbefehlen oder von Zeit- und Prozessalarmen vorkommen, dass in der Statusanzeige eines Bausteins während dieser Programmbearbeitung nur der Wert 0 angezeigt wird für:

- das Verknüpfungsergebnis VKE
- Status / AKKU 1
- AKKU 2
- Zustandsbyte
- absolute Speicheradresse SAZ. Hinter SAZ erscheint dann ein "?".

Die Unterbrechung der Statusbearbeitung hat keinen Einfluss auf die Programmbearbeitung, sondern macht nur deutlich, dass die angezeigten Daten ab der Unterbrechungsstelle nicht mehr gültig sind. Zielsystem >Diese Testfunktion gibt den Zustand eines beliebigen Operanden<br/>(Eingänge, Ausgänge, Merker, Datenwort, Zähler oder Zeiten) am Ende<br/>einer Programmbearbeitung an.Diese Informationen werden aus dem Prozessabbild der ausgesuchten

Diese Informationen werden aus dem Prozessabbild der ausgesuchten Operanden entnommen. Während der "Bearbeitungskontrolle" oder in der Betriebsart STOP wird bei den Eingängen direkt die Peripherie eingelesen. Andernfalls wird nur das Prozessabbild der aufgerufenen Operanden angezeigt.

#### Steuern von Ausgängen

Dadurch kann die Verdrahtung und die Funktionstüchtigkeit von Ausgabebaugruppen kontrolliert werden.

Auch ohne Steuerungsprogramm können Ausgänge auf den gewünschten Signalzustand eingestellt werden. Das Prozessabbild wird dabei nicht verändert, die Sperre der Ausgänge jedoch aufgehoben.

#### Steuern von Variablen

Folgende Variablen können geändert werden:

E, A, M, T, Z und D.

Unabhängig von der Betriebsart der CPU 31xS wird das Prozessabbild binärer und digitaler Operanden verändert.

In der Betriebsart RUN wird die Programmbearbeitung mit den geänderten Prozessvariablen ausgeführt. Im weiteren Programmablauf können sie jedoch ohne Rückmeldung wieder verändert werden.

Die Prozessvariablen werden asynchron zum Programmablauf gesteuert.

## Teil 5 Einsatz E/A-Peripherie CPU 314ST

#### Überblick

In diesem Kapitel finden Sie alle Informationen, die zum Einsatz der Ein-/ Ausgabe-Peripherie der CPU 314ST erforderlich sind. Beschrieben sind Funktionalität, Projektierung und Diagnose des Analog- und Digital-Teils.

Nachfolgend sind beschrieben:

- Gesamtübersicht der E/A-Bereiche
- Einsatz des Analog-Teils
- Einsatz des Digital-Teils und der Zählerfunktionen

| Inhalt | Thema   |                                  | Seite |
|--------|---------|----------------------------------|-------|
|        | Teil 5  | Einsatz E/A-Peripherie CPU 314ST | 5-1   |
|        | Übers   | icht                             |       |
|        | Ein-/A  | usgabe-Bereich                   | 5-3   |
|        | Analog  | g-Teil                           | 5-5   |
|        | Analog  | g-Teil - Parametrierung          |       |
|        | Analog  | g-Teil - Diagnosefunktionen      | 5-13  |
|        | Digital | -Teil                            |       |
|        | Zähler  | - Schnelleinstieg                | 5-18  |
|        | Zähler  | - Parametrierung                 | 5-21  |
|        | Zähler  | - Funktionen                     |       |
|        | Zähler  | - Zusatzfunktionen               |       |
|        | Zähler  | - Diagnose und Alarm             | 5-39  |

## Übersicht

| Allgemein     | Bei der CPU 314ST sind analoge und digitale Ein-/Ausgabe-Kanäle i<br>einem doppelbreiten Gehäuse untergebracht.<br>Folgende Komponenten sind integriert:                                                                                                                           |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|               | <ul> <li>Analoge Eingabe: 4xU/Ix12Bit, 1xPt100</li> </ul>                                                                                                                                                                                                                          |  |  |
|               | Analoge Ausgabe: 2xU/Ix12Bit                                                                                                                                                                                                                                                       |  |  |
|               | Digitale Eingabe: 16(8)xDC24V mit parametrierbaren Zählfunktionen                                                                                                                                                                                                                  |  |  |
|               | <ul> <li>Digitale Ausgabe: 0(8)xDC24V 1A</li> </ul>                                                                                                                                                                                                                                |  |  |
|               | Zähler: max. 4 Zähler mit der Betriebsart endlos, einmalig<br>oder periodisch Zählen                                                                                                                                                                                               |  |  |
| Projektierung | Die Projektierung erfolgt im Siemens SIMATIC Manager. Hierzu ist die                                                                                                                                                                                                               |  |  |
|               | Einbindung der GSD speedbus.gsd erforderlich. Nach der Installation der GSD finden Sie die CPU unter der entsprechenden Bestell-Nr. im Hardware-Katalog im Verzeichnis VIPA_SPEEDbus.                                                                                              |  |  |
| Zähler        | Bei den hier eingesetzten Zählern handelt es sich um Zähler, deren<br>Ansteuerung über die digitalen Eingabekanäle erfolgt. Für die Zähler<br>können Sie Alarme projektieren, die je Zähler auch den zugehörigen<br>digitalen Ausgabekanal beeinflussen können.                    |  |  |
| SPEED-Bus     | Der SPEED-Bus ist ein von VIPA entwickelter 32Bit Parallel-Bus mit einer maximalen Datenrate von 40MByte/s. Über SPEED-Bus haben Sie die Möglichkeit bis zu 16 SPEED-Bus-Module an Ihre CPU 31xS zu koppeln.<br>Im Gegensatz zum "Standard"-Rückwandbus, bei dem die Module rechts |  |  |
|               | der CPU über Einzel-Busverbinder gesteckt werden, erfolgt beim SPEED-<br>Bus die Ankopplung über eine spezielle SPEED-Bus-Schiene links der<br>CPU.                                                                                                                                |  |  |
|               | Von VIPA erhalten Sie Profilschienen mit integriertem SPEED-Bus für 2, 6, 10 oder 16 SPEED-Bus-Peripherie-Module in unterschiedlichen Längen.                                                                                                                                      |  |  |

#### Bestelldaten

| Тур       | Bestellnummer  | Beschreibung                                                               |
|-----------|----------------|----------------------------------------------------------------------------|
| 314ST/DPM | VIPA 314-6CF01 | MP <sup>2</sup> I-Interface, MMC-Slot, Echtzeituhr, Ethernet-Interface für |
|           |                | PG/OP, Profibus DP-Master, SPEED-Bus,                                      |
|           |                | DI 816xDC24V / DO 80xDC24V, 0,5A,                                          |
|           |                | AI 4x12Bit / AO 2x12Bit / AI 1xPt100, 4 Zähler                             |

## **Ein-/Ausgabe-Bereich**

#### Aufbau

Die Ansicht zeigt die CPU 314ST bei geöffneter Klappe.



- [1] LEDs des integrierten Profibus-DP-Masters (nur 314-6CF01)
- [2] Steckplatz für MMC
- [3] LEDs des CPU-Teils
- [4] LEDs des I/O-Teils
- [5] Betriebsarten-Schalter CPU

#### Folgende Komponenten befinden sich unter der Frontklappe

- [6] Anschluss für DC 24V Spannungsversorgung
- [7] Ethernet-Schnittstelle PG/OP
- [8] MP<sup>2</sup>I-Schnittstelle
- [9] RS485-Profibus-DP/ PtP-Schnittstelle



Adressbelegung Durch Einbindung der GSD speedbus.gsd in Ihren Hardware-Konfigurator wird Ihnen das Modul im Hardware-Katalog zur Verfügung gestellt.

Nach Installation der GSD finden Sie unter *Weitere Feldgeräte* \ *I/O* \ *VIPA\_SpeedBus* die CPU 314ST.

Sofern keine Hardware-Konfiguration vorliegt, werden die Ein- und Ausgabe-Bereiche ab Adresse 1024 im Adress-Bereich der CPU eingeblendet.

Für Dateneingabe stehen Ihnen 48Byte und für die Datenausgabe 24Byte zur Verfügung:

#### Eingabebereich

| Adresse | Zugriff    | Belegung                     |
|---------|------------|------------------------------|
| +0      | Byte       | Digitale Eingabe E+0.0 E+0.7 |
| +1      | Byte       | Digitale Eingabe E+1.0 E+1.7 |
| +2      | Wort       | reserviert                   |
| +4      | Wort       | Analoge Eingabe CH0          |
| +6      | Wort       | Analoge Eingabe CH1          |
| +8      | Wort       | Analoge Eingabe CH2          |
| +10     | Wort       | Analoge Eingabe CH3          |
| +12     | Wort       | Analoge Eingabe CH4          |
| +14     | Wort       | reserviert                   |
| +16     | Doppelwort | Zähler 0 / Latch 0           |
| +20     | Wort       | reserviert                   |
| +22     | Wort       | Status Zähler 0              |
| +24     | Doppelwort | Zähler 1 / Latch 1           |
| +28     | Wort       | reserviert                   |
| +30     | Wort       | Status Zähler 1              |
| +32     | Doppelwort | Zähler 2 / Latch 2           |
| +36     | Wort       | reserviert                   |
| +38     | Wort       | Status Zähler 2              |
| +40     | Doppelwort | Zähler 3 / Latch 3           |
| +44     | Wort       | reserviert                   |
| +46     | Wort       | Status Zähler 3              |

#### Ausgabebereich

| Adresse | Zugriff | Belegung                     |
|---------|---------|------------------------------|
| +0      | Byte    | reserviert                   |
| +1      | Byte    | Digitale Ausgabe A+1.0 A+1.7 |
| +2      | Wort    | reserviert                   |
| +4      | Wort    | Analoge Ausgabe CH0          |
| +6      | Wort    | Analoge Ausgabe CH1          |
| +8      | Wort    | reserviert                   |
| +10     | Wort    | Status Zähler 0              |
| +12     | Wort    | reserviert                   |
| +14     | Wort    | Status Zähler 1              |
| +16     | Wort    | reserviert                   |
| +18     | Wort    | Status Zähler 2              |
| +20     | Wort    | reserviert                   |
| +22     | Wort    | Status Zähler 3              |

## **Analog-Teil**

#### Übersicht

Der analoge Bereich besteht aus 4 Eingabe-, 1 Pt100 und 2 Ausgabe-Kanälen. Im Prozessabbild werden für den Analog-Bereich 10Byte für Eingabe und 4Byte für Ausgabe verwendet.

Die Kanäle auf dem Modul sind gegenüber dem SPEED-Bus mittels DC/DC-Wandlern und Optokopplern galvanisch getrennt.



#### Achtung!

Vorübergehend nicht benutzte analoge Eingänge sind bei aktiviertem Kanal mit der zugehörigen Masse zu verbinden.

#### Steckerbelegung Statusanzeige

#### Anschluss Pin Belegung LEDs 1 L+ DC 24V 1 Spannungsvers. DC 24V 1L+ LED (grün) für Analogbereich 1 Versorgungs-2 Spannungsmess. Kanal 0 ( v .0 spannung liegt an 3 CH0 3 Strommessung Kanal 0 A 2 F LED (rot) 4 Masse Kanal 0 Sammelmeldung 5 Spannungsmess. Kanal 1 Fehler CH1 6 Strommessung Kanal 1 7 Masse Kanal 1 8 Spannungsmess. Kanal 2 AI – CH2 9 Strommessung Kanal 2 10 DI 10 Masse Kanal 2 DIC 11 11 Spannungsmess. Kanal 3 21. 12 CH3 12 Strommessung Kanal 3 .0 ( A ) 13 13 Masse Kanal 3 14 Pt100 14 Pt100 Kanal 4 CH4 15 15 Pt100 Kanal 4 16 16 Ausgabe + Kanal 5 CH5 17 17 Masse Ausgabe Kanal 5 .6 AO 18 18 Ausgabe + Kanal 6 .7 CH6 19 19 Masse Ausgabe Kanal 6 F<sub>F</sub> -01 20 20 Masse Spannungsvers. M <sub>ANA</sub>



#### Hinweis!

Zur Vermeidung von Messfehlern sollte pro Kanal immer nur eine Messart beschaltet sein.

für Analog-Bereich

Zugriff auf den<br/>Analog-TeilDurch Einbindung der GSD speedbus.gsd in Ihren Hardware-Konfigurator<br/>wird Ihnen das Modul im Hardware-Katalog zur Verfügung gestellt.

Nach Installation der GSD finden Sie unter *Weitere Feldgeräte* \ *I/O* \ *VIPA\_SpeedBus* die CPU 314ST.

Die CPU 314ST legt in ihrem Peripheriebereich 48Byte für Dateneingabe und 24Byte für Datenausgabe an. Hiervon belegt der Analog-Teil 10Byte für analoge Eingabe und 4Byte für analoge Ausgabe. Ohne Hardware-Konfiguration liegen die Bereiche ab Adresse 1024 ab.

Nachfolgend sind die entsprechenden Bereiche markiert:

Eingabebereich Für jeden Kanal werden die Messdaten als Wort im Dateneingabebereich abgelegt.

| Adresse | Zugriff    | Belegung                     |
|---------|------------|------------------------------|
| +0      | Byte       | Digitale Eingabe E+0.0 E+0.7 |
| +1      | Byte       | Digitale Eingabe E+1.0 E+1.7 |
| +2      | Wort       | reserviert                   |
| +4      | Wort       | Analoge Eingabe CH0          |
| +6      | Wort       | Analoge Eingabe CH1          |
| +8      | Wort       | Analoge Eingabe CH2          |
| +10     | Wort       | Analoge Eingabe CH3          |
| +12     | Wort       | Analoge Eingabe CH4          |
| +14     | Wort       | reserviert                   |
| +16     | Doppelwort | Zähler 0 / Latch 0           |
| +20     | Wort       | reserviert                   |
| +22     | Wort       | Status Zähler 0              |
| +24     | Doppelwort | Zähler 1 /Latch 1            |
| +28     | Wort       | reserviert                   |
| +30     | Wort       | Status Zähler 1              |
| +32     | Doppelwort | Zähler 2 / Latch 2           |
| +36     | Wort       | reserviert                   |
| +38     | Wort       | Status Zähler 2              |
| +40     | Doppelwort | Zähler 3 / Latch 3           |
| +44     | Wort       | reserviert                   |
| +46     | Wort       | Status Zähler 3              |

#### Ausgabebereich

Zur Ausgabe tragen Sie einen Wort-Wert im Datenausgabebereich ein.

| Adresse | Zugriff | Belegung                     |
|---------|---------|------------------------------|
| +0      | Byte    | reserviert                   |
| +1      | Byte    | Digitale Ausgabe A+1.0 A+1.7 |
| +2      | Wort    | reserviert                   |
| +4      | Wort    | Analoge Ausgabe CH0          |
| +6      | Wort    | Analoge Ausgabe CH1          |
| +8      | Wort    | reserviert                   |
| +10     | Wort    | Status Zähler 0              |
| +12     | Wort    | reserviert                   |
| +14     | Wort    | Status Zähler 1              |
| +16     | Wort    | reserviert                   |
| +18     | Wort    | Status Zähler 2              |
| +20     | Wort    | reserviert                   |
| +22     | Wort    | Status Zähler 3              |

#### Zahlendarstellung im S7-Format von Siemens

Die Darstellung des Analogwerts erfolgt im Zweierkomplement:

Je nach parametrierter Wandlungsgeschwindigkeit sind die niederwertigsten Bits des Messwerts irrelevant. Mit steigender Abtastrate sinkt die Auflösung.

In der nachfolgenden Tabelle ist die Auflösung in Abhängigkeit von der Wandlungsgeschwindigkeit aufgeführt.

|             |    | Analogwert |                                                            |      |       |  |  |    |   |          |  |  |  |  |
|-------------|----|------------|------------------------------------------------------------|------|-------|--|--|----|---|----------|--|--|--|--|
|             |    |            |                                                            | High | -Byte |  |  |    |   | Low-Byte |  |  |  |  |
| Bitnummer   | 15 | 14         | 4 13 12 11 10 9 8 7 6 5 4 3                                |      |       |  |  | 2  | 1 | 0        |  |  |  |  |
| Auflösung   | VZ |            | Messwert                                                   |      |       |  |  |    |   |          |  |  |  |  |
| 15 Bit + VZ | VZ | Rele       | Relevanter Ausgabewert (bei 3,7 30Hz)                      |      |       |  |  |    |   |          |  |  |  |  |
| 14 Bit + VZ | VZ | Rele       | Relevanter Ausgabewert (bei 60Hz) X*                       |      |       |  |  | Х* |   |          |  |  |  |  |
| 13 Bit + VZ | VZ | Rele       | Relevanter Ausgabewert (bei 120Hz) X X                     |      |       |  |  | Х  |   |          |  |  |  |  |
| 11 Bit + VZ | VZ | Rele       | Relevanter Ausgabewert (bei 170Hz)XXXX                     |      |       |  |  | Х  |   |          |  |  |  |  |
| 9 Bit + VZ  | VZ | Rele       | Relevanter Ausgabewert (bei 200Hz)     X     X     X     X |      |       |  |  |    | Х |          |  |  |  |  |

\* Die niederwertigsten irrelevanten Bit des Ausgabewerts sind mit "X" gekennzeichnet.

| Vorzeichen Bit (VZ)         | Bit 15 dient als Vorzeichenbit. Hierbei gilt:                                                                                                                                                                                                                       |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                             | Bit 15 = "0" $\rightarrow$ positiver Wert                                                                                                                                                                                                                           |  |  |  |  |
|                             | Bit 15 = "1" $\rightarrow$ negativer Wert                                                                                                                                                                                                                           |  |  |  |  |
| Verhalten bei Fehler        | Sobald ein Messwert den Übersteuerungsbereich überschreitet bzw. den<br>Untersteuerungsbereich unterschreitet wird folgender Wert ausgegeben:<br>Messwert > Übersteuerungsbereich: 32767 (7FFFh)<br>Messwert < Untersteuerungsbereich: -32768 (8000h)               |  |  |  |  |
|                             | Bei Drahtbruch, Parametrierfehler oder deaktiviertem Analog-Teil wird der Messwert 32767 (7FFFh) ausgegeben.                                                                                                                                                        |  |  |  |  |
| Analog-Teil<br>deaktivieren | Mit diesem Datensatz 9Eh können Sie den Digital- bzw. Analog-Teil<br>deaktivieren. Bitte beachten Sie, dass trotz Deaktivierung des Digital- bzw.<br>Analog-Teils das Prozessabbild für beide Komponenten reserviert bleibt.<br>Der Datensatz hat folgenden Aufbau: |  |  |  |  |
|                             | Byte   Bit 15 0                                                                                                                                                                                                                                                     |  |  |  |  |
|                             | 01 <i>Bit 15 0: Modulauswahl</i><br>0000h = Digital- / Analog-Teil aktiviert (Default)<br>0001h = Digital-Teil deaktiviert                                                                                                                                          |  |  |  |  |
|                             |                                                                                                                                                                                                                                                                     |  |  |  |  |

Näheres hierzu finden Sie unter "Zähler-Parametrierung" weiter unten.

#### Digital/Analog-Umrechnung

Nachfolgend sind alle Messbereiche aufgeführt, die vom Analog-Teil unterstützt werden.

Mit den hier aufgeführten Formeln können Sie einen ermittelten Messwert (Digitalwert) in einen dem Messbereich zugeordneten Wert (Analogwert) umrechnen und umgekehrt.

| +/- 10V  |         |      |  |  |  |  |  |
|----------|---------|------|--|--|--|--|--|
| Spannung | Dezimal | Hex  |  |  |  |  |  |
| -10V     | -27648  | 9400 |  |  |  |  |  |
| -5V      | -13824  | CA00 |  |  |  |  |  |
| 0V       | 0       | 0    |  |  |  |  |  |
| +5V      | 13824   | 3600 |  |  |  |  |  |
| +10V     | +27648  | 6C00 |  |  |  |  |  |

0...10V

| Spannung | Dezimal | Hex  |
|----------|---------|------|
| 0V       | 0       | 0    |
| 5V       | 13824   | 3600 |
| 10V      | 27648   | 6C00 |

#### 0...20mA

| Strom | Dezimal | Hex  |
|-------|---------|------|
| 0mA   | 0       | 0    |
| +10mA | +13824  | 3600 |
| +20mA | +27648  | 6C00 |

#### 4...20mA

| Strom | Dezimal | Hex  |  |  |  |  |  |
|-------|---------|------|--|--|--|--|--|
| +4mA  | 0       | 0    |  |  |  |  |  |
| +12mA | +13824  | 3600 |  |  |  |  |  |
| +20mA | +27648  | 6C00 |  |  |  |  |  |

#### +/- 20mA

| Strom | Dezimal | Hex  |
|-------|---------|------|
| -20mA | -27648  | 9400 |
| -10mA | -13824  | CA00 |
| 0mA   | 0       | 0    |
| +10mA | +13824  | 3600 |
| +20mA | +27648  | 6C00 |

Formeln für die Berechnung:

Wert =  $27648 \cdot \frac{U}{10}$ ,  $U = Wert \cdot \frac{10}{27648}$ U: Spannungswert, Wert: Dezimalwert

Formeln für die Berechnung: Wert =  $27648 \cdot \frac{U}{10}$ ,  $U = Wert \cdot \frac{10}{27648}$ U: Spannungswert, Wert: Dezimalwert

Formeln für die Berechnung:  $Wert = 27648 \cdot \frac{I}{20}, \quad I = Wert \cdot \frac{20}{27648}$ I: Stromwert, Wert: Dezimalwert

Formeln für die Berechnung:  $Wert = 27648 \cdot \frac{I-4}{16}$ ,  $I = Wert \cdot \frac{16}{27648} + 4$ I: Stromwert, Wert: Dezimalwert

Formeln für die Berechnung:  $Wert = 27648 \cdot \frac{I}{20}, \quad I = Wert \cdot \frac{20}{27648}$ I: Stromwert, Wert: Dezimalwert

## Analog-Teil - Parametrierung

| Parameterbereich | Für d<br>Durch<br>Parar<br>Zeitda<br>diese<br>Tabel | lie Parametrierung stehen 18Byte Parametrierdaten zur M<br>n Einsatz des SFC 55 "WR_PARM" können Sie zur La<br>neter über Datensatz B4h im Modul ändern. Hierbei<br>auer bis zur Umparametrierung bis zu 50ms betragen.<br>r Zeit wird der Messwert 7FFFh ausgegeben. Die nac<br>le zeigt den Aufbau des Parameterbereichs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 'erfügung.<br>Iufzeit die<br>kann die<br>Während<br>hfolgende |
|------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Datensatz B4h    | Byte                                                | Bit 7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Default                                                       |
|                  | 0                                                   | Kanal 0: Drahtbrucherkennung<br>Bit 0: 0 = Aus (Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung aktiviert)<br>Kanal 1: Drahtbrucherkennung<br>Bit 1: 0 = Aus (Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung aktiviert)<br>Kanal 2: Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung aktiviert)<br>Kanal 3: Drahtbrucherkennung deaktiviert)<br>Kanal 3: Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung deaktiviert)<br>Kanal 4: Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung deaktiviert)<br>1 = Ein (Drahtbrucherkennung deaktiviert)<br>Kanal 4: Drahtbrucherkennung deaktiviert)<br>Kanal 5: Verhalten bei CPU_STOP<br>Bit 5: 0 = Ersatzwert aufschalten <sup>*)</sup><br>1 = Letzten Wert halten<br>Kanal 6: Verhalten bei CPU_STOP<br>Bit 6: 0 = Ersatzwert aufschalten <sup>*)</sup> | 00h                                                           |
|                  |                                                     | Bit 7: reserviert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |
|                  | 2                                                   | Kanal 0: Funktion (siehe Tabelle Eingabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19h                                                           |
|                  | 3                                                   | Kanal 1: Funktion (siehe Tabelle Eingabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19h                                                           |
|                  | 4                                                   | Kanal 2: Funktion (siehe Tabelle Eingabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19h                                                           |
|                  | 5                                                   | Kanal 3: Funktion (siehe Tabelle Eingabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19h                                                           |
|                  | 6                                                   | Kanal 4: Funktion (siehe Tabelle Eingabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h                                                           |
|                  | 7                                                   | Kanal 0: Messzyklus (siehe Tabelle nächste Seite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h                                                           |
|                  | 8                                                   | Kanal 1: Messzyklus (siehe Tabelle nächste Seite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h                                                           |
|                  | 9                                                   | Kanal 2: Messzyklus (siehe Tabelle nächste Seite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h                                                           |
|                  | 10                                                  | Kanal 3: Messzyklus (siehe Tabelle nachste Seite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00h                                                           |
|                  | 11                                                  | Kanal 4: Messzyklus (siene Tabelle nachste Seite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00N                                                           |
|                  | 12                                                  | Kanal 5: Funktion (siehe Tabelle Ausgabe-Bereich)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19n<br>10h                                                    |
|                  | 13                                                  | Kanal 5: High Byte Ersatzwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1911<br>00h                                                   |
|                  | 14                                                  | Kanal 5: Low-Ryte Ersatzwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 001                                                           |
|                  | 16                                                  | Kanal 6: High-Ryte Ersatzwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00h                                                           |
|                  | 17                                                  | Kanal 6: Low-Ryte Ersatzwert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00h                                                           |
|                  | *) Sol                                              | hei CPU-STOP der Ausgabekanal ()A hzw. ()/ ausgeben, so ist de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r Frsatzwert                                                  |

Soll bei CPU-STOP der Ausgabekanal 0A bzw. 0V ausgeben, so ist der Ersatz E500h vorzugeben. Parameter

#### Drahtbrucherkennung

Über die Bits 0...4 von Byte 0 können Sie die Drahtbrucherkennung für die Eingabekanäle aktivieren. Die Drahtbrucherkennung kann ausschließlich im 4...20mA Strommessbereich und bei (Thermo-)Widerstandsmessung aktiviert werden. Sinkt bei 4...20mA Strommessung der Strom unter 1,18mA bzw. geht bei der (Thermo-)Widerstandsmessung der Widerstand gegen unendlich, wird ein Drahtbruch erkannt, ein Diagnoseeintrag ausgeführt und dies über die SF-LED angezeigt. Ist Diagnosealarm aktiviert, erfolgt bei Drahtbruch eine Diagnosemeldung an das übergeordnete System.

#### Diagnosealarm

Der Diagnosealarm wird global für den digitalen und analogen Bereich freigeben. Näheres hierzu finden Sie unter "Zähler - Parametrierung". Im Fehlerfall, wie z.B. Drahtbruch, wird an das übergeordnetes System *Datensatz 0* übergeben. Zur kanalspezifischen Diagnose haben Sie dann die Möglichkeit *Datensatz 1* abzurufen (siehe "Diagnosedaten").

#### CPU-Stop-Verhalten und Ersatzwert

Mit Bit 5 und 6 von Byte 1 und Byte 14 ... 17 können Sie je Ausgabekanal das Verhalten des Moduls bei CPU-Stop vorgeben.

Über Byte 14 ... 17 geben Sie einen Ersatzwert vor, der am Analogausgang anzuliegen hat sobald die CPU in Stop geht.

Durch Setzen von Bit 5 bzw. 6 bleibt bei CPU-Stop der letzte Ausgabe-Wert am Ausgang stehen. Ein Rücksetzen schaltet den Ersatzwert auf.

#### Funktions-Nr.

Tragen Sie hier für jeden Kanal die Funktions-Nummer Ihrer Mess- bzw. Ausgabefunktion ein. Diese können Sie der entsprechenden Funktions-Nr.-Zuordnung aus der Tabelle für den Ein- bzw. Ausgabe-Bereich entnehmen.

#### Messzyklus

Hier können Sie für jeden Eingabe-Kanal die Wandlergeschwindigkeit einstellen. Bitte beachten Sie, dass bei höheren Wandlergeschwindigkeiten die Auflösung aufgrund der kürzeren Integrationszeit sinkt.

Das Datenübergabeformat bleibt gleich. Lediglich die unteren Bits (LSBs) sind für den Analogwert nicht mehr aussagekräftig.

#### Aufbau Messzyklus-Byte:

| Byte | Bit 7 0                            | Auflösung | Default |
|------|------------------------------------|-----------|---------|
| 7 11 | Bit 3 0: Geschwindigkeit pro Kanal |           | 00h     |
|      | 0000 15 Wandlungen/s               | 16        |         |
|      | 0001 30 Wandlungen/s               | 16        |         |
|      | 0010 60 Wandlungen/s               | 15        |         |
|      | 0011 120 Wandlungen/s              | 14        |         |
|      | 0100 170 Wandlungen/s              | 12        |         |
|      | 0101 200 Wandlungen/s              | 10        |         |
|      | 0110 3,7 Wandlungen/s              | 16        |         |
|      | 0111 7,5 Wandlungen/s              | 16        |         |
|      | Bit 7 4: reserviert                |           |         |

## Funktions-Nr.Die Zuweisung einer Funktions-Nr. zu einem Kanal erfolgt über die<br/>Parametrierung. Durch Angabe von 00h können Sie den entsprechenden<br/>Kanal deaktivieren.

Eingabe-Bereich (Kanal 0 ... 3)

| Nr. | Funktion                               | Eingabebereich                                                                                                                                                         |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19h | Spannung ±10V<br>S7-Format von Siemens | ±11,76V<br>11,76V= Ende Übersteuerungsbereich (32511)<br>-10V10V = Nennbereich (-2764827648)<br>-11,76 = Ende Untersteuerungsbereich (-32512)<br>Zweierkomplement      |
| 18h | Spannung 010V<br>S7-Format von Siemens | 011,76V<br>11,76V = Ende Übersteuerungsbereich (32511)<br>010V = Nennbereich (027648)<br>kein Untersteuerungsbereich                                                   |
| 24h | Strom ±20mA<br>S7-Format von Siemens   | ±23,52mA<br>23,52mA = Ende Übersteuerungsbereich (32511)<br>-2020mA = Nennbereich (-2764827648)<br>-23,52mA = Ende Untersteuerungsbereich (-32512)<br>Zweierkomplement |
| 23h | Strom 420mA<br>S7-Format von Siemens   | 1,18522,81mA<br>22,81mA = Ende Übersteuerungsbereich (32511)<br>420mA = Nennbereich (027648)<br>1,185mA = Ende Untersteuerungsbereich (-4864)<br>Zweierkomplement      |
| 22h | Strom 020mA<br>S7-Format von Siemens   | 023,52mA<br>23,52mA = Ende Übersteuerungsbereich (32511)<br>020mA = Nennbereich (027648)<br>kein Untersteuerungsbereich                                                |
| 00h | Kanal nicht aktiv (abgeschaltet)       |                                                                                                                                                                        |

## Eingabe-Bereich

#### (Kanal 4)

| Nr. | Funktion                                | Messbereich / Darstellung                                                                                                                                             |
|-----|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 82h | Pt100 im Zweileiteranschluss            | -2401000°C<br>1000°C = Ende Übersteuerungsbereich (10000)<br>-200+850°C = Nennbereich (-20008500)<br>-240°C = Ende Untersteuerungsbereich (-2400)<br>Zweierkomplement |
| 85h | Pt1000 im Zweileiteranschluss           | -240600°C<br>600°C = Ende Übersteuerungsbereich (6000)<br>-200+500°C = Nennbereich (-20005000)<br>-240°C = Ende Untersteuerungsbereich (-2400)<br>Zweierkomplement    |
| 83h | NI100 im Zweileiteranschluss            | -105295°C<br>295°C = Ende Übersteuerungsbereich (2950)<br>-50+250°C = Nennbereich (-5002500)<br>-105°C = Ende Untersteuerungsbereich (-1050)<br>Zweierkomplement      |
| 86h | NI1000 im Zweileiteranschluss           | -105270°C<br>270°C = Ende Übersteuerungsbereich (2700)<br>-50+250°C = Nennbereich (-5002500)<br>-105 = Ende Untersteuerungsbereich (-1050)<br>Zweierkomplement        |
| 46h | Widerstandsmessung 600Ohm<br>Zweileiter | $0705,5\Omega$<br>$705,5\Omega$ = Ende Übersteuerungsbereich (32511)<br>$0600\Omega$ = Nennbereich (027648)<br>kein Untersteuerungsbereich                            |
| 00h | Kanal nicht aktiv (abgeschaltet)        |                                                                                                                                                                       |

### Ausgabe-Bereich

(Kanal 5, Kanal 6)

| Nr. | Funktion                               | Ausgabebereich                                                                                                                                                         |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19h | Spannung ±10V<br>S7-Format von Siemens | ±11,76V<br>11,76V= Ende Übersteuerungsbereich (32511)<br>-10V10V = Nennbereich (-2764827648)<br>-11,76 = Ende Untersteuerungsbereich (-32512)<br>Zweierkomplement      |
| 18h | Spannung 010V<br>S7-Format von Siemens | 011,76V<br>11,76V = Ende Übersteuerungsbereich (32511)<br>010V = Nennbereich (027648)<br>kein Untersteuerungsbereich                                                   |
| 24h | Strom ±20mA<br>S7-Format von Siemens   | ±23,52mA<br>23,52mA = Ende Übersteuerungsbereich (32511)<br>-2020mA = Nennbereich (-2764827648)<br>-23,52mA = Ende Untersteuerungsbereich (-32512)<br>Zweierkomplement |
| 23h | Strom 420mA<br>S7-Format von Siemens   | 022,81mÅ<br>22,81mA = Ende Übersteuerungsbereich (32511)<br>420mA = Nennbereich (027648)<br>0mA = Ende Untersteuerungsbereich (-6912)<br>Zweierkomplement              |
| 22h | Strom 020mA<br>S7-Format von Siemens   | 023,52mA<br>23,52mA = Ende Übersteuerungsbereich (32511)<br>020mA = Nennbereich (027648)<br>kein Untersteuerungsbereich                                                |
| 00h | Kanal nicht aktiv (abgeschaltet)       |                                                                                                                                                                        |



#### Hinweis!

Beim Verlassen des definierten Bereichs wird 0V bzw. 0A ausgegeben!

## Analog-Teil - Diagnosefunktionen

Übersicht

Sobald Sie die Diagnosefreigabe in Ihrer Parametrierung aktiviert haben, können folgende Ereignisse einen Diagnosealarm auslösen:

- Drahtbruch
- Parametrierfehler
- Messbereichsunterschreitung
- Messbereichsüberschreitung

Bei anstehender Diagnose unterbricht die CPU ihr Anwenderprogramm und verzweigt in den OB 82 für Diagnose<sub>kommend</sub>. In diesem OB können Sie durch entsprechende Programmierung mit den SFCs 51 oder 59 detaillierte Diagnoseinformationen abrufen und auf die Diagnose reagieren. Nach Abarbeitung des OB 82 wird die Bearbeitung des Anwenderprogramms wieder fortgesetzt. Die Diagnosedaten sind bis zum Verlassen des OB82 konsistent.

Nach der Fehlerbehebung erfolgt, sofern die Diagnosealarmfreigabe noch aktiv ist, automatisch eine Diagnosemeldung<sub>gehend</sub>. Nachfolgend sind die Datensätze für Diagnose<sub>kommend</sub> und Diagnose<sub>gehend</sub> aufgeführt

| Datensatz 0 |
|-------------|
|-------------|

Diagnosekommend

| Byte | Bit 7 Bit 0                              |
|------|------------------------------------------|
| 0    | Bit 0: 0 = OK                            |
|      | 1 = Störung im Modul                     |
|      | Bit 1: 0 (fix)                           |
|      | Bit 2: Fehler extern                     |
|      | Bit 3: Kanalfehler vorhanden             |
|      | Bit 4: externe Versorgungsspannung fehlt |
|      | Bit 6, 5: 0 (fix)                        |
|      | Bit 7: Falsche Parameter im Modul        |
| 1    | Bit 3 0: Modulklasse                     |
|      | 0101b: Analogmodul                       |
|      | Bit 4: Kanalinformation vorhanden        |
|      | Bit 7 5: 0 (fix)                         |
| 2    | 00h (fix)                                |
| 3    | 00h (fix)                                |

#### Datensatz 0

Diagnosegehend

Nach der Fehlerbehebung erfolgt, sofern die Diagnosealarmfreigabe noch aktiv ist, eine Diagnosemeldung<sub>gehend</sub>.

| Byte | Bit 7 Bit 0                       |  |  |
|------|-----------------------------------|--|--|
| 0    | 00h (fix)                         |  |  |
| 1    | Bit 3 0: Modulklasse              |  |  |
|      | 0101b: Analogmodul                |  |  |
|      | Bit 4: Kanalinformation vorhanden |  |  |
|      | Bit 7 5: 0 (fix)                  |  |  |
| 2    | 00h (fix)                         |  |  |
| 3    | 00h (fix)                         |  |  |

#### Datensatz 1

kanalspezifische Diagnose<sub>kommend</sub> (Byte 0 bis 14) Der Datensatz 1 enthält die 4Byte des Datensatzes 0 und zusätzlich 12Byte kanalspezifische Diagnosedaten.

Die Diagnosebytes haben folgende Belegung:

| Byte | Bit 7 Bit 0                                                                    |
|------|--------------------------------------------------------------------------------|
| 03   | Inhalte Datensatz 0 (siehe vorherige Seite)                                    |
| 4    | Bit 6 0: Kanaltyp (hier 74h)                                                   |
|      | 70h: Digitaleingabe                                                            |
|      | 71h: Analogeingabe                                                             |
|      | 72h: Digitalausgabe                                                            |
|      | 73h: Analogausgabe                                                             |
|      | 74h: Analogein-/ausgabe                                                        |
|      | Bit 7: 0 (fix)                                                                 |
| 5    | Anzahl Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)                |
| 6    | Anzahl der Kanäle eines Moduls (hier 07h)                                      |
| 7    | Bit 0: Kanalfehler Kanal 0                                                     |
|      | Bit 1: Kanalfehler Kanal 1                                                     |
|      | Bit 2: Kanalfehler Kanal 2                                                     |
|      | Bit 3: Kanalfehler Kanal 3                                                     |
|      | Bit 4: Kanalfehler Kanal 4                                                     |
|      | Bit 5: Kanalfehler Kanal 5                                                     |
|      | Bit 6: Kanalfehler Kanal 6                                                     |
|      | Bit 7: 0 (fix)                                                                 |
| 8    | Bit 0: Parametrierfehler Kanal 0                                               |
|      | Bit 1: 0 (fix)                                                                 |
|      | Bit 2: 0 (fix)                                                                 |
|      | Bit 3: 0 (fix)                                                                 |
|      | Bit 4: Drahtbruch Kanal 0                                                      |
|      |                                                                                |
|      | Bit 6: Messbereichsunterschreitung Kanal 0                                     |
|      | Bit 7: Messbereichsuberschreitung Kanal 0                                      |
| 9    | Bit 0: Parametrierfehler Kanal 1                                               |
|      |                                                                                |
|      |                                                                                |
|      | Bit 3: 0 (fix)                                                                 |
|      |                                                                                |
|      | Bit 5: 0 (TIX)                                                                 |
|      | Bit 6. Messbereichsühlerschreitung Kanal 1                                     |
| 10   | Bit 7. Messbereichsuberschreitung Kanal 1                                      |
| 10   |                                                                                |
|      |                                                                                |
|      | $\begin{bmatrix} DI(2, U) \\ IIX \end{bmatrix}$                                |
|      | Dil J. U (IIX)<br>Dit 4: Drahtbruch Kanal 2                                    |
|      | $\begin{bmatrix} Dit 4. Diantoi ucii railai 2 \\ Bit 5. O (fiv) \end{bmatrix}$ |
|      | Dit 0, 0 (IIX)<br>  Rit 6: Messhereichsunterschreitung Kongl 2                 |
|      | Dit 0. Wessbereichsumerschreitung Kanal 2                                      |
|      | DIL 7. WESSDEFEICHSUDEFSCHFEILUNG KAHAI Z                                      |

Fortsetzung ...

| Byte | Bit 7 Bit 0                                |
|------|--------------------------------------------|
| 11   | Bit 0: Parametrierfehler Kanal 3           |
|      | Bit 1: 0 (fix)                             |
|      | Bit 2: 0 (fix)                             |
|      | Bit 3: 0 (fix)                             |
|      | Bit 4: Drahtbruch Kanal 3                  |
|      | Bit 5: 0 (fix)                             |
|      | Bit 6: Messbereichsunterschreitung Kanal 3 |
|      | Bit 7: Messbereichsüberschreitung Kanal 3  |
| 12   | Bit 0: Parametrierfehler Kanal 4           |
|      | Bit 1: 0 (fix)                             |
|      | Bit 2: 0 (fix)                             |
|      | Bit 3: 0 (fix)                             |
|      | Bit 4: Drantbruch Kanal 4                  |
|      | Bit 5: 0 (fix)                             |
|      | Bit 6: Messbereichsunterschreitung Kanal 4 |
| 12   | Bit 7: Messbereichsuberschreitung Kanal 4  |
| 15   |                                            |
|      | DIL I. U (IIX)<br>Bit 2: $\Omega$ (fiv)    |
|      | Rit 3: Kurzechluss Kanal 5                 |
|      | Rit 4. Drahtbruch Kanal 5                  |
|      | Bit 7 5.0 (fix)                            |
| 14   | Bit 0: Parametrierfehler Kanal 6           |
|      | Bit 1: 0 (fix)                             |
|      | Bit 2: 0 (fix)                             |
|      | Bit 3: Kurzschluss Kanal 6                 |
|      | Bit 4: Drahtbruch Kanal 6                  |
|      | Bit 7 5: 0 (fix)                           |

| Fortsetzung Da | atensatz 1 |
|----------------|------------|
|----------------|------------|

## **Digital-Teil**

#### Übersicht

Der digitale Bereich besteht aus 8 Eingabe- und 8 Ein-/Ausgabe-Kanälen. Jeder dieser Kanäle zeigt seinen Zustand über eine LED an. Über die Parametrierung können Sie jedem digitalen Eingang Alarm-Eigenschaften zuweisen. Zusätzlich lassen sich die digitalen Eingänge als Zähler (max. 15kHz, ab Ausgabestand 2 max. 100kHz) parametrieren.

Die Ausgabe-Kanäle besitzen eine Diagnose-Funktion d.h. sobald ein Ausgang aktiv ist, wird der zugehörige Eingang auf "1" gesetzt. Bei einem Kurzschluss an der Last wird der Eingang auf "0" gezogen und durch Auswertung des Eingangs kann der Fehler erkannt werden.

Der DIO-Bereich ist extern mit DC 24V zu versorgen.

#### Steckerbelegung Statusanzeige





#### Achtung!

Bitte beachten Sie, dass die an einem Ausgabe-Kanal anliegende Spannung immer  $\leq$  der über L+ anliegenden Versorgungsspannung ist.

Weiter ist zu beachten, dass aufgrund der Parallelschaltung von Ein- und Ausgabe-Kanal je Gruppe ein gesetzter Ausgang über ein anliegendes Eingabesignal versorgt werden kann.

Auch bei ausgeschalteter Versorgungsspannung und anliegendem Eingangssignal bleibt so ein gesetzter Ausgang aktiv.

Bei Nichtbeachtung kann dies zur Zerstörung des Moduls führen.

Zugriff auf den<br/>Digital-TeilDurch Einbindung der GSD speedbus.gsd in Ihren Hardware-Konfigurator<br/>wird Ihnen das Modul im Hardware-Katalog zur Verfügung gestellt.

Nach Installation der GSD finden Sie unter *Weitere Feldgeräte* \ *I/O* \ *VIPA\_SpeedBus* die CPU 314ST.

Die CPU 314ST legt in ihrem Peripheriebereich 48Byte für Dateneingabe und 24Byte für Datenausgabe an. Hiervon belegt der Digital-Teil 34Byte für digitale Eingabe und 18Byte für digitale Ausgabe.

Nachfolgend sind die entsprechenden Bereiche markiert:

| Eingabebereich | Adresse | Zugriff    | Belegung                     |
|----------------|---------|------------|------------------------------|
|                | +0      | Byte       | Digitale Eingabe E+0.0 E+0.7 |
|                | +1      | Byte       | Digitale Eingabe E+1.0 E+1.7 |
|                | +2      | Wort       | reserviert                   |
|                | +4      | Wort       | Analoge Eingabe CH0          |
|                | +6      | Wort       | Analoge Eingabe CH1          |
|                | +8      | Wort       | Analoge Eingabe CH2          |
|                | +10     | Wort       | Analoge Eingabe CH3          |
|                | +12     | Wort       | Analoge Eingabe CH4          |
|                | +14     | Wort       | reserviert                   |
|                | +16     | Doppelwort | Zähler 0 / Latch 0           |
|                | +20     | Wort       | reserviert                   |
|                | +22     | Wort       | Status Zähler 0              |
|                | +24     | Doppelwort | Zähler 1 /Latch 1            |
|                | +28     | Wort       | reserviert                   |
|                | +30     | Wort       | Status Zähler 1              |
|                | +32     | Doppelwort | Zähler 2 / Latch 2           |
|                | +36     | Wort       | reserviert                   |
|                | +38     | Wort       | Status Zähler 2              |
|                | +40     | Doppelwort | Zähler 3 / Latch 3           |
|                | +44     | Wort       | reserviert                   |
|                | +46     | Wort       | Status Zähler 3              |

Ausgabebereich

Zur Ausgabe tragen Sie einen Wert im Datenausgabebereich ein.

| -       | -       | -                            |
|---------|---------|------------------------------|
| Adresse | Zugriff | Belegung                     |
| +0      | Byte    | reserviert                   |
| +1      | Byte    | Digitale Ausgabe A+1.0 A+1.7 |
| +2      | Wort    | reserviert                   |
| +4      | Wort    | Analoge Ausgabe CH0          |
| +6      | Wort    | Analoge Ausgabe CH1          |
| +8      | Wort    | reserviert                   |
| +10     | Wort    | Status Zähler 0              |
| +12     | Wort    | reserviert                   |
| +14     | Wort    | Status Zähler 1              |
| +16     | Wort    | reserviert                   |
| +18     | Wort    | Status Zähler 2              |
| +20     | Wort    | reserviert                   |
| +22     | Wort    | Status Zähler 3              |

## Zähler - Schnelleinstieg

Schnelleinstieg Die CPU 31xST hat 4 parametrierbare Zähler integriert, die Sie getrennt ansteuern können. Während des Zählvorgangs wird das Zählersignal erfasst und ausgewertet. Jeder Zähler belegt im Eingabebereich ein Doppelwort für das Zählerregister und im Ein- und Ausgabebereich ein Wort für den Eingabe- bzw. Ausgabe-Status.

Zähler vorbelegen<br/>bzw. parametrierenDurch Einbindung der speedbus.gsd können Sie alle Zählerparameter über<br/>eine Hardware-Konfiguration vorgeben. Hier definieren Sie unter anderem:

- Alarmverhalten
- Belegung E/A (Gate, Latch, Reset, OUT)
- Eingangsfilter
- Zählerbetriebsart bzw. -Verhalten
- Anfangswert für Ladewert-, Endwert- und Vergleichswert-Register

Sie haben die Möglichkeit unter Einsatz der SFC 55, 56, 57 und 58 zur Laufzeit die Parameter zu ändern, mit Ausnahme der Parameter in Datensatz 0. Hierbei sind im Anwenderprogramm über den entsprechenden SFC die gewünschten Parameter als Datensatz an den Zähler zu übergeben.

Zähler steuern Gesteuert wird der Zähler über das interne Tor (I-Tor). Das I-Tor ist das Verknüpfungsergebnis von Hardware- (HW) und Software-Tor (SW), wobei die HW-Tor-Auswertung über die Parametrierung deaktiviert werden kann. HW-Tor: Eingang am Gate<sub>x</sub>-Eingang am Modul SW-Tor: Öffnen (aktivieren): Ausgabe-Status-Bit 2 im Ausgabebereich einmalig setzen Schließen (deaktivieren): Ausgabe-Status-Bit 10 im Ausgabebereich setzen

Folgende Zustände beeinflussen das interne Tor:

| SW-Tor               | HW-Tor               | beeinflusst das I-Tor |
|----------------------|----------------------|-----------------------|
| 0                    | mit positiver Flanke | 0                     |
| 1                    | mit positiver Flanke | 1                     |
| mit positiver Flanke | 1                    | 1                     |
| mit positiver Flanke | 0                    | 0                     |
| mit positiver Flanke | deaktiviert          | 1                     |

Zähler auslesenAbhängig von der Statusangabe beinhaltet das Zählerregister den<br/>aktuellen Zählerstand (Eingabe-Status-Bit 0=0) oder den aktuellen Latch-<br/>Wert (Eingabe-Status-Bit 0=1).<br/>Durch Setzen des Ausgabe-Status-Bit 8 wird der aktuelle Latchwert in das<br/>Zählerregister im Eingabebereich übertragen.Dan ektuellen Zählervert, übertragen<br/>Cie durch Setzen des Ausgabe

Den aktuellen Zählerwert übertragen Sie durch Setzen des Ausgabe-Status-Bit 0. **Zähler-Statuswort** Neben dem Zählerregister im Eingabebereich finden Sie im Ein- bzw. Ausgabebereich für jeden Zähler ein Status-Wort. Den Status können Sie sich ausgeben lassen oder durch Setzen entsprechender Bits den Zähler beeinflussen, wie z.B. das SW-Tor aktivieren.

Eingabe-Status-Wort Das Statuswort im Eingabebereich hat folgenden Aufbau:

| Bit | Bezeichnung   | Funktion                                                 |
|-----|---------------|----------------------------------------------------------|
| 0   | COUNT_LTCH    | 0: Wert im Eingangsabbild ist Zählerwert                 |
|     |               | 1: Wert im Eingangsabbild ist Latchwert                  |
| 1   | CTRL_Count_DO | wird gesetzt, wenn der digitale Ausgang freigegeben ist  |
| 2   | STS_SW-GATE   | Status Software-Tor (gesetzt wenn SW-Tor aktiv)          |
| 3   | reserviert    | reserviert                                               |
| 4   | STS_STRT      | Status Hardware-Tor (gesetzt, wenn HW-Tor aktiv)         |
| 5   | STS_GATE      | Status internes Tor (gesetzt, wenn internes Tor aktiv)   |
| 6   | STS_DO        | Status digitaler Zähler-Ausgangs (DO)                    |
| 7   | STS_C_DN      | Status gesetzt bei Zähler-Richtung rückwärts             |
| 8   | STS_C_UP      | Status gesetzt bei Zähler-Richtung vorwärts              |
| 9   | STS_CMP*      | Status Vergleicher ( <b>C</b> ompare) wird gesetzt, wenn |
|     |               | Zählerwert = Vergleichswert. Ist Vergleich nie           |
|     |               | parametriert, wird das Bit nie gesetzt                   |
| 10  | STS_END*      | Status gesetzt, wenn Endwert erreicht wird               |
| 11  | STS_OFLW*     | Status gesetzt bei Überlauf                              |
| 12  | STS_UFLW*     | Status gesetzt bei Unterlauf                             |
| 13  | STS_ZP*       | Status gesetzt bei Nulldurchgang                         |
| 14  | STS_LTCH      | Status des Latch-Eingangs eines Zählers                  |
| 15  | NEW_LTCH      | wird gesetzt, wenn sich Wert im Latch-Register           |
|     | _             | geändert hat                                             |

\* Die Bits bleiben bis zum Rücksetzen mit RES (Bit 6 Ausgabe-Status-Wort) gesetzt.

Ausgabe-Status-Wort Nach dem Setzen eines Bits im Ausgabe-Status-Wort wird dieses sofort wieder zurückgesetzt. Bitte beachten Sie, dass beim Ausgabe-Status-Wort Setzen und Rücksetzen einer Funktion mit unterschiedlichen Bits erfolgt:

| Bit | Bezeichnung    | Funktion                                                         |
|-----|----------------|------------------------------------------------------------------|
| 0   | Get _Count_Val | Zählerwert in Prozessabbild übertragen                           |
| 1   | Set_Count_DO   | Freigabe des digitalen Ausgangs für Zähler                       |
|     |                | (Ausgang nur ansteuerbar über Zähler)                            |
| 2   | Set_SW-Gate    | Software-Tor setzen (im OB 100 nicht zulässig)                   |
| 3   | reserviert     | -                                                                |
| 4   | reserviert     | -                                                                |
| 5   | Set_Count_Val  | Zähler temporär auf einen Wert setzen (der Zählerwert            |
|     |                | für Z <sub>x</sub> ist zuvor über Datensatz (9A+x)h zu übergeben |
| 6   | Reset_STS      | Rücksetzen der Bits STS_CMP, STS_END,                            |
|     |                | STS_OFLW, STS_UFLW und STS_ZP                                    |
| 7   | reserviert     | -                                                                |
| 8   | Get_Latch_Val  | Latchwert in Prozessabbild übertragen                            |
| 9   | Reset_Count_DO | Sperren des digitalen Ausgangs für Zähler                        |
|     |                | (Ausgang nur ansteuerbar über Prozessabbild)                     |
| 10  | Reset_SW_Gate  | Software-Tor zurücksetzen                                        |
| 12  | reserviert     | -                                                                |
|     |                |                                                                  |
| 15  | reserviert     | -                                                                |

| Zähler-Eingänge<br>(Anschlüsse) | Da nicht alle Eingänge gleichzeitig zur Verfügung stehen, können Sie über die Parametrierung die Eingangsbelegung für jeden Zähler bestimmen. Je Zähler stehen Ihnen folgende Eingänge zur Verfügung:<br>Zähler. (A) |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                 | Impulseingang für Zählsignal bzw. die Spur A eines Gebers. Hierbei können Sie Geber mit 1-, 2- oder 4-facher Auswertung anschließen.<br>Zähler, (B)                                                                  |  |  |  |
|                                 | Richtungssignal bzw. die Spur B des Gebers. Über die Parametrierung können Sie das Richtungssignal invertieren.                                                                                                      |  |  |  |
|                                 | Die nachfolgenden Eingänge können Sie über die Parametrierung einem Pin am Modul zuweisen:                                                                                                                           |  |  |  |
|                                 | Gatex                                                                                                                                                                                                                |  |  |  |
|                                 | Über diesen Eingang können Sie mit einem High-Pegel das HW-Tor öffnen<br>und somit einen Zählvorgang starten.                                                                                                        |  |  |  |
|                                 | Mit einer positiven Flanke an Latch <sub>x</sub> wird der aktuelle Zählerstand in einem Speicher abgelegt, den Sie bei Bedarf auslesen können.<br>$Reset_x$                                                          |  |  |  |
|                                 | Solange ein positiver Pegel an Reset <sub>x</sub> ansteht, wird der Zähler auf dem Ladewert gehalten.                                                                                                                |  |  |  |
| Zähler-Ausgänge                 | Jedem Zähler ist ein Ausgabe-Kanal zugeordnet. Folgendes Verhalten<br>können Sie für den entsprechenden Ausgabe-Kanal über die Parame-<br>trierung einstellen:                                                       |  |  |  |
|                                 | Kein Vergleich: Ausgang wird nicht angesteuert                                                                                                                                                                       |  |  |  |
|                                 | <ul> <li>Zählwert ≥ Vergleichswert: Ausgang wird gesetzt</li> </ul>                                                                                                                                                  |  |  |  |
|                                 | <ul> <li>Zählwert &lt; Vergleichswert: Ausgang wird gesetzt</li> </ul>                                                                                                                                               |  |  |  |
|                                 | <ul> <li>Zählwert = Vergleichswert: Ausgang wird gesetzt</li> </ul>                                                                                                                                                  |  |  |  |
| Maximale<br>Zählfrequenz        | Zur Zeit beträgt die maximale Frequenz für den Ausgabestand 1<br>unabhängig von der Anzahl der aktivierten Zähler 15kHz. Ab Ausgabe-<br>stand 2 sind maximal 100kHz möglich.                                         |  |  |  |
|                                 |                                                                                                                                                                                                                      |  |  |  |

## Zähler - Parametrierung

#### Übersicht

Die Parametrierung erfolgt im Hardware-Konfigurator. Hierbei werden Parameterdaten übergeben, die aus folgenden Komponenten bestehen:

| Byte | Datensatz | Beschreibung                                                                                    |  |  |
|------|-----------|-------------------------------------------------------------------------------------------------|--|--|
| 16   | 0h        | Zählermodus Z0 Z3                                                                               |  |  |
| 4    | 7Fh       | Diagnosealarm                                                                                   |  |  |
| 16   | 80h       | Flankenauswahl für Prozessalarm                                                                 |  |  |
| 32   | 81h       | Filterwert E+0.0 E+1.7                                                                          |  |  |
| 16   | 82 86h    | Z0: Vergleichs-, Setz-, Endwert, Hysterese, Impuls                                              |  |  |
| 16   | 87h       | Z0: Gesamtparameter (Vergleichs-, Setz-, Endwert,<br>Hysterese und Impuls)                      |  |  |
| 16   | 88 8Ch    | Z1: Vergleichs-, Setz-, Endwert, Hysterese, Impuls                                              |  |  |
| 16   | 8Dh       | Z1: Gesamtparameter (Vergleichs-, Setz-, Endwert,<br>Hysterese und Impuls)                      |  |  |
| 16   | 8E 92h    | Z2: Vergleichs-, Setz-, Endwert, Hysterese, Impuls                                              |  |  |
| 16   | 93h       | Z2: Gesamtparameter (Vergleichs-, Setz-, Endwert,<br>Hysterese und Impuls)                      |  |  |
| 16   | 94 98h    | Z3: Vergleichs-, Setz-, Endwert, Hysterese, Impuls                                              |  |  |
| 16   | 99h       | Z3: Gesamtparameter (Vergleichs-, Setz-, Endwert,<br>Hysterese und Impuls)                      |  |  |
| 4    | 9Ah       | Z0: Zählwert der durch Setzen von Bit 5 im Ausgabe-<br>Status-Wort an den Zähler übergeben wird |  |  |
| 4    | 9Bh       | Z1: Zählwert der durch Setzen von Bit 5 im Ausgabe-<br>Status-Wort an den Zähler übergeben wird |  |  |
| 4    | 9Ch       | Z2: Zählwert der durch Setzen von Bit 5 im Ausgabe-<br>Status-Wort an den Zähler übergeben wird |  |  |
| 4    | 9Dh       | Z3: Zählwert der durch Setzen von Bit 5 im Ausgabe-<br>Status-Wort an den Zähler übergeben wird |  |  |
| 2    | 9Eh       | Analog-/Digitalteil aktivieren bzw. deaktivieren                                                |  |  |

Mit Ausnahme der Parameter in Datensatz 0 können Sie unter Einsatz der SFC 55, 56, 57 und 58 zur Laufzeit alle anderen Parameter an den Digital-Teil übergeben. Hierbei sind im Anwenderprogramm über den entsprechenden SFC die gewünschten Parameter als Datensatz an den Zähler zu übergeben. Datensatz 0Über Datensatz 0 können Sie für jeden Zähler einen Zählermodus alsZählermodusDoppelwort vorgeben. Bitte beachten Sie, dass der Datensatz 0 zur Laufzeit nicht übertragen werden kann. Datensatz 0 hat folgenden Aufbau:

| Byte  | Beschreibung   |
|-------|----------------|
| 0 3   | Zählermodus Z0 |
| 4 7   | Zählermodus Z1 |
| 8 11  | Zählermodus Z2 |
| 12 15 | Zählermodus Z3 |

Zählermodus

Das Doppelwort für den Zählermodus hat folgenden Aufbau:

| Byte | Bit 7 0                                                                                      |  |  |  |
|------|----------------------------------------------------------------------------------------------|--|--|--|
| 0    | Bit 2 0: Signalauswertung                                                                    |  |  |  |
|      | 000b = Zähler deaktiviert                                                                    |  |  |  |
|      | Bei deaktiviertem Zähler werden die weiteren Parameteran-                                    |  |  |  |
|      | gaben für diesen Zähler ignoriert und der entsprechende                                      |  |  |  |
|      | E/A-Kanal wird als "normaler" Ausgang geschaltet, sofern                                     |  |  |  |
|      | dieser als Ausgang betrieben werden soll.                                                    |  |  |  |
|      | 001b = Drehgeber 1-fach (an Zähler <sub>x</sub> ( $A_x$ ) und Zähler <sub>x</sub> ( $B_x$ )) |  |  |  |
|      | 010b = Drehgeber 2-fach (an Zähler <sub>x</sub> ( $A_x$ ) und Zähler <sub>x</sub> ( $B_x$ )) |  |  |  |
|      | 011b = Drehgeber 4-fach (an Zähler <sub>x</sub> ( $A_x$ ) und Zähle <sub>x</sub> ( $B_x$ ))  |  |  |  |
|      | 100b = Impuls/Richtung (Impuls an Zähler <sub>x</sub> (A <sub>x</sub> ) und Richtung an      |  |  |  |
|      | Zähler <sub>x</sub> (B <sub>x</sub> ))                                                       |  |  |  |
|      | Bit 6 3: $Z_x$ Eingang (Funktion des Zähler-Eingangs als Gate,                               |  |  |  |
|      | Latch oder Reset)                                                                            |  |  |  |
|      | 0000b = deaktiviert (2  anier startet bei gesetztem SW-1 or)                                 |  |  |  |
|      | Der Fingang von Zähler, dient als Gate, High-Pegel an                                        |  |  |  |
|      | Gate aktiviert das HW-Tor. Der Zähler kann nur starten                                       |  |  |  |
|      | wenn HW- und SW-Tor gesetzt sind                                                             |  |  |  |
|      | 0010b = Monoflon*                                                                            |  |  |  |
|      | 0100 = 1 atch. (positive Flanke an Fingang speichert Zählerwert)                             |  |  |  |
|      | 1000b = Reset, (positiver Pegel an Eingang setzt Zähler zurück)                              |  |  |  |
|      | Bit 7: Torfunktion (internes Tor)                                                            |  |  |  |
|      | 0 = abbrechen (Zählvorgang beginnt wieder ab dem Ladewert)                                   |  |  |  |
|      | 1 = unterbrechen (Zählvorgang wird mit Zählerstand fortgesetzt)                              |  |  |  |
|      |                                                                                              |  |  |  |
| 1    | Bit 2 0: Ausgang schaltet (OUT <sub>x</sub> von Zähler <sub>x</sub> wird gesetzt, wenn       |  |  |  |
|      | Bedingung erfüllt ist)                                                                       |  |  |  |
|      | 000b = nie                                                                                   |  |  |  |
|      | 001b = Zanierwert >= Vergleichswert                                                          |  |  |  |
|      | 0100 = Zahlerwert <= Vergleichswert                                                          |  |  |  |
|      | Rit 3: Zählrichtung                                                                          |  |  |  |
|      | 0 = 7ählrichtung invertiert: ALIS (7ählrichtung an B nicht invertieren)                      |  |  |  |
|      | 1 = Zählrichtung invertiert: FIN (Zählrichtung an Bx invertieren)                            |  |  |  |
|      | Bit 7 4: reserviert                                                                          |  |  |  |
| * W  | ird zur Zeit nicht unterstützt.                                                              |  |  |  |

| Byte | Bit 7 0                                                             |  |  |  |
|------|---------------------------------------------------------------------|--|--|--|
| 2    | Bit 5 0: Zählerfunktion                                             |  |  |  |
|      | 000000b = endlos zählen                                             |  |  |  |
|      | 000001b = Einmalig: vorwärts                                        |  |  |  |
|      | 000010b = Einmalig: rückwärts                                       |  |  |  |
|      | 000100b = Einmalig: keine Hauptrichtung                             |  |  |  |
|      | 001000b = Periodisch: vorwärts                                      |  |  |  |
|      | 010000b = Periodisch: rückwärts                                     |  |  |  |
|      | 100000b = Periodisch: keine Hauptrichtung                           |  |  |  |
|      | Näheres hierzu finden Sie unter "Zähler - Funktionen" weiter unten. |  |  |  |
|      | Bit 7 6: $Z_x$ Ein-/Ausgang (Funktion des Zähler E/A als OUT,       |  |  |  |
|      | Latch oder Reset)                                                   |  |  |  |
|      | 00b = A: OUT <sub>x</sub> (bei Vergleichsfunktion)                  |  |  |  |
|      | 01b = E: Latch <sub>x</sub> (Steigende Flanke speichert Zählerwert) |  |  |  |
|      | 10b = E: Reset <sub>x</sub> (Positiver Pegel setzt Zähler zurück)   |  |  |  |
| 3    | Bit 5 0: Alarmverhalten                                             |  |  |  |
|      | Bit 0: ProzAlarm HW-Tor offen                                       |  |  |  |
|      | Bit 1: ProzAlarm HW-Tor geschlossen                                 |  |  |  |
|      | Bit 2: ProzAlarm Uberlauf                                           |  |  |  |
|      | Bit 3: ProzAlarm Unterlauf                                          |  |  |  |
|      | Bit 4: ProzAlarm Vergleichswert                                     |  |  |  |
|      | Bit 5: ProzAlarm Endwert                                            |  |  |  |
|      | Durch Setzten der Bits können Sie die gewünschten Prozessalarme     |  |  |  |
|      | aktivieren.                                                         |  |  |  |
|      | Bit 7 6: reserviert                                                 |  |  |  |

#### ... Fortsetzung

#### **Datensatz 7Fh** Diagnosealarm Mit diesem Datensatz aktivieren bzw. deaktivieren Sie die Diagnosefunktion. Ein Diagnosealarm tritt auf, sobald während einer Prozessalarmbearbeitung für das gleiche Ereignis ein weiterer Prozessalarm ausgelöst wird.

Der Datensatz hat folgenden Aufbau:

| Byte | Bit 15 0                |
|------|-------------------------|
| 01   | Bit 15 0: Diagnosealarm |
|      | 0000h = deaktiviert     |
|      | 0001h = aktiviert       |
| 23   | Bit 15 0: reserviert    |

Datensatz 80hÜber diesen Datensatz können Sie einen Prozessalarm für E+0.0 ... E+1.7Flankenauswahlaktivieren und bestimmen, auf welchen Flankentyp des Eingangssignals<br/>ein Prozessalarm ausgelöst werden soll.

| Byte | Bit 7 0                                              |  |
|------|------------------------------------------------------|--|
| 0    | Bit 1 0: Flankenauswahl E+0.0                        |  |
|      | UUD = deaktiviert                                    |  |
|      | 01b = Prozessalarm auf steigende Flanke              |  |
|      | 10b = Prozessalarm auf fallende Flanke               |  |
|      | 11b = Prozessalarm auf steigende und fallende Flanke |  |
|      | Bit 7 2: reserviert                                  |  |
|      |                                                      |  |
| 15   | Bit 1 0: Flankenauswahl E+1.7                        |  |
|      | 00b = deaktiviert                                    |  |
|      | 01b = Prozessalarm auf steigende Flanke              |  |
|      | 10b = Prozessalarm auf fallende Flanke               |  |
|      | 11b = Prozessalarm auf steigende und fallende Flanke |  |
|      | Bit 7 2: reserviert                                  |  |

Datensatz 81hÜber diesen Datensatz können Sie einen Eingangs-Filter in 2,56μs-<br/>Schritten für E+0.0 ... E+1.7 vorgeben. Durch Vorschalten eines Filters<br/>bestimmen Sie, wie lange ein Eingangssignal anzustehen hat, bis dies als<br/>"1"-Signal ausgewertet wird. Mittels Filter lassen sich beispielsweise<br/>Signal-Spitzen (Peaks) bei einem unsauberen Eingangssignal filtern.

Die Eingabe erfolgt als Faktor von 2,56µs und liegt im Bereich 1 ... 16000 also 2,56µs ... 40,96ms.

Der Datensatz hat folgenden Aufbau:

| Byte  | Bit 15 0                                 |
|-------|------------------------------------------|
| 0 1   | Bit 15 0: Eingangsfilter E+0.0 in 2,56µs |
| 2 3   | Bit 15 0: Eingangsfilter E+0.1 in 2,56µs |
| 4 5   | Bit 15 0: Eingangsfilter E+0.2 in 2,56μs |
|       |                                          |
| 30 31 | Bit 15 0: Eingangsfilter E+1.7 in 2,56μs |

Datensatz 82 ... 99hJedem der nachfolgend aufgeführten Zähler-Parameter ist abhängig von<br/>der Zählernummer ein Datensatz zugeordnet. Zusätzlich sind für jeden<br/>Zähler die Parameter unter einem Datensatz zusammengefasst.

Die Datensätze sind für jeden Zähler gleich aufgebaut. Den Aufbau und die entsprechende Datensatz-Nr.-Zuordnung können Sie der nachfolgenden Tabelle entnehmen:

| Zähler 0 | Zähler 1 | Zähler 2 | Zähler 3 | Тур    | Funktion       |
|----------|----------|----------|----------|--------|----------------|
| 87h      | 8Dh      | 93h      | 99h      |        |                |
| 82h      | 88h      | 8Eh      | 94h      | D-Wort | Vergleichswert |
| 83h      | 89h      | 8Fh      | 95h      | D-Wort | Ladewert       |
| 84h      | 8Ah      | 90h      | 96h      | D-Wort | Endwert        |
| 85h      | 8Bh      | 91h      | 97h      | Wort   | Hysterese      |
| 86h      | 8Ch      | 92h      | 98h      | Wort   | Impuls         |

| Fortsetzung<br>Datensatz 82 99h                   |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Vergleichswert                                    | ber die Parametrierung können Sie einen Vergleichswert vorgeben, der<br>urch den Vergleich mit dem aktuellen Zählerstand den Zählerausgang<br>eeinflussen bzw. einen Prozessalarm auslösen kann. Das Verhalten des<br>usgangs bzw. des Prozessalarms ist hierbei über Datensatz 0<br>orzugeben.                                                                    |  |  |
| Ladewert, Endwert                                 | Über die Parametrierung haben Sie die Möglichkeit für jeden Zähler eine<br>Hauptzählrichtung anzugeben. Ist "keine" oder "endlos" angewählt, steht<br>Ihnen der gesamte Zählbereich zur Verfügung:                                                                                                                                                                 |  |  |
|                                                   | Zählergrenzen Gültiger Wertebereich                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                   | Untere Zählgrenze - 2 147 483 648 (-2 <sup>31</sup> )                                                                                                                                                                                                                                                                                                              |  |  |
|                                                   | Obere Zählgrenze + 2 147 483 647 (2 <sup>31</sup> -1)                                                                                                                                                                                                                                                                                                              |  |  |
|                                                   | Ansonsten können Sie diesen Bereich durch Angabe eines Startwerts als<br>Ladewert und eines Endwerts nach unten und oben begrenzen.                                                                                                                                                                                                                                |  |  |
| Hysterese                                         | Die Hysterese dient z.B. zur Vermeidung von häufigen Schaltvorgängen<br>von Ausgang und Alarm, wenn der Zählerwert im Bereich des Vergleichs-<br>wertes liegt. Für die Hysterese können Sie einen Bereich zwischen 0 und<br>255 vorgeben. Mit 0 und 1 ist die Hysterese abgeschaltet. Die Hysterese<br>wirkt auf Nulldurchgang, Vergleich, Über- und Unterlauf.    |  |  |
| Impuls<br>(Impulsdauer)                           | Die Impulsdauer gibt an, wie lange der Ausgang gesetzt werden soll, wen<br>das parametrierte Vergleichskriterium erreicht bzw. überschritten wird. Di<br>Impulsdauer können Sie in Schritten zu 2,048ms zwischen 0 und 522,24m<br>vorgeben. Wenn die Impulsdauer = 0 ist, wird der Ausgang so lang<br>gesetzt, bis die Vergleichsbedingung nicht mehr erfüllt ist. |  |  |
|                                                   | Hinweis!                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                   | Näheres hierzu finden Sie unter "Zähler - Zusatzfunktionen" weiter unten!                                                                                                                                                                                                                                                                                          |  |  |
| Datensatz 9A 9Dh<br>Zählerwert temporär<br>setzen | Unter Verwendung des Datensatz (9A+x)h können Sie in ein Register<br>einen Wert laden. Durch Setzen von Bit 5 im Ausgabe-Status-Wort wird<br>der aktuelle Zählerstand durch den Registerwert ohne Beeinflussung des<br>Ladewerts ersetzt.                                                                                                                          |  |  |
| <b>Datensatz 9Eh</b><br>Modulauswahl              | Mit diesem Datensatz können Sie den Digital- bzw. Analog-Teil deaktivieren. Bitte beachten Sie, dass trotz Deaktivierung des Digital- bzw. Analog-Teils das Prozessabbild für beide Komponenten reserviert bleibt.                                                                                                                                                 |  |  |
|                                                   | Dei Dalensalz Hal luigenuen Aulbau.                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                   | Byte Bit 15 0<br>0 1 Bit 15 0 Modulauswahl                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                   | 0000h = Digital- / Analog-Teil aktiviert (Default)                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                   | 0001h = Digital-Teil deaktiviert                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                                   | 0002h = Analog-Teil deaktiviert                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                   | J J J                                                                                                                                                                                                                                                                                                                                                              |  |  |

## Zähler - Funktionen

## Übersicht Sie können vorwärts und rückwärts zählen und hierbei zwischen folgenden Zählerfunktionen wählen:

- Endlos Zählen, z.B. zur Wegerfassung mit Inkrementalgebern
- Einmalig Zählen, z.B. Stückguterfassung bis zu einer maximalen Grenze
- Periodisch Zählen, z.B. Anwendungen mit wiederholten Zählvorgängen

In den Betriebsarten "Einmalig Zählen" und "Periodisch Zählen" können Sie über die Parametrierung einen Zählerbereich als Start- bzw. Endwert definieren.

Für jeden Zähler stehen Ihnen parametrierbare Zusatzfunktionen zur Verfügung wie Tor-Funktion, Latch-Funktion, Vergleicher, Hysterese und Prozessalarm.

**Hauptzählrichtung** Über die Parametrierung haben Sie die Möglichkeit für jeden Zähler eine Hauptzählrichtung anzugeben.

Ist "keine" angewählt, steht Ihnen der gesamte Zählbereich zur Verfügung:

|                   | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |

#### Hauptzählrichtung vorwärts

Einschränkung des Zählbereiches nach oben. Der Zähler zählt 0 bzw. Ladewert in positiver Richtung bis zum parametrierten Endwert –1 und springt dann mit dem darauffolgenden Geberimpuls wieder auf den Ladewert.

#### Hauptzählrichtung rückwärts

Einschränkung des Zählbereiches nach unten. Der Zähler zählt vom parametrierten Start- bzw. Ladewert in negativer Richtung bis zum parametrierten Endwert +1 und springt dann mit dem darauffolgenden Geberimpuls wieder auf den Startwert.

# Abbrechen -Zählvorgang abbrechenunterbrechenDer Zählvorgang beginnt nach Schließen des Tors und erneutem Torstart<br/>wieder ab dem Ladewert.

#### Zählvorgang unterbrechen

Der Zählvorgang wird nach Schließen des Tors und erneutem Torstart beim letzten aktuellen Zählerstand fortgesetzt.

Endlos Zählen In dieser Betriebsart zählt der Zähler ab 0 bzw. ab dem Ladewert.

Erreicht der Zähler beim Vorwärtszählen die obere Zählgrenze und kommt ein weiterer Zählimpuls in positiver Richtung, springt er auf die untere Zählgrenze und zählt von dort weiter.

Erreicht der Zähler beim Rückwärtszählen die untere Zählgrenze und kommt ein weiterer negativer Zählimpuls, springt er auf die obere Zählgrenze und er zählt von dort weiter.

Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.

|                   | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |



#### Einmalig Zählen Keine Hau

#### Keine Hauptzählrichtung

- Der Zähler zählt ab dem Ladewert einmalig.
- Es wird vorwärts oder rückwärts gezählt.
- Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.
- Bei Über- oder Unterlauf an den Zählgrenzen springt der Zähler auf die jeweils andere Zählgrenze und das Tor wird automatisch geschlossen.
- Zum erneuten Start des Zählvorgangs müssen Sie eine positive Flanke des Tors erzeugen.
- Bei unterbrechender Torsteuerung wird der Zählvorgang beim aktuellen Zählstand fortgesetzt.
- Bei abbrechender Torsteuerung beginnt der Zähler ab dem Ladewert.

|                   | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |






### Hauptzählrichtung vorwärts

- Der Zähler zählt ab dem Ladewert vorwärts.
- Erreicht der Z\u00e4hler in positiver Richtung den Endwert -1, springt er beim n\u00e4chsten Z\u00e4hlimpuls auf den Ladewert und das Tor wird automatisch geschlossen.
- Zum erneuten Start des Zählvorgangs müssen Sie eine positive Flanke der Torsteuerung erzeugen. Der Zähler beginnt ab dem Ladewert.

|                   | Gültiger Wertebereich                                                        |
|-------------------|------------------------------------------------------------------------------|
| Endwert           | -2 147 483 646 (-2 <sup>31</sup> +1) bis +2 147 483 646 (2 <sup>31</sup> -1) |
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )                                           |
| Zählerstand       |                                                                              |
| Endwert           | Überlauf                                                                     |
|                   |                                                                              |
| Ladewert          |                                                                              |
|                   |                                                                              |
|                   |                                                                              |
| untere            |                                                                              |
| Torstart          | Torstopp Torstart Torstopp                                                   |

### Hauptzählrichtung rückwärts

- Der Zähler zählt ab dem Ladewert rückwärts.
- Erreicht der Zähler in negativer Richtung den Endwert+1, springt er beim nächsten Zählimpuls auf den Ladewert und das Tor wird automatisch geschlossen.
- Zum erneuten Start des Zählvorgangs müssen Sie eine positive Flanke der Torsteuerung erzeugen. Der Zähler beginnt ab dem Ladewert.



### Periodisch Zählen Keine

### n Keine Hauptzählrichtung

- Der Zähler zählt ab Ladewert vorwärts oder rückwärts.
- Beim Über- oder Unterlauf an der jeweiligen Zählgrenze springt der Zähler zum Ladewert und zählt von dort weiter.
- Die Zählgrenzen sind auf den maximalen Zählbereich fest eingestellt.

|                   | Gültiger Wertebereich               |
|-------------------|-------------------------------------|
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )  |
| Obere Zählgrenze  | +2 147 483 647 (2 <sup>31</sup> -1) |



### Hauptzählrichtung vorwärts

- Der Zähler zählt ab dem Ladewert vorwärts.
- Erreicht der Z\u00e4hler in positiver Richtung den Endwert -1, springt er beim n\u00e4chsten positiven Z\u00e4hlimpuls auf den Ladewert und z\u00e4hlt von dort weiter.

|                   | Gültiger Wertebereich                                                        |
|-------------------|------------------------------------------------------------------------------|
| Endwert           | -2 147 483 647 (-2 <sup>31</sup> +1) bis +2 147 483 647 (2 <sup>31</sup> -1) |
| Untere Zählgrenze | -2 147 483 648 (-2 <sup>31</sup> )                                           |



### Hauptzählrichtung rückwärts

- Der Zähler zählt ab dem Ladewert rückwärts.
- Erreicht der Zähler in negativer Richtung den Endwert+1, springt er beim nächsten negativen Zählimpuls auf den Ladewert und zählt von dort weiter.
- Sie können über die obere Zählgrenze hinaus zählen.

|                  | Gültiger Wertebereich                                                        |
|------------------|------------------------------------------------------------------------------|
| Endwert          | -2 147 483 647 (-2 <sup>31</sup> +1) bis +2 147 483 647 (2 <sup>31</sup> -2) |
| Obere Zählgrenze | +2 147 483 647 (2 <sup>31</sup> -1)                                          |



# Zähler - Zusatzfunktionen



**Tor-Funktion** Die Aktivierung bzw. Deaktivierung eines Zählers erfolgt über ein internes Tor (I-Tor). Das I-Tor ist die logische UND-Verknüpfung von Software-Tor (SW-Tor) und Hardwaretor (HW-Tor). Das SW-Tor öffnen (aktivieren) Sie über Ihr Anwenderprogramm, indem Sie für den entsprechenden Zähler das Ausgabe-Status-Bit 2 setzen. Durch Setzen von Ausgabe-Status-Bit 10 wird das SW-Tor wieder geschlossen (deaktiviert). Das HW-Tor können Sie über den digitalen "Gate<sub>x</sub>"-Eingang ansteuern. Über die Parametrierung können Sie die Berücksichtigung des HW-Tors deaktivieren, so dass die Zähleraktivierung ausschließlich über das SW-Tor erfolgen kann. Folgende Zustände beeinflussen das I-Tor:

| SW-Tor               | HW-Tor               | beeinflusst das I-Tor |
|----------------------|----------------------|-----------------------|
| 0                    | mit positiver Flanke | 0                     |
| 1                    | mit positiver Flanke | 1                     |
| mit positiver Flanke | 1                    | 1                     |
| mit positiver Flanke | 0                    | 0                     |
| mit positiver Flanke | deaktiviert          | 1                     |

### Abbrechende und unterbrechende Tor-Funktion

Über die Parametrierung bestimmen Sie, ob das Tor den Zählvorgang abbrechen oder unterbrechen soll.

• Bei *abbrechender Tor-Funktion* beginnt der Zählvorgang nach erneutem Tor-Start ab dem Ladewert.



• Bei *unterbrechender Tor-Funktion* wird der Zählvorgang nach Tor-Start beim letzten aktuellen Zählerwert fortgesetzt.



Torsteuerung abbrechend, unterbrechend Torsteuerung über SW-Tor, abbrechend

(Parametrierung: Datensatz 0, Byte 0, Bit 7 ... 3 = 00000b)

| SW-Tor          | HW-Tor      | Reaktion Zähler       |
|-----------------|-------------|-----------------------|
| positive Flanke | deaktiviert | Neustart mit Ladewert |

Torsteuerung über SW-Tor, unterbrechend

(Parametrierung: Datensatz 0, Byte 0, Bit 7 ... 3 = 10000b)

| SW-Tor          | HW-Tor      | Reaktion Zähler |
|-----------------|-------------|-----------------|
| positive Flanke | deaktiviert | Fortsetzung     |

Torsteuerung über SW/HW-Tor, abbrechend

(Parametrierung: Datensatz 0, Byte 0, Bit 7 ... 3 = 00001b)

| SW-Tor          | HW-Tor          | Reaktion Zähler       |
|-----------------|-----------------|-----------------------|
| positive Flanke | 1               | Fortsetzung           |
| 1               | positive Flanke | Neustart mit Ladewert |

Torsteuerung über SW/HW-Tor, unterbrechend (Parametrierung: Datensatz 0, Byte 0, Bit 7 ... 3 = 10001b)

| SW-Tor          | HW-Tor          | Reaktion Zähler |
|-----------------|-----------------|-----------------|
| positive Flanke | 1               | Fortsetzung     |
| 1               | positive Flanke | Fortsetzung     |

Torsteuerung "Einmalig Zählen" Torsteuerung über SW/HW-Tor, Betriebsart "Einmalig Zählen"

Wurde das interne Tor automatisch geschlossen, kann es nur über folgende Bedingungen geöffnet werden:

| SW-Tor                                                  | HW-Tor          | Reaktion I-Tor |
|---------------------------------------------------------|-----------------|----------------|
| 1                                                       | positive Flanke | 1              |
| positive Flanke<br>(nach positiver Flanke<br>am HW-Tor) | positive Flanke | 1              |

Latch-Funktion Sobald während eines Zählvorgangs am "Latch"-Eingang eines Zählers eine positive Flanke auftritt, wird der aktuelle Zählerwert im entsprechenden Latch-Register gespeichert.

Über das "Eingangsabbild" haben Sie Zugriff auf das Latch-Register. Setzten Sie hierzu Bit 15 des Ausgabe-Status-Worts.

Zusätzlich wird bei einem neuen Latch-Wert im Eingabe-Status-Wort Bit 13 gesetzt. Durch Setzen von Bit 15 im Ausgabe-Status-Wort können Sie den aktuellen Latchwert über das Eingangsabbild des entsprechenden Zählers auslesen und Bit 13 des Eingabe-Status-Worts zurücksetzen.

Vergleicher Über die Parametrierung können Sie das Verhalten des Zählerausgangs festlegen:

- Ausgang schaltet nie
- Ausgang schaltet, wenn Zählwert ≥ Vergleichswert
- Ausgang schaltet, wenn Zählwert <> Vergleichswert
- Ausgang schaltet bei Vergleichswert

#### Ausgang schaltet nie

Der Ausgang wird wie ein normaler Ausgang geschaltet.

Ausgang schaltet, wenn Zählwert ≥ Vergleichswert Solange der Zählwert größer oder gleich dem Vergleichswert ist, bleibt der Ausgang gesetzt.

### 

Solange der Zählwert kleiner oder gleich dem Vergleichswert ist, bleibt der Ausgang gesetzt.

#### Impuls bei Vergleichswert

Erreicht der Zähler den Vergleichswert, wird der Ausgang für die parametrierte Impulsdauer gesetzt.

Wenn die Impulsdauer = 0 ist, wird der Ausgang so lange gesetzt, bis die Vergleichsbedingung nicht mehr erfüllt ist.

Wenn sie eine Hauptzählrichtung eingestellt haben, wird der Ausgang nur bei Erreichen des Vergleichswertes aus der Hauptzählrichtung geschaltet.

### Impulsdauer

Die Impulsdauer gibt an, wie lange der Ausgang gesetzt werden soll. Sie kann in Schritten zu 2,048ms zwischen 0 und 522,24ms vorgewählt werden.

Die Impulsdauer beginnt mit dem Setzen des jeweiligen Digitalausgangs. Die Ungenauigkeit der Impulsdauer ist kleiner als 2,048ms.

Es erfolgt keine Nachtriggerung der Impulsdauer, wenn der Vergleichswert während einer Impulsausgabe verlassen und wieder erreicht wurde.

**Hysterese** Die Hysterese dient beispielsweise zur Vermeidung von häufigen Schaltvorgängen des Ausgangs und des Alarms, wenn der Zählerwert im Bereich des Vergleichswertes liegt. Für die Hysterese können Sie einen Bereich zwischen 0 und 255 vorgeben. Mit den Einstellungen 0 und 1 ist die Hysterese abgeschaltet. Die Hysterese wirkt auf Nulldurchgang, Über- und Unterlauf.

Eine aktive Hysterese bleibt nach der Änderung aktiv. Der neue Hysteresebereich wird beim nächsten Erreichen des Vergleichswertes übernommen.

In den nachfolgenden Abbildungen ist das Verhalten des Ausgangs bei Hysterese 0 und Hysterese 3 für die entsprechenden Bedingungen dargestellt:



Wirkungsweise bei Zählwert ≥ Vergleichswert

- (1) Zählerwert  $\geq$  Vergleichswert  $\rightarrow$  Ausgang wird gesetzt und Hysterese aktiviert
- ② Verlassen des Hysterese-Bereichs  $\rightarrow$  Ausgang wird zurückgesetzt
- $\bigcirc$  Zählerwert  $\ge$  Vergleichswert  $\rightarrow$  Ausgang wird gesetzt und Hysterese aktiviert
- 4 Verlassen des Hysterese-Bereichs, Ausgang bleibt gesetzt, da Zählerwert  $\geq$  Vergleichswert
- $\bigcirc$  Zählerwert < Vergleichswert und Hysterese aktiv  $\rightarrow$  Ausgang wird zurückgesetzt
- $\bigcirc$  Zählerwert  $\geq$  Vergleichswert  $\rightarrow$  Ausgang wird nicht gesetzt, da Hysterese aktiviert ist
- $\bigcirc$  Verlassen des Hysterese-Bereichs, Ausgang wird gesetzt, da Zählerwert  $\geq$  Vergleichswert

Mit dem Erreichen der Vergleichsbedingung wird die Hysterese aktiv. Bei aktiver Hysterese bleibt das Vergleichsergebnis solange unverändert, bis der Zählerwert den eingestellten Hysterese-Bereich verlässt. Nach Verlassen des Hysterese-Bereichs wird erst wieder mit Erreichen der Vergleichsbedingungen die Hysterese aktiviert.



### Wirkungsweise bei Impuls bei Vergleichswert mit Impulsdauer Null

- 1 Zählerwert = Vergleichswert  $\rightarrow$  Ausgang wird gesetzt und Hysterese aktiviert
- ② Verlassen des Hysterese-Bereichs → Ausgang wird zurückgesetzt und Zählerwert < Vergleichswert
- $\bigcirc$  Zählerwert = Vergleichswert  $\rightarrow$  Ausgang wird gesetzt und Hysterese aktiviert
- ④ Ausgang wird zurückgesetzt, da Verlassen des Hysterese-Bereichs und Zählerwert > Vergleichswert
- (5) Zählerwert = Vergleichswert  $\rightarrow$  Ausgang wird gesetzt und Hysterese aktiviert
- 6 Zählerwert = Vergleichswert und Hysterese aktiv  $\rightarrow$  Ausgang bleibt gesetzt
- ⑦ Verlassen des Hysterese-Bereichs und Z\u00e4hlerwert > Vergleichswert → Ausgang wird zur\u00fcckgesetzt

Mit dem Erreichen der Vergleichsbedingung wird die Hysterese aktiv. Bei aktiver Hysterese bleibt das Vergleichsergebnis solange unverändert, bis der Zählerwert den eingestellten Hysterese-Bereich verlässt. Nach Verlassen des Hysterese-Bereichs wird erst wieder mit Erreichen der Vergleichsbedingungen die Hysterese aktiviert.



### Wirkungsweise bei Impuls bei Vergleichswert mit Impulsdauer ungleich Null

- ① Zählerwert = Vergleichswert → Impuls der parametrierten Dauer wird ausgegeben, die Hysterese aktiviert und die Zählrichtung gespeichert
- ② Verlassen des Hysterese-Bereichs entgegen der gespeicherten Zählrichtung → Impuls der parametrierten Dauer wird ausgegeben und die Hysterese deaktiviert
- ③ Zählerwert = Vergleichswert → Impuls der parametrierten Dauer wird ausgegeben, die Hysterese aktiviert und die Zählrichtung gespeichert
- 4 Hysterese-Bereich wird ohne Änderung der Zählrichtung verlassen  $\rightarrow$  Hysterese wird deaktiviert
- (5) Z\u00e4hlerwert = Vergleichswert → Impuls der parametrierten Dauer wird ausgegeben, die Hysterese aktiviert und die Z\u00e4hlrichtung gespeichert
- 6 Zählerwert = Vergleichswert und Hysterese aktiv  $\rightarrow$  kein Impuls
- ⑦ Verlassen des Hysterese-Bereichs entgegen der gespeicherten Z\u00e4hlrichtung → Impuls der parametrierten Dauer wird ausgegeben und die Hysterese deaktiviert

Mit dem Erreichen der Vergleichsbedingung wird die Hysterese aktiv und ein Impuls der parametrierten Dauer ausgegeben. Solange sich der Zählwert innerhalb des Hysterese-Bereichs befindet, wird kein weiterer Impuls abgegeben. Mit Aktivierung der Hysterese wird in der CPU die Zählrichtung festgehalten. Verlässt der Zählwert den Hysterese-Bereich entgegen der gespeicherten Zählrichtung, wird ein Impuls der parametrierten Dauer ausgegeben. Beim Verlassen des Hysterese-Bereichs ohne Richtungsänderung erfolgt keine Impulsausgabe.

# Zähler - Diagnose und Alarm

### Übersicht

Über die Parametrierung können Sie folgende Auslöser für einen Prozessalarm definieren, die einen Diagnosealarm auslösen können:

- Zustandsänderung an einem Eingang
- Zustandsänderung des HW-Tors
- Über- bzw. Unterlauf oder Erreichen eines Endwerts
- Erreichen eines Vergleichswerts

**Prozessalarm** Ein Prozessalarm bewirkt einen Aufruf des OB 40. Innerhalb des OB 40 haben Sie die Möglichkeit über das *Lokalwort 6* die logische Basisadresse des Moduls zu ermitteln, das den Prozessalarm ausgelöst hat. Nähere Informationen zum auslösenden Ereignis finden Sie in *Lokaldoppelwort 8*.

Lokaldoppelwort 8 des OB 40

Das Lokaldoppelwort 8 des OB 40 hat folgenden Aufbau:

| Lokalbyte | Bit 7 Bit 0                                         |
|-----------|-----------------------------------------------------|
| 8         | Bit 0: Flanke an E+0.0                              |
|           | Bit 1: Flanke an E+0.1                              |
|           | Bit 2: Flanke an E+0.2                              |
|           | Bit 3: Flanke an E+0.3                              |
|           | Bit 4: Flanke an E+0.4                              |
|           | Bit 5: Flanke an E+0.5                              |
|           | Bit 6: Flanke an E+0.6                              |
|           | Bit 7: Flanke an E+0.7                              |
| 9         | Bit 0: Flanke an E+1.0                              |
|           | Bit 1: Flanke an E+1.1                              |
|           | Bit 2: Flanke an E+1.2                              |
|           | Bit 3: Flanke an E+1.3                              |
|           | Bit 4: Flanke an E+1.4                              |
|           | Bit 5: Flanke an E+1.5                              |
|           | Bit 6: Flanke an E+1.6                              |
| 40        |                                                     |
| 10        | Bit 0: Tor Zahler 0 geother (activient)             |
|           | Bit 1: Tor Zanier U geschlossen                     |
|           | Bit 2: Uber-/Unterlaut/Endwert Zanier U             |
|           | Bit 3: Zanier U nat vergleichswert erreicht         |
|           | Bit 4. Tor Zahler 1 geophessen                      |
|           | Dit 5. Tür Zahler Tyeschlossen                      |
|           | Bit 7: Zöhlor 1 hat Voraloichewort erreicht         |
| 11        | Rit 0: Tor Zöhlor 2 goöffnot (aktiviort)            |
|           | Bit 1: Tor Zähler 2 geschlossen                     |
|           | Bit 2: Über-/I Interlauf/Endwert Zähler 2           |
|           | Rit 3: Zähler 2 hat Vergleichswert erreicht         |
|           | Bit 4: Tor Zähler 3 geöffnet (aktiviert)            |
|           | Bit 5: Tor Zähler 3 geschlossen                     |
|           | Bit 6 <sup>°</sup> Über-/Unterlauf/Endwert Zähler 3 |
|           | Bit 7: Zähler 3 hat Vergleichswert erreicht         |

**Diagnosealarm** Sie haben die Möglichkeit über die Parametrierung (Datensatz 7Fh) global einen Diagnosealarm für den Analog- und Digitalteil zu aktivieren.

Ein Diagnosealarm tritt auf, sobald während einer Prozessalarmbearbeitung im OB 40, für das gleiche Ereignis ein weiterer Prozessalarm ausgelöst wird. Durch Auslösen eines Diagnosealarms wird die aktuelle Prozessalarmbearbeitung im OB 40 unterbrochen und in OB 82 zur Diagnosealarmbearbeitung<sub>kommend</sub> verzweigt. Treten während der Diagnosealarmbearbeitung auf anderen Kanälen weitere Ereignisse auf, die einen Prozess- bzw. Diagnosealarm auslösen können, werden diese zwischengespeichert.

Nach Ende der Diagnosealarmbearbeitung werden zunächst alle zwischengespeicherten Diagnosealarme in der Reihenfolge ihres Auftretens abgearbeitet und anschließend alle Prozessalarme.

Treten auf einem Kanal, für welchen aktuell ein Diagnosealarm<sub>kommend</sub> bearbeitet wird bzw. zwischengespeichert ist, weitere Prozessalarme auf, gehen diese verloren. Ist ein Prozessalarm, für welchen ein Diagnosealarm<sub>kommend</sub> ausgelöst wurde, abgearbeitet, erfolgt erneut ein Aufruf der Diagnosealarmbearbeitung als Diagnosealarm<sub>gehend</sub>.

Alle Ereignisse eines Kanals zwischen Diagnosealarm<sub>kommend</sub> und Diagnosealarm<sub>gehend</sub> werden nicht zwischengespeichert und gehen verloren. Innerhalb dieses Zeitraums (1. Diagnosealarm<sub>kommend</sub> bis letzter Diagnosealarm<sub>gehend</sub>) leuchtet die SF-LED der CPU. Zusätzlich erfolgt für jeden Diagnosealarm<sub>kommend/gehend</sub> ein Eintrag im Diagnosepuffer der CPU.

### Beispiel



Diagnosealarm-<br/>bearbeitungMit jedem OB 82-Aufruf erfolgt ein Eintrag mit Fehlerursache und<br/>Moduladresse im Diagnosepuffer der CPU.

Unter Verwendung des SFC 59 können Sie die Diagnosebytes auslesen.

Bei deaktiviertem Diagnosealarm haben Sie Zugriff auf das jeweils letzte Diagnose-Ereignis.

Haben Sie in Ihrer Hardware-Konfiguration die Diagnosefunktion aktiviert, so befinden sich bei Aufruf des OB 82 die Inhalte von Datensatz 0 bereits im Lokaldoppelwort 8. Mit dem SFC 59 können Sie zusätzlich den Datensatz 1 auslesen, der weiterführende Informationen beinhaltet.

Nach Verlassen des OB 82 ist keine eindeutige Zuordnung der Daten zum letzten Diagnosealarm mehr möglich.

Die Datensätze des Diagnosebereichs haben folgenden Aufbau:

Datensatz 0 Byte Bit 7 ... Bit 0 Bit 0: gesetzt, wenn Baugruppenstörung **Diagnose**kommend 0 Bit 1: 0 (fix) Bit 2: gesetzt, bei Fehler extern Bit 3: gesetzt, bei Kanalfehler vorhanden Bit 4: gesetzt, wenn externe Hilfsspannung fehlt Bit 7 ... 5: 0 (fix) 1 Bit 3 ... 0: Modulklasse 0101b: Analog 1111b: Digital Bit 4: Kanalinformation vorhanden Bit 7 ... 5: 0 (fix) 2 Bit 3 ... 0: 0 (fix) Bit 4: Ausfall Baugruppeninterne Versorgungsspannung

Bit 7 ... 5: 0 (fix) Bit 5 ... 0: 0 (fix)

Bit 7: 0 (fix)

3

(Ausgang überlastet)

Bit 6: Prozessalarm verloren

Datensatz 0 Diagnose<sub>gehend</sub> Nach der Fehlerbehebung erfolgt, sofern die Diagnosealarmfreigabe noch aktiv ist, eine Diagnosemeldung<sub>gehend</sub>.

| Byte | Bit 7 Bit 0                                      |
|------|--------------------------------------------------|
| 0    | Bit 0: gesetzt, wenn Baugruppenstörung           |
|      | Bit 1: 0 (fix)                                   |
|      | Bit 2: gesetzt, bei Fehler extern                |
|      | Bit 3: gesetzt, bei Kanalfehler vorhanden        |
|      | Bit 4: gesetzt, wenn externe Hilfsspannung fehlt |
|      | Bit 7 5: 0 (fix)                                 |
| 1    | Bit 3 0: Modulklasse                             |
|      | 0101b: Analogmodul                               |
|      | 1111b: Digital                                   |
|      | Bit 4: Kanalinformation vorhanden                |
|      | Bit 7 5: 0 (fix)                                 |
| 2    | 00h (fix)                                        |
| 3    | 00h (fix)                                        |

Diagnose Datensatz 1 (Byte 0 ... 15) Der Datensatz 1 enthält die 4Byte des Datensatzes 0 und zusätzlich 12Byte modulspezifische Diagnosedaten.

Die Diagnosebytes haben folgende Belegung:

| Byte | Bit 7 Bit 0                                                                            |
|------|----------------------------------------------------------------------------------------|
| 0 3  | Inhalte Datensatz 0 (siehe vorherige Seite)                                            |
| 4    | Bit 6 0: Kanaltyp (hier 70h)                                                           |
|      | 70h: Digitaleingabe                                                                    |
|      | 71h: Analogeingabe                                                                     |
|      | 72h: Digitalausgabe                                                                    |
|      | 730: Analogausgabe                                                                     |
|      | Rit 7 <sup>°</sup> Weitere Kanaltypen vorhanden                                        |
|      | 0. nein                                                                                |
|      | 1: ja                                                                                  |
| 5    | Anzahl der Diagnosebits, die das Modul pro Kanal ausgibt (hier 08h)                    |
| 6    | Anzahl der Kanäle eines Moduls (hier 08h)                                              |
| 7    | Bit 0: Fehler in Kanalgruppe 0 (E+0.0 E+0.3)                                           |
|      | Bit 1: Fehler in Kanalgruppe 1 (E+0.4 E+0.7)                                           |
|      | Bit 2: Fehler in Kanalgruppe 2 (E+1.0 E+1.3)                                           |
|      | Bit 3: Fehler in Kanaigruppe 3 (E+1.4 E+1.7)                                           |
|      | Bit 4: Fenler in Kanalgruppe 4 (Zanier V)<br>Bit 5: Echler in Kanalgruppe 5 (Zähler 1) |
|      | Rit 6: Fehler in Kanalgruppe 5 (Zanici 1)                                              |
|      | Bit 7' Fehler in Kanalgruppe 7 (Zähler 3)                                              |
| 8    | Diagnosealarm wegen Prozessalarm verloren auf                                          |
| -    | Bit 0:Eingang E+0.0                                                                    |
|      | Bit 1: 0 (fix)                                                                         |
|      | Bit 2:Eingang E+0.1                                                                    |
|      | Bit 3: 0 (fix)                                                                         |
|      | Bit 4: Eingang E+0.2                                                                   |
|      | Bit 5: 0 (fix)                                                                         |
|      | Bit 6: Elfigang E+0.3<br>Dit 7: $\cap$ (fix)                                           |
| 9    | Diagnosealarm wegen Prozessalarm verloren auf                                          |
| 5    | Rit 0 <sup>-</sup> Fingang F+0.4                                                       |
|      | Bit 1: 0 (fix)                                                                         |
|      | Bit 2:Eingang E+0.5                                                                    |
|      | Bit 3: 0 (fix)                                                                         |
|      | Bit 4: Eingang E+0.6                                                                   |
|      | Bit 5: 0 (fix)                                                                         |
|      | Bit 6: Eingang E+0.7                                                                   |
| 10   | Bit 7: 0 (TIX)                                                                         |
| 10   | Rit 0. Eingeng E+1.0                                                                   |
|      | Rit 1· 0 /fix)                                                                         |
|      | Bit 2:Eingang E+1.1                                                                    |
|      | Bit 3: 0 (fix)                                                                         |
|      | Bit 4: Eingang E+1.2                                                                   |
|      | Bit 5: 0 (fix)                                                                         |
|      | Bit 6: Eingang E+1.3                                                                   |
|      | Bit 7: 0 (fix)                                                                         |

Fortsetzung ...

| Bit 7 Bit 0                                                   |
|---------------------------------------------------------------|
| Diagnosealarm wegen Prozessalarm verloren auf                 |
| Bit 0: Eingang E+1.4                                          |
| Bit 1: 0 (fix)                                                |
| Bit 2: Eingang E+1.5                                          |
| Bit 3: 0 (fix)                                                |
| Bit 4: Eingang E+1.6                                          |
| Bit 5: 0 (fix)                                                |
| Bit 6: Eingang E+1.7                                          |
| Bit 7: 0 (fix)                                                |
| Diagnosealarm wegen Prozessalarm verloren auf                 |
| Bit 0: Tor Zähler 0 geschlossen                               |
| Bit 1: 0 (fix)                                                |
| Bit 2: Tor Zähler 0 geöffnet                                  |
| Bit 3: 0 (fix)                                                |
| Bit 4: Über-/Unterlauf/Endwert Zähler 0                       |
| Bit 5: 0 (fix)                                                |
| Bit 6: Zähler 0 hat Vergleichswert erreicht                   |
| Bit 7: 0 (fix)                                                |
| Diagnosealarm wegen Prozessalarm verloren auf                 |
| Bit 0: Tor Zähler 1 geschlossen                               |
| Bit 1: 0 (fix)                                                |
| Bit 2: Tor Zähler 1 geöffnet                                  |
| Bit 3: 0 (fix)                                                |
| Bit 4: Uber-/Unterlauf/Endwert Zähler 1                       |
| Bit 5: 0 (fix)                                                |
| Bit 6: Zahler 1 hat Vergleichswert erreicht                   |
| Bit 7: 0 (fix)                                                |
| Diagnosealarm wegen Prozessalarm verloren auf                 |
| Bit 0: I or Zahler 2 geschlossen                              |
| Bit 1: 0 (fix)                                                |
| Bit 2: For Zanier 2 geomet                                    |
| Bit 3: U (IIX)<br>Dit 4:Ühen // Interlauf/Endurent Zählen 0   |
|                                                               |
| Dil 3. U (IIX)<br>Dit 6: Zöhler 2 het Vergleichewert erreicht |
| Dit 0 Zahler Z hat vergieichsweit erfeicht                    |
| Diagnoscolarm wagon Prozoscolarm varlaren auf                 |
| Didynosediann wegen Frozessalann venoren au                   |
| Bit 1. 0 (fiv)                                                |
| Bit 2: Tor Zähler 3 geöffnet                                  |
| Bit 3: 0 (fix)                                                |
| Bit 4: Über-/I Interlauf/Endwert Zähler 3                     |
|                                                               |
| Bit 6: Zähler 3 hat Vergleichswert erreicht                   |
| Bit 7 <sup>°</sup> 0 (fix)                                    |
|                                                               |

... Fortsetzung Datensatz 1

# Teil 6 Einsatz CPU 31xS unter Profibus

### Überblick Inhalt dieses Kapitels ist der Einsatz der CPU 31xS unter Profibus. Nach einer kurzen Übersicht wird die Projektierung und Parametrierung einer CPU 31xS mit integriertem Profibus-Teil von VIPA gezeigt.

Weiter erhalten Sie hier Informationen, wie Sie den Profibus-Teil als DP-Master und als DP-Slave einsetzen.

Mit Hinweisen zur Inbetriebnahme und zum Anlaufverhalten endet dieser Teil.

Nachfolgend sind beschrieben:

- Übersicht
- Einsatz im Master- und im Slave-Betrieb
- Aufbaurichtlinien und Inbetriebnahme

| Inhalt | Thema                                              | Seite |
|--------|----------------------------------------------------|-------|
|        | Teil 6 Einsatz CPU 31xS unter Profibus             | 6-1   |
|        | Übersicht                                          | 6-2   |
|        | Projektierung CPU mit integriertem Profibus Master | 6-3   |
|        | Einsatz als Profibus DP-Slave                      | 6-5   |
|        | Profibus-Aufbaurichtlinien                         | 6-7   |
|        | Inbetriebnahme und Anlaufverhalten                 | 6-10  |

# Übersicht

| Profibus-DP                          | Profibus ist ein international offener und serieller Feldbus-Standard für<br>Gebäude-, Fertigungs- und Prozessautomatisierung im unteren (Sensor-/<br>Aktor-Ebene) bis mittleren Leistungsbereich (Prozessebene).<br>Profibus besteht aus einem Sortiment kompatibler Varianten. Die hier<br>angeführten Angaben beziehen sich auf den Profibus-DP.<br>Profibus-DP ist besonders geeignet für die Fertigungsautomatisierung. DP<br>ist sehr schnell, bietet "Plug and Play" und ist eine kostengünstige Alter-<br>native zur Parallelverkabelung zwischen SPS und dezentraler Peripherie.<br>Der Datenaustausch "Data Exchange" erfolgt zyklisch. Während eines                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Buszyklus liest der Master die Eingangswerte der Slaves und schreibt neue Ausgangsinformationen an die Slaves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CPU mit<br>DP-Master                 | Der Profibus DP-Master ist mit dem Hardware-Konfigurator von Siemens zu projektieren. Hierzu ist im Hardware-Konfigurator von Siemens die Siemens-CPU 318-2AJ00 anzuwählen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | Die Übertragung Ihrer Projektierung erfolgt über MPI, MMC oder Ethernet-<br>PG/OP-Kanal in die CPU. Diese leitet die Projektierdaten intern weiter an<br>den Profibus Master-Teil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | Während des Hochlaufs blendet der DP-Master automatisch seine Daten-<br>bereiche im Adressbereich der CPU ein. Eine Projektierung auf CPU-Seite<br>ist hierzu nicht erforderlich.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Als externes Speichermedium nutzt der Profibus DP-Master zusammen mit der CPU die MMC ( <b>M</b> ulti <b>M</b> edia <b>C</b> ard).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Einsatz CPU mit<br>DP-Master         | Über den Profibus DP-Master können bis zu 125 Profibus DP-Slaves an die CPU angekoppelt werden. Der DP-Master kommuniziert mit den DP-Slaves und blendet die Datenbereiche im Adressbereich der CPU ein. Es dürfen max. 1024Byte Eingangs- und 1024Byte Ausgangsdaten entstehen. Bei jedem NETZ EIN bzw. nach dem URLÖSCHEN holt sich die CPU vom Master die I/O-Mapping-Daten. Bei DP-Slave-Ausfall leuchtet die ER-LED und der OB 86 wird angefordert. Ist dieser nicht vorhanden, geht die CPU in STOP und BASP wird gesetzt. Sobald das BASP-Signal von der CPU kommt, stellt der DP-Master die Ausgänge der angeschlossenen Peripherie auf Null. Unabhängig von der CPU bleibt der DP-Master weiter im RUN. |
| Profibus-Adresse<br>1 ist reserviert | Bitte beachten Sie, dass die Profibus-Adresse 1 systembedingt reserviert ist. Die Adresse 1 sollte nicht verwendet werden!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DP-Slave-Betrieb                     | Für den Einsatz in einem übergeordneten Master-System projektieren Sie<br>zuerst Ihr Slave-System als CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0)<br>im <i>Slave</i> -Betrieb mit konfigurierten Ein-/Ausgabe-Bereichen. Danach<br>projektieren Sie Ihr Master-System. Binden Sie an das Master-System Ihr<br>Slave-System an, indem Sie die "CPU 31x" aus dem Hardware-Katalog<br>unter <i>Bereits projektierte Stationen</i> auf das Master-System ziehen und Ihr<br>Slave-System auswählen und ankoppeln.                                                                                                                                                                                                          |

# Projektierung CPU mit integriertem Profibus Master

- Übersicht Zur Projektierung des integrierten Profibus DP-Masters ist der Hardware-Konfigurator von Siemens zu verwenden. Ihre Profibus-Projekte übertragen Sie mit den "Zielsystem"-Funktionen über MPI in Ihre CPU. Diese reicht die Daten weiter an den Profibus DP-Master.
- **Voraussetzungen** Für die Projektierung des Profibus DP-Masters auf einer CPU 31xSx/DPM müssen folgende Voraussetzungen erfüllt sein:
  - Siemens SIMATIC Manager ist installiert.
  - Bei Einsatz von Profibus DP-Slaves der Systeme 100V, 200V und 300V von VIPA: GSD-Dateien im Hardware-Konfigurator sind eingebunden.
  - Transfermöglichkeit zwischen Projektiertool und CPU 31xS ist vorhanden.

|           | Hinweis!<br>Für die Projektierung der CPU und des Profibus DP-Masters werden<br>fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------|
| _         | vorausgesetzt!                                                                                                                                 |
| lardware- | Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC                                                                                  |

| Hardware-        | Der Hardware-Konfigurator ist Bestandteil des Siemens SIMATIC                                                                                                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Konfigurator von | Managers. Er dient der Projektierung. Die Module, die hier projektiert                                                                                                     |
| Siemens          | werden können, entnehmen Sie dem Hardware-Katalog.                                                                                                                         |
| installieren     | Für den Einsatz der Profibus DP-Slaves der Systeme 100V, 200V und 300V von VIPA ist die Einbindung der Module über die GSD-Datei von VIPA im Hardwarekatalog erforderlich. |

| DP-Master<br>projektieren | Legen Sie ein neues Projekt System 300 an.                                                                                                                      |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | <ul> <li>Fügen Sie aus dem Hardwarekatalog eine Profilschiene ein.</li> </ul>                                                                                   |
|                           | <ul> <li>Sie finden die CPU mit Profibus-Master im Hardwarekatalog unter:<br/>Simatic300/CPU-300/CPU318-2DP/6ES7 318-2AJ00-0AB0</li> </ul>                      |
|                           | <ul> <li>Fügen Sie die CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) ein.</li> </ul>                                                                                   |
|                           | Geben Sie eine Profibus-Adresse für Ihren Master an (z.B. :2).                                                                                                  |
|                           | <ul> <li>Klicken Sie auf DP und stellen Sie in unter Objekteigenschaften die<br/>Betriebsart "DP Master" ein und bestätigen Sie Ihre Eingabe mit OK.</li> </ul> |
|                           | <ul> <li>Klicken Sie mit der rechten Maustaste auf "DP" und wählen Sie "Master-<br/>System einfügen" aus.</li> </ul>                                            |

• Legen Sie über NEU ein neues Profibus-Subnetz an.

| 🖳 HW Konfig - [SIMATIC 300-Station_2 :  | (Konfiguration) 57_Projek                          | dt]           |      |          |                  |                                                          | _ 8 ×   |
|-----------------------------------------|----------------------------------------------------|---------------|------|----------|------------------|----------------------------------------------------------|---------|
| 🛄 Station Bearbeiten Einfügen Zielsyste | em <u>A</u> nsicht E <u>x</u> tras <u>F</u> enster | <u>H</u> ilfe |      |          |                  |                                                          | _ 8 ×   |
|                                         | 🛍 🋍 🗈 🔡 🕅                                          |               |      |          |                  |                                                          |         |
| 📼 (0) UR                                |                                                    |               |      | <u> </u> | S <u>u</u> chen: |                                                          | m‡ mi   |
| 1<br>2 S CPU 318-2                      |                                                    |               |      |          | Profil:          | Standard                                                 | •       |
|                                         | PROFIBUS(1): DP-Master                             | system (1)    | -    | ×        |                  |                                                          |         |
| Steckplatz [ Baugruppe                  | Bestellnummer                                      | Fir M         | E A  | Kom      |                  | ⊕ ·                                                      | ' 📕     |
| 2 CPU 318-2                             | 6ES7 318-2AJ00-0AB0                                | V3.0.2        |      | -        |                  | 🖨 🧰 CPU 318-2                                            |         |
| X2 DF                                   |                                                    |               | 8191 |          |                  | i⊟ • 🦲 6ES7 318-2AJ                                      | 00-0ABI |
| X1 NFI/DP                               |                                                    | 2             | 8190 |          |                  | V1.0                                                     |         |
| 3                                       |                                                    |               |      |          |                  | VI.1                                                     |         |
| 4                                       |                                                    |               |      |          |                  | V30                                                      | -       |
| 5                                       |                                                    |               |      |          |                  | :                                                        |         |
| 7                                       |                                                    |               |      |          | 6ES7 31          | 8-2AJ00-0AB0                                             | <br>₹/  |
| 8                                       |                                                    |               |      |          | Arbeitssp        | beicher 256KB; 0,3ms/kAV                                 | ୰⊒⊐≌    |
| 9                                       |                                                    |               |      | -        | DP-Slav          | P-Anschluß (DP-Master ode<br>e); mehrzeiliger Aufbau bis | er<br>💌 |
| Einfügen möglich                        |                                                    |               |      |          |                  |                                                          | Änd     |

Sie haben jetzt ihren Profibus DP-Master projektiert. Binden Sie nun Ihre DP-Slaves mit Peripherie an Ihren DP-Master an.

- Zur Projektierung von Profibus DP-Slaves entnehmen Sie aus dem *Hardwarekatalog* den entsprechenden Profibus DP-Slave und ziehen Sie diesen auf das Subnetz Ihres Masters.
- Geben Sie dem DP-Slave eine gültige Profibus-Adresse.
- Binden Sie in der gesteckten Reihenfolge die Module Ihres DP-Slave-Systems ein und vergeben Sie die Adressen, die von den Modulen zu verwenden sind.
- Parametrieren Sie die Module gegebenenfalls.
- Speichern, übersetzen und transferieren Sie Ihr Projekt. N\u00e4here Informationen zur SPEED-Bus-Projektierung und zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS".



### Hinweis!

Bitte verwenden Sie bei Einsatz einer IM153 von Siemens an einer VIPA CPU 31xSx/DPM die "kompatiblen" DP-Slave-Module.

Sie finden diese im Hardware-Katalog unter PROFIBUS-DP/Weitere Feldgeräte/ Kompatible Profibus-DP-Slaves.

Slave-BetriebSie können den Profibus-Teil Ihrer SPEED7-CPU auch als DP-Slavemöglichbetreiben. Die Vorgehensweise hierzu finden Sie auf der Folgeseite.

# **Einsatz als Profibus DP-Slave**

| Schnelleinstieg                  | <ul> <li>Der Einsatz des Profibus-Teils als "intelligenter" DP-Slave erfolgt ausschließlich an Master-Systemen, die im Siemens SIMATIC Manager projektiert werden können. Folgende Schritte sind hierzu erforderlich:</li> <li>Starten Sie den Siemens SIMATIC Manager und projektieren Sie eine CPU 318-2DP mit der Betriebsart <i>DP-Slave</i>.</li> <li>Vernetzen Sie mit Profibus und konfigurieren Sie die Ein-/Ausgabe-Bereiche für die Slave-Seite.</li> <li>Speichern und übersetzen Sie Ihr Projekt.</li> <li>Projektieren Sie als weitere Station eine CPU 318-2DP mit der Betriebsart <i>DP-Master</i>.</li> <li>Vernetzen Sie mit <i>Profibus</i> und konfigurieren Sie die Ein-/Ausgabe-Bereiche für die Master-Seite.</li> <li>Speichern und übersetzen Sie Ihr Projekt.</li> <li>Nernetzen Sie mit <i>Profibus</i> und konfigurieren Sie die Ein-/Ausgabe-Bereiche für die Master-Seite.</li> <li>Speichern und übersetzen Sie Ihr Projekt.</li> </ul> |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Projektierung der<br>Slave-Seite | <ul> <li>Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt.</li> <li>Fügen Sie eine <i>SIMATIC 300-Station</i> ein und bezeichnen Sie diese mit "DP-Slave"</li> <li>Rufen Sie den Hardware-Konfigurator auf und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.</li> <li>Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)</li> <li>Binden Sie gemäß Ihrem Hardwareaufbau Ihre Module ein.</li> <li>Vernetzen Sie die CPU mit <i>Profibus</i>, stellen Sie eine Profibus-Adresse &gt;1 (vorzugsweise 3) ein und schalten Sie über <i>Betriebsart</i> den Profibus-Teil in "Slave-Betrieb".</li> <li>Bestimmen Sie über <i>Konfiguration</i> die Ein-/Ausgabe-Adressbereiche der Slave-CPU, die dem DP-Slave zugeordnet werden sollen.</li> <li>Speichern und übersetzen Sie Ihr Projekt</li> </ul>                                                                                                |
|                                  | Standard-Bus       Objekteigenschaften         1       Betriebsart: DP-Slave         2       CPU 318-2         X2       DP         X1       MPI/DP         3       Peripheriemodule          Eingabe-Bereich         Ausgabe-Bereich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

• Fügen Sie eine weitere *SIMATIC 300-Station* ein und bezeichnen Sie diese als "...DP-Master".

- Rufen Sie den Hardware-Konfigurator auf und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
- Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 318-2DP (6ES7 318-2AJ00-0AB0 V3.0)
- Binden Sie gemäß Ihrem Hardwareaufbau Ihre Module ein.
- Vernetzen Sie die CPU mit *Profibus*, stellen Sie eine Profibus-Adresse
   >1 (vorzugsweise 2) ein und schalten Sie über *Betriebsart* den Profibus-Teil in "Master-Betrieb".
- Binden Sie an das Master-System Ihr Slave-System an, indem Sie die "CPU 31x" aus dem Hardware-Katalog unter *Bereits projektierte Stationen* auf das Master-System ziehen und Ihr Slave-System auswählen und ankoppeln.
- Öffnen Sie die Konfiguration unter Objekteigenschaften Ihres Slave-Systems.
- Ordnen Sie durch Doppelklick auf die entsprechende Konfigurationszeile den Slave-Ausgabe-Daten den entsprechenden Eingabe-Adressbereich und den Slave-Eingabe-Daten den entsprechenden Ausgabe-Adressbereich in der Master-CPU zu.
- Speichern, übersetzen und transferieren Sie Ihr Projekt. N\u00e4here Informationen zur SPEED-Bus-Projektierung und zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS".



### Master-Seite

# **Profibus-Aufbaurichtlinien**

| Profibus allgemein      | <ul> <li>Ein Profibus-DP-Netz darf nur in Linienstruktur aufgebaut werden.</li> </ul>                                                                                                                                                                                                                                                                                                                                  |                                                           |                                                                                                                                                             |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                         | <ul> <li>Profibus-DP besteht aus mindestens einem Segment mit mindestens<br/>einem Master und einem Slave.</li> </ul>                                                                                                                                                                                                                                                                                                  |                                                           |                                                                                                                                                             |  |  |
|                         | • Ein Master ist immer in                                                                                                                                                                                                                                                                                                                                                                                              | Verbindun                                                 | g mit einer CPU einzusetzen.                                                                                                                                |  |  |
|                         | Profibus unterstützt ma                                                                                                                                                                                                                                                                                                                                                                                                | ix. 126 Teilr                                             | nehmer.                                                                                                                                                     |  |  |
|                         | Pro Segment sind max                                                                                                                                                                                                                                                                                                                                                                                                   | . 32 Teilneh                                              | imer zulässig.                                                                                                                                              |  |  |
|                         | Die maximale Segmen                                                                                                                                                                                                                                                                                                                                                                                                    | tlänge häng                                               | t von der Übertragungsrate ab:                                                                                                                              |  |  |
|                         | 9,6 187,5kBaud                                                                                                                                                                                                                                                                                                                                                                                                         | $\rightarrow$                                             | 1000m                                                                                                                                                       |  |  |
|                         | 500kBaud                                                                                                                                                                                                                                                                                                                                                                                                               | $\rightarrow$                                             | 400m                                                                                                                                                        |  |  |
|                         | 1,5MBaud                                                                                                                                                                                                                                                                                                                                                                                                               | $\rightarrow$                                             | 200m                                                                                                                                                        |  |  |
|                         | 3 12MBaud                                                                                                                                                                                                                                                                                                                                                                                                              | $\rightarrow$                                             | 100m                                                                                                                                                        |  |  |
|                         | <ul> <li>Maximal 10 Segmente d ürfen gebildet werden. Die Segmente werden<br/>über Repeater verbunden. Jeder Repeater z ählt als Teilnehmer.</li> </ul>                                                                                                                                                                                                                                                                |                                                           |                                                                                                                                                             |  |  |
|                         | • Alle Teilnehmer kommunizieren mit der gleichen Baudrate. Die Slaves passen sich automatisch an die Baudrate an.                                                                                                                                                                                                                                                                                                      |                                                           |                                                                                                                                                             |  |  |
|                         | <ul> <li>Der Bus ist an beiden Enden abzuschließen.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |                                                           |                                                                                                                                                             |  |  |
|                         | <ul> <li>Master und Slaves sind beliebig mischbar.</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |                                                           |                                                                                                                                                             |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                             |  |  |
| Übertragungs-<br>medium | Profibus verwendet als Übertragungsmedium eine geschirmte, verdrillte Zweidrahtleitung auf Basis der RS485-Schnittstelle.                                                                                                                                                                                                                                                                                              |                                                           |                                                                                                                                                             |  |  |
|                         | Die RS485-Schnittstelle arbeitet mit Spannungsdifferenzen. Sie ist daher<br>unempfindlicher gegenüber Störeinflüssen als eine Spannungs- oder<br>Stromschnittstelle. Sie dürfen das Netz nur in Linienstruktur konfigurieren.<br>An ihrer VIPA CPU 31xS befindet sich eine mit "PB-DP" bezeichnete<br>9polige Buchse. Über diese Buchse koppeln Sie den Profibus-Koppler als<br>Slave direkt in Ihr Profibus-Netz ein. |                                                           |                                                                                                                                                             |  |  |
|                         | Pro Segment sind maximal 32 Teilnehmer zulässig. Die einzelnen Segmente werden über Repeater verbunden. Die max. Segmentlänge ist von der Übertragungsrate abhängig.                                                                                                                                                                                                                                                   |                                                           |                                                                                                                                                             |  |  |
|                         | Bei Profibus-DP wird die Übertragungsrate aus dem Bereich zwischen<br>9,6kBaud bis 12MBaud eingestellt, die Slaves passen sich automatisch an.<br>Alle Teilnehmer im Netz kommunizieren mit der gleichen Baudrate.                                                                                                                                                                                                     |                                                           |                                                                                                                                                             |  |  |
|                         | Die Busstruktur erlaubt of<br>Stationen oder die schr<br>Erweiterungen haben kei<br>sind. Es wird automatisch<br>am Netz ist.                                                                                                                                                                                                                                                                                          | das rückwir<br>ittweise Int<br>nen Einflus<br>erkannt, ot | kungsfreie Ein- und Auskoppeln von<br>betriebnahme des Systems. Spätere<br>s auf Stationen, die bereits in Betrieb<br>b ein Teilnehmer ausgefallen oder neu |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                                                                                                                                                             |  |  |

# **Busverbindung** In der nachfolgenden Abbildung sind die Abschlusswiderstände der jeweiligen Anfangs- und Endstation stilisiert dargestellt.





### Hinweis!

Die Profibus-Leitung muss mit Ihrem Wellenwiderstand abgeschlossen werden. Bitte beachten Sie, dass Sie bei dem jeweiligen letzten Teilnehmer den Bus durch Zuschalten eines Abschlusswiderstands abschließen.

EasyConn Busanschluss-Stecker



In Systemen mit mehr als zwei Stationen werden alle Teilnehmer parallel verdrahtet. Hierzu ist das Buskabel unterbrechungsfrei durchzuschleifen. Unter der Best.-Nr. VIPA 972-0DP10 erhalten Sie von VIPA den Stecker

"EasyConn". Dies ist ein Busanschlussstecker mit zuschaltbarem Abschlusswiderstand und integrierter Busdiagnose.



|             | • •  | . = 0 |      |
|-------------|------|-------|------|
|             | 0°   | 45°   | 90°  |
| A           | 64   | 61    | 66   |
| В           | 34   | 53    | 40   |
| С           | 15,8 | 15,8  | 15,8 |
| Malla in mm |      |       |      |

Maße in mm



### Hinweis!

Zum Anschluss des EasyConn-Steckers verwenden Sie bitte die Standard Profibus-Leitung Typ A (EN50170). Ab Ausgabestand 5 können auch hochflexible Bus-Kabel verwendet werden:

Lapp Kabel Best.-Nr.: 2170222, 2170822, 2170322.

Von VIPA erhalten Sie unter der Best.-Nr. VIPA 905-6AA00 das "EasyStrip" Abisolierwerkzeug, das Ihnen den Anschluss des EasyConn-Steckers sehr vereinfacht.

Auf dem "EasyConn" Busanschlussstecker von VIPA befindet sich unter

anderem ein Schalter, mit dem Sie einen Abschlusswiderstand zuschalten



Maße in mm

können.

Leitungsabschluss mit "EasyConn"

### Achtung!

Der Abschlusswiderstand wird nur wirksam, wenn der Stecker an einem Slave gesteckt ist und der Slave mit Spannung versorgt wird.

### **Hinweis!**

Eine ausführliche Beschreibung zum Anschluss und zum Einsatz der Abschlusswiderstände liegt dem Stecker bei.

Montage





- Lösen Sie die Schraube.
- Klappen Sie den Kontaktdeckel auf.
- Stecken Sie beide Adern in die dafür vorgesehenen Öffnungen (Farbzuordnung wie unten beachten!).
- Bitte beachten Sie, dass zwischen Schirm und Datenleitungen kein Kurzschluss entsteht!
- Schließen Sie den Kontaktdeckel.
- Ziehen Sie die Schraube wieder fest (max. Anzugsmoment 4Nm).

Bitte beachten:

Den grünen Draht immer an A, den roten immer an B anschließen!

# Inbetriebnahme und Anlaufverhalten

| Anlauf im<br>Auslieferungs-<br>zustand              | Im Auslieferungszustand ist die CPU urgelöscht. Nach Netz EIN ist der Profibus-Teil deaktiviert und die LEDs des Profibus-Teils sind ausgeschaltet.                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Online mit Bus-<br>Parametern<br>ohne Slave-Projekt | Über eine Hardware-Konfiguration können Sie den DP-Master mit<br>Busparametern versorgen. Sobald diese übertragen sind geht der DP-<br>Master mit den Bus-Parametern online und zeigt dies über die RUN-LED<br>an. Der DP-Master ist durch Angabe der Profibus-Adresse über Profibus<br>erreichbar. In diesem Zustand können Sie direkt über Profibus Ihre CPU<br>projektieren bzw. Ihr Slave-Projekt übertragen.                                                                                     |
| Slave-<br>Projektierung                             | Sofern der Master gültige Projektierdaten erhalten hat, geht dieser in <i>Data Exchange</i> mit den DP-Slaves und zeigt dies über die DE-LED an.                                                                                                                                                                                                                                                                                                                                                      |
| Zustand CPU<br>beeinflusst<br>DP-Master             | Nach Netz EIN bzw. nach der Übertragung einer neuen Hardware-<br>Konfiguration werden automatisch die Projektierdaten und Bus-Parameter<br>an den DP-Master übergeben.<br>Der DP-Master besitzt keinen Betriebsartenschalter und wird direkt über<br>den RUN/STOP-Zustand der CPU beeinflusst.<br>Abhängig vom CPU-Zustand zeigt der DP-Master folgendes Verhalten:                                                                                                                                   |
| Master-Verhalten<br>bei CPU-RUN                     | <ul> <li>Der Master sendet an alle angebundenen Slaves das Global Control<br/>Kommando "Operate". Hierbei leuchtet die DE-LED.</li> <li>Alle angebundenen Slaves bekommen zyklisch ein Ausgangstelegramm<br/>mit aktuellen Ausgabedaten gesendet.</li> <li>Die Eingabe-Daten der DP-Slaves werden zyklisch im Eingabe-Bereich<br/>der CPU abgelegt</li> </ul>                                                                                                                                         |
| Master-Verhalten<br>bei CPU-STOP                    | <ul> <li>Der Master sendet an alle angebundenen Slaves das Global Control<br/>Kommando "Clear" und zeigt dies über eine blinkende DE-LED an</li> <li>DP-Slaves im <i>Fail Safe Mode</i> bekommen die Ausgangstelegrammlänge<br/>"0" gesendet.</li> <li>DP-Slaves <i>ohne Fail Safe Mode</i> bekommen das Ausgangstelegramm in<br/>voller Länge aber mit Ausgabewerten=0 gesendet.</li> <li>Eingabe-Daten der DP-Slaves werden weiterhin zyklisch im Eingabe-<br/>Bereich der CPU abgelegt.</li> </ul> |

# Teil 7 Einsatz RS485 für PtP-Kommunikation

# **Überblick** Inhalt dieses Kapitels ist der Einsatz der RS485-Schnittstelle für die serielle PtP-Kommunikation.

Sie erhalten hier alle Informationen zu den Protokollen und zur Aktivierung und Projektierung der Schnittstelle, die für die serielle Kommunikation über RS485 erforderlich sind.

Nachfolgend sind beschrieben:

- Grundlagen der seriellen Kommunikation
- Anwendung der Protokolle ASCII, STX/ETX, 3964R, USS und Modbus
- Umschaltung der RS485-Schnittstelle in PtP-Betrieb
- Prinzip der Datenübertragung
- Projektierung einer Kommunikation

| Inhalt | Thema                                      | Seite |
|--------|--------------------------------------------|-------|
|        | Teil 7 Einsatz RS485 für PtP-Kommunikation | 7-1   |
|        | Schnelleinstieg                            | 7-2   |
|        | Protokolle und Prozeduren                  | 7-3   |
|        | Einsatz der RS485-Schnittstelle für PtP    | 7-7   |
|        | Prinzip der Datenübertragung               | 7-9   |
|        | Parametrierung                             | 7-10  |
|        | Kommunikation                              | 7-13  |

# Schnelleinstieg

| Allgemein                                               | Über eine Hardware-Konfiguration können Sie den, in der SPEED7-CPU<br>integrierten, DP-Master deaktivieren und die RS485-Schnittstelle für PtP-<br>Kommunikation ( <b>p</b> oint to <b>p</b> oint) freigeben.<br>Die RS485-Schnittstelle im PtP-Betrieb ermöglicht die serielle Prozess-<br>ankopplung zu verschiedenen Ziel- oder Quellsystemen.                                                                                                                                                                                                                                             |                                                                   |                                                        |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Protokolle                                              | Unterstützt werden die Protokolle bzw. Prozeduren ASCII, STX/ETX, 3964F<br>USS und Modbus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |                                                        |  |  |  |  |
| Umschaltung<br>RS485 für<br>PtP-Betrieb                 | Standardmäßig wird bei jeder CPU 31xS die RS485-Schnittstelle für der<br>Profibus-DP-Master verwendet. Über eine Hardware-Konfiguration könner<br>Sie unter <i>Objekteigenschaften</i> über den Parameter "Funktion RS485" die<br>RS485-Schnittstelle auf PtP-Betrieb umschalten.                                                                                                                                                                                                                                                                                                             |                                                                   |                                                        |  |  |  |  |
| Parametrierung                                          | Die Parametrierung (<br>(SER_CFG). Hierbei s<br>Parameter in einem DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | erfolgt zur Laufzeit u<br>ind für alle Protokolle<br>3 abzulegen. | nter Einsatz des SFC 216<br>mit Ausnahme von ASCII die |  |  |  |  |
| Kommunikation                                           | <ul> <li>Mit SFCs steuern Sie die Kommunikation. Das Senden erfolgt unt Einsatz des SFC 217 (SER_SND) und das Empfangen über SFC 22 (SER_RCV).</li> <li>Durch erneuten Aufruf des SFC 217 SER_SND bekommen Sie bei 3964 USS und Modbus über RetVal einen Rückgabewert geliefert, der unt anderem auch aktuelle Informationen über die Quittierung der Gegenseibeinhaltet.</li> <li>Bei den Protokollen USS und Modbus können Sie durch Aufruf des SFC 218 SER_RCV nach einem SER_SND das Quittungstelegram auslesen.</li> <li>Die SFCs befinden sich im Lieferumfang der CPU 31xS.</li> </ul> |                                                                   |                                                        |  |  |  |  |
| Übersicht der SFCs<br>für die serielle<br>Kommunikation | Folgende SFCs komm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | en für die serielle Komr                                          | nunikation zum Einsatz:                                |  |  |  |  |
| Kommunikation                                           | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -C                                                                | Beschreibung                                           |  |  |  |  |
|                                                         | SFC 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SER_CFG                                                           | RS485 Parametrieren                                    |  |  |  |  |
|                                                         | SFC 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SER_SND                                                           | RS485 Senden                                           |  |  |  |  |
|                                                         | SFC 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SER_RCV                                                           | RS485 Empfangen                                        |  |  |  |  |

### **Protokolle und Prozeduren**

Übersicht

Die CPU 31xS unterstützt folgende Protokolle und Prozeduren:

- ASCII-Übertragung
- STX/ETX
- 3964R
- USS
- Modbus

ASCII Die Datenkommunikation via ASCII ist die einfachste Form der Kommunikation. Die Zeichen werden 1 zu 1 übergeben.

Bei ASCII werden je Zyklus mit dem Lese-SFC die zum Zeitpunkt des Aufrufs im Puffer enthaltenen Daten im parametrierten Empfangsdatenbaustein abgelegt. Ist ein Telegramm über mehrere Zyklen verteilt, so werden die Daten überschrieben. Eine Empfangsbestätigung gibt es nicht. Der Kommunikationsablauf ist vom jeweiligen Anwenderprogramm zu steuern. Einen entsprechenden Receive\_ASCII-FB finden Sie unter ftp.vipa.de.

**STX/ETX** STX/ETX ist ein einfaches Protokoll mit Start- und Ende-Kennung. Hierbei stehen STX für **S**tart of **Text** und ETX für **E**nd of **Text**.

Die Prozedur STX/ETX wird zur Übertragung von ASCII-Zeichen eingesetzt. Sie arbeitet ohne Blockprüfung (BCC). Sollen Daten von der Peripherie eingelesen werden, muss das Start-Zeichen vorhanden sein, anschließend folgen die zu übertragenden Zeichen. Danach muss das Ende-Zeichen vorliegen.

Abhängig von der Byte-Breite können folgende ASCII-Zeichen übertragen werden: 5Bit: nicht zulässig: 6Bit: 20...3Fh, 7Bit: 20...7Fh, 8Bit: 20...FFh.

Die Nutzdaten, d.h. alle Zeichen zwischen Start- und Ende-Kennung, werden nach Empfang des Schlusszeichens an die CPU übergeben.

Beim Senden der Daten von der CPU an ein Peripheriegerät werden die Nutzdaten an den SFC 217 (SER\_SND) übergeben und von dort mit angefügten Start- und Endezeichen über die serielle Schnittstelle an den Kommunikationspartner übertragen.

Telegrammaufbau:



Sie können bis zu 2 Anfangs- und Endezeichen frei definieren.

Es kann mit 1, 2 oder keiner Start- und mit 1, 2 oder keiner Ende-Kennung gearbeitet werden. Als Start- bzw. Ende-Kennung sind alle Hex-Werte von 00h bis 1Fh zulässig. Zeichen größer 1Fh werden ignoriert und nicht berücksichtigt. In den Nutzdaten sind Zeichen kleiner 20h nicht erlaubt und können zu Fehlern führen. Die Anzahl der Start- und Endezeichen kann unterschiedlich sein (1 Start, 2 Ende bzw. 2 Start, 1 Ende oder andere Kombinationen). Wird kein Ende-Zeichen definiert, so werden alle gelesenen Zeichen nach Ablauf einer parametrierbaren Zeichenverzugszeit (Timeout) an die CPU übergeben.

**3964R** Die Prozedur 3964R steuert die Datenübertragung bei einer Punkt-zu-Punkt-Kopplung zwischen der CPU 31xS und einem Kommunikationspartner. Die Prozedur fügt bei der Datenübertragung den Nutzdaten Steuerzeichen hinzu. Durch diese Steuerzeichen kann der Kommunikationspartner kontrollieren, ob die Daten vollständig und fehlerfrei bei ihm angekommen sind.

Die Prozedur wertet die folgenden Steuerzeichen aus:

- STX Start of Text
- DLE Data Link Escape
- ETX End of Text
- BCC Block Check Character
- NAK Negative Acknowledge



Sie können pro Telegramm maximal 255Byte übertragen.

### Hinweis!

Wird ein "DLE" als Informationszeichen übertragen, so wird dieses zur Unterscheidung vom Steuerzeichen "DLE" beim Verbindungsauf- und -abbau auf der Sendeleitung doppelt gesendet (DLE-Verdoppelung). Der Empfänger macht die DLE-Verdoppelung wieder rückgängig.

Unter 3964R <u>muss</u> einem Kommunikationspartner eine niedrigere Priorität zugeordnet sein. Wenn beide Kommunikationspartner gleichzeitig einen Sendeauftrag erteilen, dann stellt der Partner mit niedriger Priorität seinen Sendeauftrag zurück.

USS Das USS-Protokoll (Universelle serielle Schnittstelle) ist ein von Siemens definiertes serielles Übertragungsprotokoll für den Bereich der Antriebstechnik. Hiermit lässt sich eine serielle Buskopplung zwischen einem übergeordneten Master - und mehreren Slave-Systemen aufbauen. Das USS-Protokoll ermöglich durch Vorgabe einer fixen Telegrammlänge einen zeitzyklischen Telegrammverkehr.

Folgende Merkmale zeichnen das USS-Protokoll aus:

- Mehrpunktfähige Kopplung
- Master-Slave Zugriffsverfahren
- Single-Master-System
- Maximal 32 Teilnehmer
- Einfacher, sicherer Telegrammrahmen

Am Bus können 1 Master und max. 31 Slaves angebunden sein, wobei die einzelnen Slaves vom Master über ein Adresszeichen im Telegramm angewählt werden. Die Kommunikation erfolgt ausschließlich über den Master im Halbduplex-Betrieb.

Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des SFC 218 SER\_RCV auszulesen.

Die Telegramme für Senden und Empfangen haben folgenden Aufbau:

#### Master-Slave-Telegramm

| STX | LGE | ADR | Pł | ΚE | IN | ID | PV | VE | ST | W | HS | SW | BCC |
|-----|-----|-----|----|----|----|----|----|----|----|---|----|----|-----|
| 02h |     |     | Н  | L  | Н  | L  | Н  | L  | Н  | L | Н  | L  |     |

### Slave-Master-Telegramm

| STX | LGE | ADR | Pł | ΚE | IN | ID | P۷ | VE | ZS | SW | HI | W | BCC |
|-----|-----|-----|----|----|----|----|----|----|----|----|----|---|-----|
| 02h |     |     | Н  | L  | Н  | L  | Н  | L  | Н  | L  | Н  | L |     |

| mit | STX: | Startzeichen     |
|-----|------|------------------|
|     | LGE: | Telegrammlänge   |
|     | ADR: | Adresse          |
|     | PKE: | Parameterkennung |
|     | IND: | Index            |
|     | PWE: | Parameterwert    |

STW: SteuerwortZSW: ZustandswortHSW: HauptsollwertHIW: HauptistwertBCC: Block Check Character

Broadcast mit gesetztem Bit 5 in ADR-Byte



Broadcast

Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer Broadcast-Nachricht ist Bit 5 im ADR-Byte auf 1 zu setzen. Hierbei wird die Slave-Adr. (Bit 0 ... 4) ignoriert. Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine Telegrammauswertung über SFC 218 SER\_RCV erforderlich. Nur Schreibaufträge dürfen als Broadcast gesendet werden. ModbusDas Protokoll Modbus ist ein Kommunikationsprotokoll, das eine hierar-<br/>chische Struktur mit einem Master und mehreren Slaves festlegt.

Physikalisch arbeitet Modbus über eine serielle Halbduplex-Verbindung.

Es treten keine Buskonflikte auf, da der Master immer nur mit einem Slave kommunizieren kann. Nach einer Anforderung vom Master wartet dieser solange auf die Antwort des Slaves bis eine einstellbare Wartezeit abgelaufen ist. Während des Wartens ist eine Kommunikation mit einem anderen Slave nicht möglich.

Nach einem Sende-Auftrag ist das Quittungstelegramm durch Aufruf des SFC 218 SER\_RCV auszulesen.

Die Anforderungs-Telegramme, die ein Master sendet und die Antwort-Telegramme eines Slaves haben den gleichen Aufbau:

| Start-  | Slave-  | Funktions- | Daten | Fluss-    | Ende-   |
|---------|---------|------------|-------|-----------|---------|
| zeichen | Adresse | Code       |       | kontrolle | zeichen |

Broadcast mit<br/>Slave-Adresse = 0Eine Anforderung kann an einen bestimmten Slave gerichtet sein oder als<br/>Broadcast-Nachricht an alle Slaves gehen. Zur Kennzeichnung einer<br/>Broadcast-Nachricht wird die Slave-Adresse 0 eingetragen.<br/>Im Gegensatz zu einem "normalen" Send-Auftrag ist beim Broadcast keine<br/>Telegrammauswertung über SFC 218 SER\_RCV erforderlich.<br/>Nur Schreibaufträge dürfen als Broadcast gesendet werden.

ASCII-, RTU-Modus Bei Modbus gibt es zwei unterschiedliche Übertragungsmodi

- ASCII-Modus: Jedes Byte wird im 2 Zeichen ASCII-Code übertragen. Die Daten werden durch Anfang- und Ende-Zeichen gekennzeichnet. Dies macht die Übertragung transparent aber auch langsam.
- RTU-Modus: Jedes Byte wird als ein Zeichen übertragen. Hierdurch haben Sie einen höheren Datendurchsatz als im ASCII-Modus. Anstelle von Anfang- und Ende-Zeichen wird eine Zeitüberwachung eingesetzt.

Die Modus-Wahl erfolgt zur Laufzeit unter Einsatz des SFC 216 SER\_CFG.

Die RS485-Schnittstelle unterstützt folgende Modbus-Protokolle:

Unterstützte Modbus-Protokolle

- Modbus RTU Master
- Modbus ASCII Master

### Einsatz der RS485-Schnittstelle für PtP

| Übersicht | Standardmäßig wird bei jeder CPU 31xS die RS485-Schnittstelle für den |
|-----------|-----------------------------------------------------------------------|
|           | Profibus-DP-Master verwendet. Über eine Hardware-Konfiguration können |
|           | Sie unter Objekteigenschaften über den Parameter "Funktion RS485" die |
|           | RS485-Schnittstelle auf PtP-Betrieb umschalten.                       |

Umschaltung in PtP-Betrieb

Für den Einsatz der System 300S Module von VIPA am SPEED-Bus ist die Einbindung der System 300S Module über die GSD-Datei von VIPA im Hardwarekatalog erforderlich.

Die Umschaltung in den PtP-Betrieb erfolgt nach folgender Vorgehensweise:

Standard-Bus

| Steckpl.                                                                                          | Modul     |  |  |
|---------------------------------------------------------------------------------------------------|-----------|--|--|
| 1                                                                                                 |           |  |  |
| 2                                                                                                 | CPU 318-2 |  |  |
| X2                                                                                                | DP        |  |  |
| X1                                                                                                | MPI/DP    |  |  |
| 3                                                                                                 |           |  |  |
| <ul> <li>Module am Standard-Bus</li> <li>intern PG/OP, CP</li> <li>SPEED-Bus CPs, DPMs</li> </ul> |           |  |  |
| Immer als letzes Modul<br>342-5DA02 V5.0                                                          |           |  |  |

virtueller DP-Master für CPU und alle SPEED-Bus-Module



- Hardware-Konfigurator von Siemens starten und speedbus.gsd für SPEED7 von VIPA einbinden.
- CPU 318-2DP (6ES7 318-2AJ00-0AB0/V3.0) von Siemens projektieren.
- Beginnend mit Steckplatz 4 die System 300 Module am Standard-Bus platzieren.
- Unterhalb dieser Module die CPs (intern) und danach SPEED-Bus-CPs und DP-Master platzieren und vernetzen.
- Für den SPEED-Bus <u>immer als letztes Modul</u> den Siemens DP-Master CP 342-5 (342-5DA02 V5.0) einbinden, vernetzen und in die *Betriebsart* DP-Master parametrieren. Hierbei muss die Profibus-Adresse außerhalb des Bereiches 100...116 liegen. An dieses Mastersystem ist jedes einzelne SPEED-Bus-Module als VIPA\_SPEEDbus-Slave anzubinden. Hierbei entspricht die **Profibus-Adresse** der **Steckplatz-Nr.** beginnend mit 100 für die CPU. Auf dem Steckplatz 0 jedes Slaves das ihm zugeordnete Modul platzieren und ggf. Parameter ändern.
- Platzieren Sie mit Profibus-Adresse 100 auf Steckplatz 0 Ihre SPEED7 CPU.
- Stellen Sie in Objekteigenschaften unter *Funktion RS485* "PtP" ein.
- Platzieren Sie nun die weiteren SPEED-Bus-Module als VIPA\_SPEEDbus-Slave

Sobald Sie Ihr Projekt zusammen mit Ihrem SPS-Programm in die CPU übertragen, steht Ihnen nach dem Hochlauf die RS485-Schnittstelle für PtP-Kommunikation zur Verfügung.



### Hinweis!

Nähere Informationen zur SPEED-Bus-Projektierung und zum Projekt-Transfer finden Sie im Teil "Einsatz CPU31xS"!

### Eigenschaften RS485

- Logische Zustände als Spannungsdifferenz zwischen 2 verdrillten Adern
- Serielle Busverbindung in Zweidrahttechnik im Halbduplex-Verfahren
  - Datenübertragung bis 500m Entfernung
  - Datenübertragungsrate bis 115,2kBaud



| 9poliger Buchse |                       |  |
|-----------------|-----------------------|--|
| Pin             | RS485                 |  |
| 1               | n.c.                  |  |
| 2               | M24V                  |  |
| 3               | RxD/TxD-P (Leitung B) |  |
| 4               | RTS                   |  |
| 5               | M5V                   |  |
| 6               | P5V                   |  |
| 7               | P24V                  |  |
| 8               | RxD/TxD-N (Leitung A) |  |
| 9               | n.c.                  |  |

### Anschluss



# Prinzip der Datenübertragung

**Übersicht** Die Datenübertragung wird zur Laufzeit über SFCs gehandhabt. Das Prinzip der Datenübertragung ist für alle Protokolle identisch und soll hier kurz gezeigt werden.

Prinzip Daten, die von der CPU in den entsprechenden Datenkanal geschrieben werden, werden in einen FIFO-Sendepuffer (first in first out) mit einer Größe von 2x1024Byte abgelegt und von dort über die Schnittstelle ausgegeben.

Empfängt die Schnittstelle Daten, werden diese in einem FIFO-Empfangspuffer mit einer Größe von 2x1024Byte abgelegt und können dort von der CPU gelesen werden.

Sofern Daten mittels eines Protokolls übertragen werden, erfolgt die Einbettung der Daten in das entsprechende Protokoll automatisch.

Im Gegensatz zu ASCII- und STX/ETX erfolgt bei den Protokollen 3964R, USS und Modbus die Datenübertragung mit Quittierung der Gegenseite.

Durch erneuten Aufruf des SFC 217 SER\_SND bekommen Sie über RetVal einen Rückgabewert geliefert, der unter anderem auch aktuelle Informationen über die Quittierung der Gegenseite beinhaltet.

Zusätzlich ist bei USS und Modbus nach einem SER\_SND das Quittungstelegramm durch Aufruf des SFC 218 SER\_RCV auszulesen.



### CPU 31xS - RS485-PtP-Kommunikation

# Parametrierung

| SFC 216   | Die Parametrierung erfolgt zur Laufzeit unter Einsatz des SFC 216 |
|-----------|-------------------------------------------------------------------|
| (SER_CFG) | (SER_CFG). Hierbei sind die Parameter für STX/ETX, 3964R, USS und |
| . ,       | Modbus in einem DB abzulegen.                                     |

| Name        | Deklaration | Datentyp | Beschreibung                   |
|-------------|-------------|----------|--------------------------------|
| Protocol    | IN          | BYTE     | 1=ASCII, 2=STX/ETX, 3=3964R    |
| Parameter   | IN          | ANY      | Pointer to protocol-parameters |
| Baudrate    | IN          | BYTE     | Velocity of data transfer      |
| CharLen     | IN          | BYTE     | 0=5Bit, 1=6Bit, 2=7Bit, 3=8Bit |
| Parity      | IN          | BYTE     | 0=None, 1=Odd, 2=Even          |
| StopBits    | IN          | BYTE     | 1=1Bit, 2=1,5Bit, 3=2Bit       |
| FlowControl | IN          | BYTE     | 1 (fix)                        |
| RetVal      | OUT         | WORD     | Error Code (0 = OK)            |

| Parameter-<br>beschreibung | Alle Zeitangaben für Timeouts sind als Hexadezimaler Wert anzugeben.<br>Den Hex-Wert erhalten Sie, indem Sie die gewünschte Zeit in Sekunden<br>mit der Baudrate multiplizieren |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                                 |

Beispiel: Gewünschte Zeit 8ms bei einer Baudrate von 19200Baud Berechnung: 19200Bit/s x 0,008s  $\approx$  154Bit  $\rightarrow$  (9Ah) Als Hex-Wert ist 9Ah vorzugeben.

# ProtocolGeben Sie hier das Protokoll an, das verwendet werden soll.Zur Auswahl stehen:

- 1: ASCII
- 2: STX/ETX
- 3: 3964R
- 4: USS Master
- 5: Modbus RTU Master
- 6: Modbus ASCII Master
**Parameter (als DB)** Bei eingestelltem ASCII-Protokoll wird dieser Parameter ignoriert. Für die Protokolle geben Sie hier einen DB an, der die Kommunikationsparameter beinhaltet und für die jeweiligen Protokolle STX/ETX, 3964R, USS und Modbus folgenden Aufbau hat:

#### Datenbaustein bei STX/ETX

| DBB0: | STX1    | BYTE | (1. Start-Zeichen in hexadezimaler Form)  |
|-------|---------|------|-------------------------------------------|
| DBB1: | STX2    | BYTE | (2. Start-Zeichen in hexadezimaler Form)  |
| DBB2: | ETX1    | BYTE | (1. Ende-Zeichen in hexadezimaler Form)   |
| DBB3: | ETX2    | BYTE | (2. Ende-Zeichen in hexadezimaler Form)   |
| DBW4: | TIMEOUT | WORD | (max. zeitlicher Abstand zwischen 2 Tele- |
|       |         |      | grammen)                                  |



# Hinweis!

Das Zeichen für Start bzw. Ende sollte immer ein Wert <20 sein, ansonsten wird das Zeichen ignoriert!

# Datenbaustein bei 3964RDBB0:PrioBYTE(Die Priorität beider Partner muss unter-<br/>schiedlich sein)DBB1:ConnAttmptNrBYTE(Anzahl der Verbindungsaufbauversuche)DBB2:SendAttmptNrBYTE(Anzahl der Telegrammwiederholungen)DBW4:CharTimeoutWORD(Zeichenverzugszeit)DBW6:ConfTimeoutWORD(Quittungsverzugszeit)

# Datenbaustein bei USS

DBW0: Timeout WORD (Verzugszeit)

Datenbaustein bei Modbus-MasterDBW0: TimeoutWORD (Antwort-Verzugszeit)

BaudrateGeschwindigkeit der Datenübertragung in Bit/s (Baud).04h: 1200Baud05h: 1800Baud06h: 2400Baud07h: 4800Baud08h: 7200Baud09h: 9600Baud0Ah: 14400Baud0Bh: 19200Baud0Ch: 38400Baud0Dh: 57600Baud0Eh: 115200Baud

# CharLenAnzahl der Datenbits, auf die ein Zeichen abgebildet wird.0: 5Bit1: 6Bit2: 7Bit3: 8Bit

| Parity         | Die Parität ist je nach Wert gerade oder ungerade. Zur Paritätskontrolle<br>werden die Informationsbits um das Paritätsbit erweitert, das durch seinen<br>Wert ("0" oder "1") den Wert aller Bits auf einen vereinbarten Zustand<br>ergänzt. Ist keine Parität vereinbart, wird das Paritätsbit auf "1" gesetzt,<br>aber nicht ausgewertet.<br>0: NONE 1: ODD 2: EVEN |                                                                                                 |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|
| StopBits       | Die Stopbits v<br>kennzeichnen<br>1: 1Bit 2: 1                                                                                                                                                                                                                                                                                                                        | werden jedem zu übertragenden Zeichen nachgesetzt und das Ende eines Zeichens.<br>,5Bit 3: 2Bit |  |
| FlowControl    | Der Parameter FlowControl wird ignoriert. Beim Senden ist RST=0, beim Empfangen ist RTS=1.                                                                                                                                                                                                                                                                            |                                                                                                 |  |
| RetVal SFC 216 | Rückgabewert                                                                                                                                                                                                                                                                                                                                                          | e, die der Baustein liefert:                                                                    |  |
| SER CFG)       |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |
| •_n_•i •)      | Fehlercode                                                                                                                                                                                                                                                                                                                                                            | Beschreibung                                                                                    |  |
|                | 0000h                                                                                                                                                                                                                                                                                                                                                                 | kein Fehler<br>Sebaittetelle jet nicht verbanden haw. Sebaittetelle wird für                    |  |
|                | 009A11                                                                                                                                                                                                                                                                                                                                                                | Profibus verwendet                                                                              |  |
|                | 8x24h                                                                                                                                                                                                                                                                                                                                                                 | Fehler in SFC-Parameter x, mit x:                                                               |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 1: Fehler in "Protokoll"                                                                        |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 2: Fehler in "Parameter"                                                                        |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 3: Fehler in "Baudrate"                                                                         |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 4: Fehler in "CharLength"                                                                       |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 5: Fehler in "Parity"                                                                           |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 6: Fehler in "StopBits"                                                                         |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 7: Fehler in "FlowControl" (Parameter fehlt)                                                    |  |
|                | 809xh                                                                                                                                                                                                                                                                                                                                                                 | Fehler in Wert des SFC-Parameter x, mit x:                                                      |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 1: Fehler in "Protokoll"                                                                        |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 3: Fehler in "Baudrate"                                                                         |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 4: Fehler in "CharLength"                                                                       |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 5: Fehler in "Parity"                                                                           |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 6: Fehler in "StopBits"                                                                         |  |
|                | 8092h                                                                                                                                                                                                                                                                                                                                                                 | Zugriffsfehler auf Parameter-DB (DB zu kurz)                                                    |  |
|                | 828xh                                                                                                                                                                                                                                                                                                                                                                 | Fehler in Parameter x von DB-Parameter mit x:                                                   |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 1: Fehler im 1. Parameter                                                                       |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       | 2: Fehler im 2. Parameter                                                                       |  |
|                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |  |

# Kommunikation

| Übersicht            | Die Kommunikation erfolgt über die Sende- und Empfangsbausteine SFC 217 (SER_SND) und SFC 218 (SER_RCV). Die SFCs befinden sich im Lieferumfang der CPU 31xS.                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SFC 217<br>(SER_SND) | Mit diesem Baustein werden Daten über die serielle Schnittstelle gesendet.<br>Durch erneuten Aufruf des SFC 217 SER_SND bekommen Sie bei 3964R,<br>USS und Modbus über RetVal einen Rückgabewert geliefert, der unter<br>anderem auch aktuelle Informationen über die Quittierung der Gegenseite<br>beinhaltet. |
|                      | Zusätzlich ist bei USS und Modbus nach einem SER_SND das Quittungs-<br>telegramm durch Aufruf des SFC 218 SER_RCV auszulesen.                                                                                                                                                                                   |

# Parameter

| Name    | Deklaration | Datentyp | Beschreibung                            |
|---------|-------------|----------|-----------------------------------------|
| DataPtr | IN          | ANY      | Pointer to Data Buffer for sending data |
| DataLen | OUT         | WORD     | Length of data sent                     |
| RetVal  | OUT         | WORD     | Error Code (0 = OK)                     |

| DataPtr | Geben Sie hier einen Bereich vom Typ Pointer für den Sendepuffer an, in<br>den die Daten, die gesendet werden sollen, abzulegen sind. Anzugeben<br>sind Typ, Anfang und Länge. |                                                                                                                                                                                 |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Beispiel:                                                                                                                                                                      | Daten liegen in DB5 ab 0.0 mit einer Länge von 124Byte<br>DataPtr:=P#DB5.DBX0.0 BYTE 124                                                                                        |  |
| DataLen | Wort, in dem<br>Werden unte<br>serielle Schn                                                                                                                                   | die Anzahl der gesendeten Bytes abgelegt wird.<br>r <b>ASCII</b> die Daten intern mittels SFC 217 schneller an die<br>ittstelle übertragen als sie gesendet werden können, kann |  |

serielle Schnittstelle übertragen als sie gesendet werden können, kann aufgrund eines Pufferüberlaufs die zu sendende Datenlänge von *DataLen* abweichen. Dies sollte im Anwenderprogramm berücksichtigt werden!

Bei **STX/ETX**, **3964R**, **Modbus** und **USS** wird immer die unter DataPtr angegebene Länge oder 0 eingetragen.

| RetVal SFC 217<br>(Fehlermeldung | Rückgabewerte, die der Baustein liefert: |                                                                                                     |  |
|----------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|--|
| SER_SND)                         | Fehlercode                               | Beschreibung                                                                                        |  |
|                                  | 0000h                                    | Daten gesendet - fertig                                                                             |  |
|                                  | 1000h                                    | Nichts gesendet (Datenlänge 0)                                                                      |  |
|                                  | 20xxh                                    | Protokoll wurde fehlerfrei ausgeführt mit xx-Bitmuster für Diagnose                                 |  |
|                                  | 7001h                                    | Daten liegen im internen Puffer - aktiv (busy)                                                      |  |
|                                  | 7002h                                    | Transfer - aktiv                                                                                    |  |
|                                  | 80xxh                                    | Protokoll wurde fehlerhaft ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite) |  |
|                                  | 90xxh                                    | Protokoll wurde nicht ausgeführt mit xx-Bitmuster für Diagnose (keine Quittung der Gegenseite)      |  |
|                                  | 8x24h                                    | Fehler in SFC-Parameter x, mit x:                                                                   |  |
|                                  |                                          | 1: Fehler in "DataPtr"                                                                              |  |
|                                  |                                          | 2: Fehler in "DataLen"                                                                              |  |
|                                  | 8122h                                    | Fehler in Parameter "DataPtr" (z.B. DB zu kurz)                                                     |  |
|                                  | 807Fh                                    | Interner Fehler                                                                                     |  |
|                                  | 809Ah                                    | Schnittstelle nicht vorhanden bzw. Schnittstelle wird für Profibus verwendet                        |  |
|                                  | 809Bh                                    | Schnittstelle nicht konfiguriert                                                                    |  |

| Protokollspezifische | ASCII |                                       |
|----------------------|-------|---------------------------------------|
| RetVal-Werte         | Wert  | Beschreibung                          |
|                      | 9000h | Pufferüberlauf (keine Daten gesendet) |
|                      | 9002h | Daten sind zu kurz (0Byte)            |

# STX/ETX

| Wert  | Beschreibung                          |
|-------|---------------------------------------|
| 9000h | Pufferüberlauf (keine Daten gesendet) |
| 9001h | Daten sind zu lang (>1024Byte)        |
| 9002h | Daten sind zu kurz (0Byte)            |
| 9004h | Unzulässiges Zeichen                  |

#### 3964R

| Wert  | Beschreibung                                                                       |
|-------|------------------------------------------------------------------------------------|
| 2000h | Senden fertig ohne Fehler                                                          |
| 80FFh | NAK empfangen - Fehler in der Kommunikation                                        |
| 80FEh | Datenübertragung ohne Quittierung der Gegenseite oder mit fehlerhafter Quittierung |
| 9000h | Pufferüberlauf (keine Daten gesendet)                                              |
| 9001h | Daten sind zu lang (>1024Byte)                                                     |
| 9002h | Daten sind zu kurz (0Byte)                                                         |

# ... Fortsetzung RetVal SFC 217 SER\_SND

| USS |
|-----|
|-----|

| 00         |                                               |
|------------|-----------------------------------------------|
| Fehlercode | Beschreibung                                  |
| 2000h      | Senden fertig ohne Fehler                     |
| 8080h      | Empfangspuffer voll (kein Platz für Quittung) |
| 8090h      | Quittungsverzugszeit überschritten            |
| 80F0h      | Falsche Checksumme in Rückantwort             |
| 80FEh      | Falsches Startzeichen in der Rückantwort      |
| 80FFh      | Falsche Slave-Adresse in der Rückantwort      |
| 9000h      | Pufferüberlauf (keine Daten gesendet)         |
| 9001h      | Daten sind zu lang (>1024Byte)                |
| 9002h      | Daten sind zu kurz (<2Byte)                   |

# Modbus RTU/ASCII Master

| Fehlercode | Beschreibung                                         |
|------------|------------------------------------------------------|
| 2000h      | Senden fertig (positive Slave-Rückmeldung vorhanden) |
| 2001h      | Senden fertig (negative Slave-Rückmeldung vorhanden) |
| 8080h      | Empfangspuffer voll (kein Platz für Quittung)        |
| 8090h      | Quittungsverzugszeit überschritten                   |
| 80F0h      | Falsche Checksumme in Rückantwort                    |
| 80FDh      | Länge der Rückantwort ist zu lang                    |
| 80FEh      | Falscher Funktionscode in der Rückantwort            |
| 80FFh      | Falsche Slave-Adresse in der Rückantwort             |
| 9000h      | Pufferüberlauf (keine Daten gesendet)                |
| 9001h      | Daten sind zu lang (>1024Byte)                       |
| 9002h      | Daten sind zu kurz (<2Byte)                          |

#### Prinzip der Programmierung

Nachfolgend soll kurz die Struktur zur Programmierung eines Sendeauftrags für die verschiedenen Protokolle gezeigt werden.

3964R





ASCII / STX/ETX



# SFC 218 (SER\_RCV)

Mit diesem Baustein werden Daten über die serielle Schnittstelle empfangen. Bei den Protokollen USS und Modbus können Sie durch Aufruf des SFC 218 SER\_RCV nach einem SER\_SND das Quittungstelegramm auslesen.

# Parameter

| Name    | Deklaration | Datentyp | Beschreibung                             |
|---------|-------------|----------|------------------------------------------|
| DataPtr | IN          | ANY      | Pointer to Data Buffer for received data |
| DataLen | OUT         | WORD     | Length of received data                  |
| Error   | OUT         | WORD     | Error Number                             |
| RetVal  | OUT         | WORD     | Error Code ( 0 = OK )                    |

DataPtrGeben Sie hier einen Bereich vom Typ Pointer für den Empfangspuffer an,<br/>in den die Daten, die empfangen werden, abzulegen sind. Anzugeben sind<br/>Typ, Anfang und Länge.

Beispiel: Daten sind in DB5 ab 0.0 mit einer Länge von 124Byte abzulegen DataPtr:=P#DB5.DBX0.0 BYTE 124

#### **DataLen** Wort, in dem die Anzahl der empfangenen Bytes abgelegt wird.

Bei **STX/ETX** und **3964R** wird immer die Länge der empfangenen Nutzdaten oder 0 eingetragen.

Unter **ASCII** wird hier die Anzahl der gelesenen Zeichen eingetragen. Dieser Wert kann von der Telegrammlänge abweichen.

#### Error

In diesem Wort erfolgt ein Eintrag im Fehlerfall. Folgende Fehlermeldungen können protokollabhängig generiert werden:

ASCII

| Bit | Fehler        | Beschreibung                                                                                                                                                      |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | overrun       | Überlauf, ein Zeichen konnte nicht schnell genug aus der Schnittstelle gelesen werden kann                                                                        |
| 1   | framing error | Fehler, der anzeigt, dass ein definierter Bitrahmen nicht übereinstimmt, die zulässige Länge überschreitet oder eine zusätzliche Bitfolge enthält (Stopbitfehler) |
| 2   | parity        | Paritätsfehler                                                                                                                                                    |
| 3   | overflow      | Der Puffer ist voll.                                                                                                                                              |

# STX/ETX

| Bit | Fehler   | Beschreibung                                                       |
|-----|----------|--------------------------------------------------------------------|
| 0   | overflow | Das empfangene Telegramm übersteigt die Größe des Empfangspuffers. |
| 1   | char     | Es wurde ein Zeichen außerhalb des Bereichs 20h7Fh empfangen.      |
| 3   | overflow | Der Puffer ist voll.                                               |

3964R / Modbus RTU/ASCII Master

| Bit | Fehler   | Beschreibung                                                       |
|-----|----------|--------------------------------------------------------------------|
| 0   | overflow | Das empfangene Telegramm übersteigt die Größe des Empfangspuffers. |

Rückgabewerte, die der Baustein liefert: **RetVal SFC 218** (Fehlermeldung SER\_RCV) Fehlercode Beschreibung 0000h kein Fehler 1000h Empfangspuffer ist zu klein (Datenverlust) 8x24h Fehler in SFC-Parameter x, mit x: 1: Fehler in "DataPtr" 2: Fehler in "DataLen" 3: Fehler in "Error" 8122h Fehler in Parameter "DataPtr" (z.B. DB zu kurz)

# Profibus verwendet 809Bh Schnittstelle ist nicht konfiguriert

Schnittstelle nicht vorhanden bzw. Schnittstelle wird für

# Prinzip derNachfolgend sehen Sie die Grundstruktur zur Programmierung einesProgrammierungReceive-Auftrags. Diese Struktur können Sie für alle Protokolle verwenden.

809Ah



# Teil 8 Einsatz CPU 31xS unter TCP/IP

**Überblick** In folgendem Kapitel ist der Einsatz der CPU 31xSN/NET und die Kommunikation unter TCP/IP beschrieben. Bitte beachten Sie den Abschnitt "Schnelleinstieg", hier finden Sie in komprimierter Form alle Informationen, die für die Projektierung der CPU 31xS mit *CP 343* erforderlich sind. Nach dem Schnelleinstieg sind diese Punkte näher beschrieben.

Nachfolgend sind beschrieben:

- Grundlagen zum Twisted-Pair-Netzwerk
- Zugriff auf Ethernet-PG/OP-Kanal und Web-Seite
- Projektierung einer CP-Kommunikation
- ORG-Format zur Kommunikation mit Fremdsystem
- Intelligente Prozesskommunikation
- Beispiel

Inhalt Thema Seite Einsatz CPU 31xS unter TCP/IP......8-1 Teil 8 Kommunikationsverbindungen projektieren......8-26 Beispiel zur Kommunikation CPU 31xSN/NET - CPU 31xSN/NET ..... 8-43

# Industrial Ethernet in der Automatisierung

Übersicht Der Informationsfluss in einem Unternehmen stellt sehr unterschiedliche Anforderungen an die eingesetzten Kommunikationssysteme. Je nach Unternehmensbereich hat ein Bussystem unterschiedlich viele Teilnehmer, es sind unterschiedlich große Datenmengen zu übertragen, die Übertragungsintervalle variieren.

> Aus diesem Grund greift man je nach Aufgabenstellung auf unterschiedliche Bussysteme zurück, die sich wiederum in verschiedene Klassen einteilen lassen.

> Eine Zuordnung verschiedener Bussysteme zu den Hierarchieebenen eines Unternehmens zeigt das folgende Modell:



Industrial Ethernet Physikalisch ist Industrial Ethernet ein elektrisches Netz auf Basis einer geschirmten Twisted Pair Verkabelung oder ein optisches Netz auf Basis eines Lichtwellenleiters.

Ethernet ist definiert durch den internationalen Standard IEEE 802.3. Der Netzzugriff bei Industrial Ethernet entspricht dem in der IEEE 802.3 festgelegten CSMA/CD-Verfahren (Carrier Sense Multiple Access/Collision Detection - Mithören bei Mehrfachzugriff/ Kollisionserkennung): Jeder Teilnehmer "hört" ständig die Busleitung ab und empfängt die an ihn adressierten Sendungen.

Ein Teilnehmer startet eine Sendung nur, wenn die Leitung frei ist. Starten zwei Teilnehmer gleichzeitig eine Sendung, so erkennen sie dies, stellen die Sendung ein und starten nach einer Zufallszeit erneut.

Durch Einsatz von Switches wird eine kollisionsfreie Kommunikation zwischen den Teilnehmern gewährleistet.

# ISO/OSI-Schichtenmodell

Übersicht Das ISO/OSI-Schichtenmodell basiert auf einem Vorschlag, der von der International Standards Organization (ISO) entwickelt wurde. Es stellt den ersten Schritt zur internationalen Standardisierung der verschiedenen Protokolle dar. Das Modell trägt den Namen ISO-OSI-Schichtenmodell. OSI steht für Open System Interconnection, die Kommunikation offener Systeme. Das ISO/OSI-Schichtenmodell ist keine Netzwerkarchitektur, da die genauen Dienste und Protokolle, die in jeder Schicht verwendet werden, nicht festgelegt sind. Sie finden in diesem Modell lediglich Informationen über die Aufgaben, die die jeweilige Schicht zu erfüllen hat. Jedes offene Kommunikationssystem basiert heutzutage auf dem durch die Norm ISO 7498 beschriebenen ISO/OSI Referenzmodell. Das Referenzmodell strukturiert Kommunikationssysteme in insgesamt 7 Schichten, denen jeweils Teilaufgaben in der Kommunikation zugeordnet sind. Dadurch wird die Komplexität der Kommunikation auf verschiedene Ebenen verteilt und somit eine größere Übersichtlichkeit erreicht.

Folgende Schichten sind definiert:

| Schicht   | Funktion                         |
|-----------|----------------------------------|
| Schicht 7 | Application Layer (Anwendung)    |
| Schicht 6 | Presentation Layer (Darstellung) |
| Schicht 5 | Session Layer (Sitzung)          |
| Schicht 4 | Transport Layer (Transport)      |
| Schicht 3 | Network Layer (Netzwerk)         |
| Schicht 2 | Data Link Layer (Sicherung)      |
| Schicht 1 | Physical Layer (Bitübertragung)  |

Je nach Komplexität der geforderten Übertragungsmechanismen kann sich ein Kommunikationssystem auf bestimmte Teilschichten beschränken. Auf der Folgeseite finden Sie eine nähere Beschreibung der Schichten.

# SchichtenSchicht 1Bitübertragungsschicht (physical layer)

Die Bitübertragungsschicht beschäftigt sich mit der Übertragung von Bits über einen Kommunikationskanal. Allgemein befasst sich diese Schicht mit den mechanischen, elektrischen und prozeduralen Schnittstellen und mit dem physikalischen Übertragungsmedium, das sich unterhalb der Bitübertragungsschicht befindet:

- Wie viel Volt entsprechen einer logischen 0 bzw. 1?
- Wie lange muss die Spannung für ein Bit anliegen?
- Pinbelegung der verwendeten Schnittstelle.

#### Schicht 2 Sicherungsschicht (data link layer)

Diese Schicht hat die Aufgabe, die Übertragung von Bitstrings zwischen zwei Teilnehmern sicherzustellen. Dazu gehören die Erkennung und Behebung bzw. Weitermeldung von Übertragungsfehlern, sowie die Flusskontrolle.

Die Sicherungsschicht verwandelt die zu übertragenden Rohdaten in eine Datenreihe. Hier werden Rahmengrenzen beim Sender eingefügt und beim Empfänger erkannt. Dies wird dadurch erreicht, dass am Anfang und am Ende eines Rahmens spezielle Bitmuster gesetzt werden. In der Sicherungsschicht wird häufig noch eine Flussregelung und eine Fehlererkennung integriert.

Die Datensicherungsschicht ist in zwei Unterschichten geteilt, die LLC- und die MAC-Schicht.

Die MAC (**M**edia **A**ccess **C**ontrol) ist die untere Schicht und steuert die Art, wie Sender einen einzigen Übertragungskanal gemeinsam nutzen

Die LLC (Logical Link Control) ist die obere Schicht und stellt die Verbindung für die Übertragung der Datenrahmen von einem Gerät zum anderen her.

#### Schicht 3 Netzwerkschicht (network layer)

Die Netzwerkschicht wird auch Vermittlungsschicht genannt.

Die Aufgabe dieser Schicht besteht darin, den Austausch von Binärdaten zwischen nicht direkt miteinander verbundenen Stationen zu steuern. Sie ist für den Ablauf der logischen Verknüpfungen von Schicht 2-Verbindungen zuständig. Dabei unterstützt diese Schicht die Identifizierung der einzelnen Netzwerkadressen und den Auf- bzw. Abbau von logischen Verbindungskanälen. IP basiert auf Schicht 3.

Eine weitere Aufgabe der Schicht 3 besteht in der priorisierten Übertragung von Daten und die Fehlerbehandlung von Datenpaketen. IP (Internet **P**rotokoll) basiert auf Schicht 3.

# Schicht 4 Transportschicht (transport layer)

Die Aufgabe der Transportschicht besteht darin, Netzwerkstrukturen mit den Strukturen der höheren Schichten zu verbinden, indem sie Nachrichten der höheren Schichten in Segmente unterteilt und an die Netzwerkschicht weiterleitet. Hierbei wandelt die Transportschicht die Transportadressen in Netzwerkadressen um.

Gebräuchliche Transportprotokolle sind: TCP, SPX, NWLink und NetBEUI.

Schichten Fortsetzung ... Schicht 5 Sitzungsschicht (session layer)

Die Sitzungsschicht wird auch Kommunikationssteuerungsschicht genannt. Sie erleichtert die Kommunikation zwischen Service-Anbieter und Requestor durch Aufbau und Erhaltung der Verbindung, wenn das Transportsystem kurzzeitig ausgefallen ist.

Auf dieser Ebene können logische Benutzer über mehrere Verbindungen gleichzeitig kommunizieren. Fällt das Transportsystem aus, so ist es die Aufgabe, gegebenenfalls eine neue Verbindung aufzubauen.

Darüber hinaus werden in dieser Schicht Methoden zur Steuerung und Synchronisation bereitgestellt.

# **Schicht 6** Darstellungsschicht (presentation layer)

Auf dieser Ebene werden die Darstellungsformen der Nachrichten behandelt, da bei verschiedenen Netzsystemen unterschiedliche Darstellungsformen benutzt werden.

Die Aufgabe dieser Schicht besteht in der Konvertierung von Daten in ein beiderseitig akzeptiertes Format, damit diese auf den verschiedenen Systemen lesbar sind.

Hier werden auch Kompressions-/Dekompressions- und Verschlüsselungs-/ Entschlüsselungsverfahren durchgeführt.

Man bezeichnet diese Schicht auch als Dolmetscherdienst. Eine typische Anwendung dieser Schicht ist die Terminalemulation.

#### **Schicht 7** Anwendungsschicht (application layer)

Die Anwendungsschicht stellt sich als Bindeglied zwischen der eigentlichen Benutzeranwendung und dem Netzwerk dar. Sowohl die Netzwerk-Services wie Datei-, Druck-, Nachrichten-, Datenbank- und Anwendungs-Service als auch die zugehörigen Regeln gehören in den Aufgabenbereich dieser Schicht.

Diese Schicht setzt sich aus einer Reihe von Protokollen zusammen, die entsprechend den wachsenden Anforderungen der Benutzer ständig erweitert werden.

# Grundbegriffe

Netzwerk (LAN)Ein Netzwerk bzw. LAN (Local Area Network) verbindet verschiedene<br/>Netzwerkstationen so, dass diese miteinander kommunizieren können.<br/>Netzwerkstationen können PCs, IPCs, TCP/IP-Baugruppen, etc. sein.<br/>Die Netzwerkstationen sind, durch einen Mindestabstand getrennt, mit dem<br/>Netzwerkkabel verbunden. Die Netzwerkstationen und das Netzwerkkabel<br/>zusammen bilden ein Gesamtsegment. Alle Segmente eines Netzwerks<br/>bilden das Ethernet (Physik eines Netzwerks).

Twisted PairFrüher gab es das Triaxial- (Yellow Cable) oder Thin Ethernet-Kabel<br/>(Cheapernet). Mittlerweile hat sich aber aufgrund der Störfestigkeit das<br/>Twisted Pair Netzwerkkabel durchgesetzt. Die CPU 31xSN/NET hat einen<br/>Twisted-Pair-Anschluss.

Das Twisted Pair Kabel besteht aus 8 Adern, die paarweise miteinander verdrillt sind. Aufgrund der Verdrillung ist dieses System nicht so störanfällig wie frühere Koaxialnetze. Verwenden Sie für die Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen.

Abweichend von den beiden Ethernet-Koaxialnetzen, die auf einer Bus-Topologie aufbauen, bildet Twisted Pair ein Punkt-zu-Punkt-Kabelschema.

Das hiermit aufzubauende Netz stellt eine Stern-Topologie dar. Jede Station ist einzeln direkt mit dem Sternkoppler (Hub/Switch) zu einem Ethernet verbunden.

- Hub (Repeater) Ein Hub ist ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Seine Aufgabe ist dabei, die Signale in beide Richtungen zu regenerieren und zu verstärken. Gleichzeitig muss er in der Lage sein, segmentübergreifende Kollisionen zu erkennen, zu verarbeiten und weiter zu geben. Er kann nicht im Sinne einer eigenen Netzwerkadresse angesprochen werden, da er von den angeschlossenen Stationen nicht registriert wird. Er bietet Möglichkeiten zum Anschluss an Ethernet oder zu einem anderen Hub bzw. Switch.
- Switch Ein Switch ist ebenfalls ein zentrales Element zur Realisierung von Ethernet auf Twisted Pair. Mehrere Stationen bzw. Hubs werden über einen Switch verbunden. Diese können dann, ohne das restliche Netzwerk zu belasten, über den Switch miteinander kommunizieren. Eine intelligente Hardware analysiert für jeden Port in einem Switch die eingehenden Telegramme und leitet diese kollisionsfrei direkt an die Zielstationen weiter, die am Switch angeschlossen sind. Ein Switch sorgt für die Optimierung der Bandbreite in jedem einzeln angeschlossenen Segment eines Netzes. Switches ermöglichen exklusiv nach Bedarf wechselnde Verbindungen zwischen angeschlossenen Segmenten eines Netzes.

# Protokolle

Übersicht In Protokollen ist ein Satz an Vorschriften oder Standards definiert, der es Kommunikationssystemen ermöglicht, Verbindungen herzustellen und Informationen möglichst fehlerfrei auszutauschen. Ein allgemein anerkanntes Protokoll für die Standardisierung der kompletten Kommunikation stellt das ISO/OSI-Schichtenmodell dar (siehe "ISO/OSI-Schichtenmodell" weiter oben).

Folgende Protokolle kommen in der CPU 31xSN/NET zum Einsatz:

- TCP/IP
- UDP
- RFC1006 (ISO-ON-TCP)

Nachfolgend sind diese Protokolle kurz aufgeführt:

**TCP/IP** TCP/IP-Protokolle stehen auf allen derzeit bedeutenden Systemen zur Verfügung. Dies gilt am unteren Ende für einfache PCs, über die typischen Mini-Rechner, bis hinauf zu Großrechnern.

Durch die weite Verbreitung von Internetzugängen und -anschlüssen wird TCP/IP sehr häufig für den Aufbau heterogener Systemverbunde verwendet.

Hinter TCP/IP, das für die Abkürzungen Transmission Control Protocol und Internet Protocol steht, verbirgt sich eine ganze Familie von Protokollen und Funktionen.

TCP und IP sind nur zwei der für den Aufbau einer vollständigen Architektur erforderlichen Protokolle. Die Anwendungsschicht stellt Programme wie "FTP" und "Telnet" auf PC-Seite zur Verfügung.

Die Anwendungsschicht des Ethernet-Teils der CPU 31xSN/NET ist mit dem Anwenderprogramm unter Verwendung der Standardhantierungsbausteine definiert.

Diese Anwendungsprogramme nutzen für den Datenaustausch die Transportschicht mit den Protokollen TCP oder UDP, die wiederum mit dem IP-Protokoll der Internetschicht kommunizieren. IP

TCP

Das IP (Internet **P**rotokoll) deckt die Netzwerkschicht (Schicht 3) des ISO/OSI-Schichtmodells ab.

Die Aufgabe des IP besteht darin, Datenpakete von einem Rechner über mehrere Rechner hinweg zum Empfänger zu senden. Diese Datenpakete sind sogenannte Datagramme. Das IP gewährleistet weder die richtige Reihenfolge der Datagramme, noch die Ablieferung beim Empfänger.

Zur eindeutigen Unterscheidung zwischen Sender und Empfänger kommen 32Bit-Adressen (IP-Adressen) zum Einsatz, die bei *IPv4* in vier Oktetts (genau 8Bit) geschrieben werden, z.B. 172.16.192.11.

Diese Internetadressen werden weltweit eindeutig vergeben, so dass jeder Anwender von TCP/IP mit allen anderen TCP/IP Anwendern kommunizieren kann.

Ein Teil der Adresse spezifiziert das Netzwerk, der Rest dient zur Identifizierung der Rechner im Netzwerk. Die Grenze zwischen Netzwerkanteil und Host-Anteil ist fließend und hängt von der Größe des Netzwerkes ab.

Um IP-Adressen zu sparen, werden sogenannte *NAT-Router* eingesetzt, die eine einzige offizielle IP-Adresse besitzen und das Netzwerk hinter diesem Rechner abschotten. Somit können im privaten Netzwerk dann beliebige IP-Adressen vergeben werden.

Das TCP (Transmission **C**ontrol **P**rotokoll) setzt direkt auf dem IP auf, somit deckt das TCP die Transportschicht (Schicht 4) auf dem OSI-Schichtenmodell ab. TCP ist ein verbindungsorientiertes End-to-End-Protokoll und dient zur logischen Verbindung zwischen zwei Partnern.

TCP gewährleistet eine folgerichtige und zuverlässige Datenübertragung. Hierzu ist ein relativ großer Protokoll-Overhead erforderlich, der folglich die Übertragung verlangsamt.

Jedes Datagramm wird mit einem mindestens 20Byte langen Header versehen. In diesem Header befindet sich auch eine Folgenummer, mit der die richtige Reihenfolge erkannt wird. So können in einem Netzwerkverbund die einzelnen Datagramme auf unterschiedlichen Wegen zum Ziel gelangen.

Bei TCP-Verbindungen wird die Gesamtdatenlänge nicht übermittelt. Aus diesem Grund muss der Empfänger wissen, wie viele Bytes zu einer Nachricht gehören. Zur Übertragung von Daten mit variabler Länge können Sie die Längenangabe den Nutzdaten voranstellen und diese Längenangabe entsprechend auf der Gegenseite auswerten.

- Zur Adressierung werden neben der IP-Adresse Ports verwendet. Eine Port-Adresse sollte im Bereich 2000...65535 liegen. Ferne und lokale Ports dürfen bei nur 1 Verbindung identisch sein.
  - Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf SPS-Seite die VIPA-Hantierungsbausteine AG\_SEND (FC 5) und AG\_RECV (FC 6) erforderlich.

| UDP                   | <ul> <li>Das UDP (User Datagramm Protocol) ist ein verbindungsloses Transport-<br/>protokoll. Es wurde im RFC768 (Request for Comment) definiert. Im<br/>Vergleich zu TCP hat es wesentlich weniger Merkmale.</li> <li>Die Adressierung erfolgt durch Portnummern.</li> <li>UDP ist ein schnelles ungesichertes Protokoll, da es sich weder um<br/>fehlende Datenpakete kümmert, noch um die Reihenfolge der Pakete.</li> </ul>                                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISO-on-TCP<br>RFC1006 | Da der TCP-Transportdienst streamorientiert ist, bedeutet dies, dass<br>einzelne vom Anwender zusammengestellte Datenpakete nicht unbedingt<br>in der gleichen Paketierung beim Teilnehmer ankommen. Je nach<br>Datenvolumen können Pakete zwar in der gleichen Reihenfolge aber<br>anders paketiert ankommen, so dass der Empfänger die einzelnen<br>Paketgrenzen nicht mehr erkennen kann. Beispielsweise werden 2x<br>10Byte-Pakete geschickt, die auf der Gegenseite als 20Byte-Paket<br>ankommen. Aber gerade die richtige Paketierung ist für die meisten<br>Anwendungen unerlässlich. |
|                       | Dies bedeutet, dass oberhalb von TCP ein zusätzliches Protokoll<br>erforderlich ist. Diese Aufgabe erfüllt der Protokollaufsatz RFC1006 (ISO-<br>on-TCP). Der Protokollaufsatz beschreibt die Arbeitsweise einer ISO<br>Transportschnittstelle (ISO 8072) auf der Basis des Transportinterfaces<br>TCP (RFC793).                                                                                                                                                                                                                                                                             |
|                       | Das dem RFC1006 zugrunde liegende Protokoll ist in seinen wesentlichen<br>Teilen identisch zu TP0 (Transport Protokoll, Class 0) in ISO 8073.<br>Da RFC1006 als Protokollaufsatz zu TCP gefahren wird, erfolgt die<br>Dekodierung im Datenteil des TCP-Pakets.                                                                                                                                                                                                                                                                                                                               |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Eigenschaften         | • Im Gegensatz zu TCP wird hier der Empfang eines Telegramms bestätigt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | • Zur Adressierung werden neben der IP-Adresse anstelle von Ports<br>TSAPs verwendet. Die TSAP-Länge kann 1 16Zeichen betragen. Die<br>Eingabe kann im ASCII- oder Hex-Format erfolgen. Ferne und lokale<br>TSAPs dürfen bei nur 1 Verbindung identisch sein.                                                                                                                                                                                                                                                                                                                                |
|                       | <ul> <li>Unabhängig vom eingesetzten Protokoll sind zur Datenübertragung auf<br/>SPS-Seite die VIPA-Hantierungsbausteine AG_SEND (FC 5) und<br/>AG_RECV (FC 6) erforderlich.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | - Im Cogonastz zu TCD können über DEC1006 unterschiedliche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

• Im Gegensatz zu TCP können über RFC1006 unterschiedliche Telegrammlängen empfangen werden.

# **IP-Adresse und Subnetz**

Aufbau IP-Adresse
 Industrial Ethernet unterstützt ausschließlich *IPv4*. Unter *IPv4* ist die IP-Adresse eine 32-Bit-Adresse, die innerhalb des Netzes eindeutig sein muss und sich aus 4 Zahlen zusammensetzt, die jeweils durch einen Punkt getrennt sind. Jede IP-Adresse besteht aus einer Net-ID und Host-ID und hat folgenden Aufbau: XXX.XXX.XXX.XXX
 Wertebereich: 000.000.000 bis 255.255.255.255
 Die IP-Adressen werden vom Netzwerkadministrator vergeben.
 Die Network-ID kennzeichnet ein Netz bzw. einen Netzbetreiber, der das

Host-ID Netz administriert. Über die Host-ID werden Netzverbindungen eines Teilnehmers (Hosts) zu diesem Netz gekennzeichnet.

Subnet-Maske Die Host-ID kann mittels bitweiser UND-Verknüpfung mit der Subnet-Maske weiter aufgeteilt werden, in eine Subnet-ID und eine *neue* Host-ID. Derjenige Bereich der ursprünglichen Host-ID, welcher von Einsen der Subnet-Maske überstrichen wird, wird zur Subnet-ID, der Rest ist die neue Host-ID.

| Subnet-Maske                  | binär alle "1" |           | binär alle "0" |
|-------------------------------|----------------|-----------|----------------|
| IPv4 Adresse                  | Net-ID         | Host-ID   |                |
| Subnet-Maske und IPv4 Adresse | Net-ID         | Subnet-ID | neue Host-ID   |

Subnetz Eine TCP-basierte Kommunikation per Punkt-zu-Punkt-, Hub- oder Switch-Verbindung ist nur zwischen Stationen mit identischer Network-ID und Subnet-ID möglich! Unterschiedliche Bereiche sind mit einem Router zu verknüpfen.

Über die Subnet-Maske haben Sie die Möglichkeit, die Ressourcen ihren Bedürfnissen entsprechend zu ordnen. So erhält z.B. jede Abteilung ein eigenes Subnetz und stört damit keine andere Abteilung.

- Adresse bei Erstinbetriebnahme Bei der Erstinbetriebnahme einer CPU 31xSN/NET besitzen der Ethernet-PG/OP-Kanal und der CP-Teil <u>keine</u> IP-Adresse. Für die Adresszuweisung haben Sie folgende Möglichkeiten:
  - Im Siemens SIMATIC Manager die PG/PC-Schnittstelle auf "TCP/IP...RFC1006" einstellen, über "Ethernet-Adresse vergeben..." den entsprechenden CP suchen und diesem IP-Parameter zuweisen. Nach der Zuweisung werden die IP-Parameter sofort ohne CPU-Neustart übernommen.
  - Über ein "Minimalprojekt" dem CP IP-Adresse und Subnet-Maske zuweisen und das Projekt über MMC oder MPI in die CPU übertragen. Nach dem Neustart der CPU und nach Umstellen der PG/PC-Schnittstelle auf "TCP/IP... RFC1006" können Sie nun online über den gewünschten CP Ihre CPU projektieren.

Adress-Klassen Für IPv4-Adressen gibt es fünf Adressformate (Klasse A bis Klasse E), die alle einheitlich 4 Byte = 32Bit lang sind.

| Klasse A | 0  | Ne<br>(1+ | twc<br>-7b | ork-ID<br>it) | Host-ID (24bit | )            |                |
|----------|----|-----------|------------|---------------|----------------|--------------|----------------|
| Klasse B | 10 | Ν         | letv       | vork-ID (2+   | 14bit)         | Host-ID (16b | pit)           |
| Klasse C | 11 | 0         | Ne         | etwork-ID (3  | 8+21bit)       |              | Host-ID (8bit) |
| Klasse D | 11 | 10        | Ν          | /lulticast Gr | uppe           |              |                |
| Klasse E | 11 | 110       |            | Reserviert    |                |              |                |

Die Klassen A, B und C werden für Individualadressen genutzt, die Klasse D für Multicast-Adressen und die Klasse E ist für besondere Zwecke reserviert.

Die Adressformate der 3 Klassen A,B,C unterscheiden sich lediglich dadurch, dass Netzwork-ID und Host-ID verschieden lang sind.

Private IP Netze Zur Bildung privater IP-Netze sind gemäß RFC1597/1918 folgende Adressbereiche vorgesehen:

| Netzwerk | von IP              | bis IP                  | Standard Subnet-Maske |
|----------|---------------------|-------------------------|-----------------------|
| Klasse   |                     |                         |                       |
| A        | 10. <u>0.0.0</u>    | 10. <u>255.255.255</u>  | 255. <u>0.0.0</u>     |
| В        | 172.16. <u>0.0</u>  | 172.31. <u>255.255</u>  | 255.255. <u>0.0</u>   |
| С        | 192.168.0. <u>0</u> | 192.168.255. <u>255</u> | 255.255.255. <u>0</u> |

(Die Host-ID ist jeweils unterstrichen.)

Diese Adressen können von mehreren Organisationen als Netz-ID gemeinsam benutzt werden, ohne dass Konflikte auftreten, da diese IP-Adressen weder im Internet vergeben noch ins Internet geroutet werden.

Reservierte Host-IDs Einige Host-IDs sind für spezielle Zwecke reserviert.

| Host-ID = "0"                          | Identifier dieses Netzwerks, reserviert! |
|----------------------------------------|------------------------------------------|
| Host-ID = maximal (binär komplett "1") | Broadcast Adresse dieses Netzwerks       |

# Hinweis!

Wählen Sie niemals eine IP-Adresse mit Host-ID=0 oder Host-ID=maximal! (z.B. ist für Klasse B mit Subnet-Maske = 255.255.0.0 die "172.16.0.0" reserviert und die "172.16.255.255" als lokale Broadcast-Adresse dieses Netzes belegt.)

# **Planung eines Netzwerks**

| Normen und<br>Richtlinien | Zur Kommunikation zwischen einzelnen Stationen gibt es gewisse<br>Vorschriften und Regeln die einzuhalten sind. Hierbei werden die Form des<br>Datenprotokolls, das Zugriffsverfahren auf den Bus und weitere, für die<br>Kommunikation wichtige Grundlagen definiert.<br>Basierend auf den von ISO festgelegten Standards und Normen wurde die<br>CPU 31xSN/NET von VIPA entwickelt.<br>In den folgenden internationalen und nationalen Gremien sind Normen und<br>Richtlinien für Netzwerktechnologien festgelegt worden: |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ANSI                      | American National Standards Institute<br>Hier werden zur Zeit in der ANSI X3T9.5 Vereinbarungen für LANs mit<br>hohen Übertragungsgeschwindigkeiten (100 MB/s) auf Glasfaserbasis<br>formuliert. (FDDI) Fibre Distributed Data Interface.                                                                                                                                                                                                                                                                                   |  |  |
| CCITT                     | Committee Consultative Internationale de Telephone et Telegraph.<br>Von diesem beratenden Ausschuss werden unter anderem die<br>Vereinbarungen für die Anbindung von Industriekommunikationsnetzen<br>(MAP) und Büronetzen (TOP) an Wide Area Networks (WAN) erstellt.                                                                                                                                                                                                                                                      |  |  |
| ECMA                      | European Computer Manufacturers Association.<br>Hier werden verschiedene Standards für MAP und TOP erarbeitet.                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| EIA                       | Electrical Industries Association (USA)<br>Standardfestlegungen wie RS232 (V.24) und RS511 sind in diesem<br>Ausschuss erarbeitet worden.                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| IEC                       | International Electrotechnical Commision.<br>Hier werden einzelne spezielle Standards festgelegt. z.B. für Feld Bus.                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ISO                       | International Organisation for Standardization.<br>In diesem Verband der nationalen Normungsstellen wurde das OSI-Model<br>entwickelt (ISO/TC97/SC16). Es gibt den Rahmen vor, an den sich die<br>Normungen für die Datenkommunikation halten sollen. ISO Standards<br>gehen über in die einzelnen nationalen Standards wie z.B. UL und DIN.                                                                                                                                                                                |  |  |
| IEEE                      | Institute of Electrical and Electronic Engineers (USA).<br>In der Projektgruppe 802 werden die LAN-Standards für Übertragungsraten<br>von 1 bis 1000MB/s festgelegt. IEEE Standards bilden häufig die Grundlage<br>für ISO-Standards z.B. IEEE 802.3 = ISO 8802.3.                                                                                                                                                                                                                                                          |  |  |

Übersicht der Komponenten Der CP ist ausschließlich für den Einsatz in einem Twisted-Pair-Netz geeignet. Bei einem Twisted-Pair-Netz werden alle teilnehmenden Stationen sternförmig über Twisted-Pair-Kabel mit einem Hub/Switch verbunden, der seinerseits mit weiteren Hub/Switch kommunizieren kann. Zwei verbundene Stationen bilden ein Segment, wobei die Länge des Twisted-Pair-Kabels zwischen den Stationen max. 100m betragen darf.



Twisted Pair Kabel



Bei einem Twisted Pair-Kabel handelt es sich um ein Kabel mit 8 Adern, die paarweise miteinander verdrillt sind.

Die einzelnen Adern haben einen jeweiligen Durchmesser von 0,4 bis 0,6mm. Verwenden Sie zur Vernetzung Twisted Pair Kabel, die mindestens der Kategorie 5 entsprechen.

# Ermitteln des Netzwerkbedarfs

- Welche Fläche muss mit dem Kabelsystem abgedeckt werden?
- Wie viele Netzwerksegmente lösen am besten die physikalischen (räumlich, störungsbedingt) Gegebenheiten der Anlage?
- Wie viele Netzwerkstationen (SPS, IPC, PC, Transceiver, evtl. Bridges) sollen an das Kabelsystem angeschlossen werden?
- In welchem Abstand stehen die Netzwerkstationen voneinander getrennt?
- Welches "Wachstum" in Größe und Anzahl der Verbindungen muss das System bewältigen können?
- Welches Datenaufkommen ist zu bewältigen (Bandbreite, Zugriffe/Sec.)?

# Zeichnen des<br/>NetzwerkplansZeichnen Sie Ihren Netzwerkplan. Bezeichnen Sie jedes Stück Hardware,<br/>das verwendet wird (wie Stationskabel, Hub, Switch). Halten Sie die<br/>Regeln und Grenzwerte im Auge.<br/>Messen Sie die Distanz zwischen allen Komponenten um sicher zu gehen.

Messen Sie die Distanz zwischen allen Komponenten um sicher zu gehen, dass jeweils die maximale Länge nicht überschritten wird.

Vernetzung unter Bitte beachten Sie, dass zur Projektierung die folgenden Software-Pakete installiert sein müssen: **NetPro**  Siemens SIMATIC Manager V. 5.1 • Zur Projektierung von SPEED7-Modulen ist die vipa speedbus.gsd eingebunden. Siemens SIMATIC NET Damit Stationen miteinander kommunizieren können, sind die hierzu erforderlichen (Sub-)Netze nach folgenden Schritten im Siemens SIMATIC Manager bzw. NetPro zu projektieren: • Legen Sie in Ihrem Projekt ein oder mehrere Subnetze von jeweils gewünschten Typ an. Passen Sie die Eigenschaften der Subnetze an. Schließen Sie Ihre Teilnehmer logisch an das Subnetz an. • Richten Sie Kommunikationsverbindungen zwischen den einzelnen Stationen ein. In einem Projekt können mehrere Subnetze verwaltet werden. Jede Station Netz-Projektist einmal anzulegen. Eine Station kann mehreren Subnetzen zugeordnet varianten sein, indem Sie die CPs entsprechend zuordnen. Nachfolgend sind typische Projektvarianten für Netzwerke aufgeführt: 1 Subnetz -Im einfachsten Fall besteht Ihre Anlage aus Stationen, die über 1 Subnetz 1 Projekt vom Typ Industrial Ethernet vernetzt werden sollen. Legen Sie hierzu ein Objekt "Ethernet" an. Stationen, die im selben Projekt angelegt werden, beziehen sich auf dieses Objekt, sobald sie als Netzknoten konfiguriert werden. Diese können dann direkt ausgewählt werden. Fremdgeräte sind in diesem Subnetz bei der Projektierung als "Andere Station" einzutragen". 2 oder mehr Aufgrund unterschiedlicher Aufgaben der Stationen oder aufgrund der Ausdehnung Ihrer Anlage kann es erforderlich sein, mehrere Netze zu Subnetze betreiben. Hierbei können Sie mehrere Subnetze in einem Projekt anlegen 1 Projekt und die Stationen auf einfache Weise für die Kommunikation projektieren. 1 oder mehrere Bei komplexen vernetzten Anlagen ist es sinnvoll, Anlagenteile in unterschiedlichen Teilprojekten zu verwalten. Hierbei kann es erforderlich Subnetz - mehrere sein, dass Sie projektübergreifende Verbindungen anzulegen haben. Teilprojekte Hierzu steht ihnen im Siemens SIMATIC Manager ab V. 5.2 die Multiprojekt-Funktion zu Verfügung. Mit dieser Funktion können Sie unter anderem Projekte auftrennen und wieder zusammenfügen. Näheres hierzu finden Sie in Ihrer Beschreibung zum Siemens SIMATIC Manager. Subnetzüber-Dies sind Verbindungen, die aufgrund der Anlagenkomplexität in ein greifende anderes Subnetz greifen. Die Subnetze untereinander sind über Router verbunden. Durch Angabe einer Router-Adresse bei der Hardware-Verbindungen Konfiguration Ihres CPs, können Sie Ihren CP anweisen über diesen Router das entsprechende Subnetz für die Kommunikation einzubinden.

# Kommunikationsmöglichkeiten des CP

Kommunikation zwischen CP 343 und CPU

Der interne CP 343 der CPU 31xSN/NET ist über ein Dual-Port-RAM direkt mit der CPU verbunden. Auf CPU-Seite findet der Datenaustausch über die VIPA-Hantierungsbausteine AG\_SEND (FC 5) und AG\_RECV (FC 6) statt.

Die Kommunikation über die entsprechenden Protokolle regeln Verbindungen, die unter dem Siemens-Projektier-Tool NetPro zu parametrieren sind und über MMC, MPI oder direkt über Ethernet in die CPU übertragen werden können.

Zur Übertragung über Ethernet muss sich Ihr CP mit gültigen IP-Parametern am Ethernet befinden. Hierbei kann die Zuweisung entweder über den entsprechenden Menüpunkt im Siemens SIMATIC Manager erfolgen oder über ein Minimalprojekt in dem die IP-Parameter definiert sind. Dieses Projekt können Sie über MMC oder MPI in die CPU übertragen.



| Kommunikations-<br>arten | <ul><li>Der CP unterstützt folgende Kommunikationsarten:</li><li>PG/OP-Kommunikation</li></ul>                                                                                                                                                   |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Projektierbare Verbindungen                                                                                                                                                                                                                      |
| PG/OP-<br>Kommunikation  | Die PG/OP-Kommunikation dient zum Laden von Programmen und<br>Konfigurationsdaten, für Test und Diagnosefunktionen sowie zum<br>Bedienen und Beobachten einer Anlage. Hierbei können Sie über den CP<br>(Ethernet) auf die CPU online zugreifen. |

version 1.7.4 ist ein gleichzeitiger Zugriff von bis zu 32 Teilnehmern möglich. Bitte beachten Sie, dass je eine Verbindung für PG- und OP-Kommunikation reserviert ist.

ProjektierbareBei projektierbaren Verbindungen handelt es sich um Verbindungen zur<br/>Kommunikation zwischen SPS-Stationen. Die Verbindungen können mit<br/>dem Siemens Projektiertool NetPro projektiert werden.

Die nachfolgende Tabelle zeigt die Kombinationsmöglichkeiten mit den verschiedenen Betriebsarten:

Kombinations-

möglichkeiten

| Verbindungspartner                                     | Verbindungstyp      | Verbindungs-<br>aufbau                      | Verbindung                               | Betriebsart                                  |  |
|--------------------------------------------------------|---------------------|---------------------------------------------|------------------------------------------|----------------------------------------------|--|
| spezifiziert in NetPro<br>(im aktuellen Projekt)       | TCP /<br>ISO-on-TCP | TCP /<br>O-on-TCP aktiv/passiv spezifiziert |                                          | SEND/RECEIVE                                 |  |
|                                                        | UDP                 | -                                           |                                          |                                              |  |
| unspezifiziert in NetPro                               | TCP /<br>ISO-on-TCP | aktiv                                       | spezifiziert                             | SEND/RECEIVE                                 |  |
| (im aktuellen Projekt)                                 |                     | passiv                                      | teilspezifiziert (Port)                  | SEND/RECEIVE                                 |  |
|                                                        |                     |                                             | unspezifiziert                           | FETCH PASSIV<br>WRITE PASSIV                 |  |
|                                                        | UDP                 | -                                           | spezifiziert                             | SEND/RECEIVE                                 |  |
| unspezifiziert in NetPro<br>(in "unbekannten Projekt") | TCP /<br>ISO-on-TCP | aktiv                                       | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE                                 |  |
|                                                        |                     | passiv                                      | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE<br>FETCH PASSIV<br>WRITE PASSIV |  |
|                                                        | UDP                 | -                                           | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE                                 |  |
| Alle Broadcast-Teilnehmer                              | UDP                 | -                                           | spezifiziert (Port,<br>Broadcast-Adr.)   | SEND                                         |  |
| Alle Multicast-Teilnehmer                              | UDP                 | -                                           | spezifiziert (Port,<br>Multicast-Gruppe) | SEND/RECEIVE                                 |  |

Verbindungspartner Verbindungspartner sind Stationen auf der Gegenseite.

Spezifizierte Verbindungspartner

Jede im Siemens SIMATIC Manager projektierte Station wird in die Liste der Verbindungspartner aufgenommen. Durch Angabe einer IP-Adresse und Subnet-Maske sind diese Stationen eindeutig *spezifiziert*.

Unspezifizierte Verbindungspartner

Sie können aber auch einen *unspezifizierten* Verbindungspartner angeben. Hierbei kann sich der Verbindungspartner im *aktuellen Projekt* oder in einem *unbekannten Projekt* befinden. Verbindungs-Aufträge in ein *unbekanntes Projekt* sind über einen eindeutigen Verbindungs-Namen zu definieren, der für die Projekte in beiden Stationen zu verwenden ist. Aufgrund der Zuordnung über einen Verbindungs-Namen bleibt die Verbindung selbst *unspezifiziert*.

# Alle Broadcast-Teilnehmer

Ausschließlich bei UDP-Verbindungen können Sie hier an alle erreichbaren Broadcast-Teilnehmer senden. Der Empfang ist nicht möglich. Über <u>einen</u> Port und <u>eine</u> Broadcast-Adresse bei Sender und Empfänger werden die Broadcast-Teilnehmer spezifiert.

# Alle Multicast-Teilnehmer

Über diese Einstellung können Multicast-Telegramme zwischen den Multicast-Teilnehmern gesendet und empfangen werden. Durch Angabe <u>eines</u> Ports und <u>einer</u> Multicast-Gruppe für Sender und Empfänger sind die Multicast-Teilnehmer zu spezifizieren.

Verbindungstypen Für die Kommunikation stehen Ihnen folgende Verbindungstypen zur Verfügung:

- **TCP** bzw. **ISO-on-TCP** zur gesicherten Datenübertragung zusammenhängender Datenblöcke zwischen zwei Ethernet-Teilnehmern
- **UDP** zur ungesicherten Datenübertragung zusammenhängender Datenblöcke zwischen zwei Ethernet-Teilnehmern
- Verbindungsaufbau Bei projektierbaren Verbindungen gibt es immer eine Station, die *aktiv* eine Verbindung aufbaut. Auf der Gegenseite wird *passiv* auf die aktive Verbindung gewartet. Erst dann können Produktiv-Daten übertragen werden.
- Verbindung Durch Angabe von IP-Adresse und Port/TSAP der Gegenseite wird eine Verbindung *spezifiziert*. Aktive Verbindungen sind immer spezifiziert anzugeben. Bei einer *unspezifizierten* Verbindung, die nur bei passivem Verbindungs-Aufbau möglich ist, sind IP-Adresse und Port/TSAP der Gegenseite für die Telegrammauswertung nicht erforderlich. Es besteht auch die Möglichkeit für *teilspezifizierte* Verbindungen. Die Teilspezifikation erfolgt hierbei über die Port-Angabe. Die Angabe einer IP-Adresse ist nicht erforderlich.
- Betriebsarten Je nach Verbindung stehen Ihnen folgende Betriebsarten zur Verfügung

#### SEND/RECEIVE

Die SEND/RECEIVE-Schnittstelle ermöglicht die programmgesteuerte Kommunikation über eine projektierte Verbindung zu beliebigen Fremdstationen. Die Datenübertragung erfolgt hierbei durch Anstoß durch Ihr Anwenderprogramm. Als Schnittstelle dienen Ihnen FC 5 und FC 6, die Bestandteil der VIPA-Baustein-Bibliothek sind.

Hiermit wird Ihre Steuerung in die Lage versetzt, abhängig von Prozessereignissen Nachrichten zu versenden.

# FETCH/WRITE PASSIV

Mit den FETCH/WRITE-Diensten haben Fremdsysteme direkten Zugriff auf Speicherbereiche der CPU. Es handelt sich hierbei um "passive" Kommunikationsverbindungen, die zu projektieren sind. Die Verbindungen werden "aktiv" vom Verbindungspartner (z.B. Siemens-S5) aufgebaut.

#### FETCH PASSIV (Daten anfordern)

Mit FETCH kann ein Fremdsystem Daten anfordern.

WRITE PASSIV (Daten schreiben)

Hiermit kann ein Fremdsystem in den Datenbereich der CPU schreiben.

# Funktionsübersicht

**Übersicht** Nachfolgend sind die Funktionen aufgeführt die ab der CP-Firmware-Version 1.7.4 vom CP-Teil der CPU 31xSN/Net unterstützt werden:

| Projektierbare | Funktion                                           | Eigenschaft                                                                                                                          |
|----------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Verbindungen   | Maximale Anzahl<br>projektierbarer<br>Verbindungen | 16 (8 bei CPU 315-4NE11)                                                                                                             |
|                | TCP-Verbindungen                                   | SEND, RECEIVE, FETCH PASSIV, WRITE<br>PASSIV                                                                                         |
|                |                                                    | Verbindungsaufbau aktiv und passiv,<br>unterstützt unspezifizierten Verbindungspartner.                                              |
|                | ISO-on-TCP-<br>Verbindungen                        | SEND, RECEIVE, FETCH PASSIV, WRITE<br>PASSIV                                                                                         |
|                | (RFC1006)                                          | Verbindungsaufbau aktiv und passiv,                                                                                                  |
|                |                                                    | unterstützt unspezifizierten Verbindungspartner.                                                                                     |
|                | UDP-Verbindungen                                   | SEND und RECEIVE                                                                                                                     |
|                |                                                    | Die Übertragung der Telegramme erfolgt nicht<br>quittiert, d.h. der Verlust von Nachrichten wird<br>vom Sendebaustein nicht erkannt. |
|                | UDP-Broadcast-Verb.                                | SEND                                                                                                                                 |
|                | UDP-Multicast-Verb.                                | SEND und RECEIVE (max. 16 Multicast-Kreise)                                                                                          |
|                | Datenblocklänge                                    | max. 64kByte (max. 2kByte bei UDP)                                                                                                   |
|                | VIPA-Hantierungs-                                  | Für Verbindungsaufträge auf SPS-Seite:                                                                                               |
|                | bausteine                                          | AG_SEND (FC 5) / AG_RECEIVE (FC 6)                                                                                                   |
|                |                                                    | Beliebiger Aufruf ohne Verriegelung in allen OBs.                                                                                    |

| PG-Verbindungen<br>und Diagnose | Funktion                              | Eigenschaft                                       |
|---------------------------------|---------------------------------------|---------------------------------------------------|
|                                 | Maximale Anzahl<br>PG/OP-Verbindungen | 32 (je 1 Verbindung ist für PG und OP reserviert) |
|                                 | Diagnose                              | unterstützt NCM-Diagnose über Ethernet            |
|                                 | Suche im Netzwerk                     | unterstützt Siemens SIMATIC Manager Suche         |
|                                 | 10/100MBit                            | Umschaltung erfolgt automatisch                   |

# Schnelleinstieg

# Übersicht

Bei der Erstinbetriebnahme einer CPU 31xSN/NET besitzen Ethernet-PG/OP und CP 343 der CPU 31xSN/NET <u>keine</u> IP-Adresse. Die Zuweisung erfolgt hier direkt über die Hardware-Konfiguration im Siemens SIMATIC Manager. Die Projektierung einer CPU 31xS mit CP 343 sollte nach folgender Vorgehensweise erfolgen:

- Montage und Inbetriebnahme
- Hardware-Konfiguration (Einbindung CP in CPU)
- CP-Projektierung über NetPro (Verbindung zum Ethernet)
- **SPS-Programmierung** über Anwender-Programm (Verbindung zur SPS)
- Transfer des Gesamtprojekts in die CPU

#### Hinweis

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind die CPU 31xS von VIPA als

#### CPU 318-2DP (6ES7 318-2AJ00-0AB0)

zu projektieren!

Den Ethernet-PG/OP-Kanal der CPU 31xSN/NET projektieren Sie virtuell immer als 1. Modul nach den reell gesteckten Modulen am Standard-Bus als CP343-1 (343-1EX11) von Siemens. Der CP 343 einer CPU 31xSN/NET ist immer unterhalb des zuvor projektierten CPs ebenfalls als CP343-1 (343-1EX11) zu projektieren.

Montage und Inbetriebnahme

- Bauen Sie Ihr System 300S mit der CPU 31xSN/NET auf.
- Verdrahten Sie das System, indem Sie die Leitungen für Spannungsversorgung, Signale und Ethernet anschließen. Eine detaillierte Beschreibung zu diesem Thema finden Sie im Teil "Montage und Aufbaurichtlinien".
- Schalten Sie die Spannungsversorgung ein. → Nach kurzer Hochlaufzeit befindet sich der CP im Leerlauf.
   Bei der Erstinbetriebnahme bzw. nach dem Urlöschen der CPU besitzen Ethernet-PG/OP-Kanal und CP keine IP-Adresse. Zur Kontrolle können Sie den CP jetzt über die MAC-Adresse erreichen. Die MAC-Adresse finden Sie unterhalb der Frontklappe auf der linken Modulseite auf einem Aufkleber am Modul.

IP-ParameterFür die Zuweisung der IP-Parameter, wie IP-Adresse, Subnet-Maske usw.zuweisenhaben Sie folgende Möglichkeiten:

- Online mit dem Siemens SIMATIC Manager über "Ethernet-Adresse vergeben" (ab CP-Firmware 1.7.4)
- Über ein Minimalprojekt mit IP-Adresse und IP-Parameter, das über MMC bzw. MPI in die CPU übertragen wird. Nach dem Neustart der CPU und nach Umstellen der PG/PC-Schnittstelle auf "TCP/IP... RFC1006" können Sie nun online über den CP Ihre CPU projektieren.

Adressierung mit "Ethernet-Adresse vergeben" Bitte be 1.7.4 ur • Start

Bitte beachten Sie, dass diese Funktionalität ab der CP-Firmware-Version 1.7.4 unterstützt wird.

- Starten Sie den Siemens SIMATIC Manager.
- Stellen Sie über **Extras** > *PG/PC-Schnittstelle einstellen* auf "TCP/IP... RFC1006" ein.
- Öffnen Sie mit **Zielsystem** > *Ethernet-Adresse vergeben* das Dialogfenster zur "Taufe" einer Station.
- Benutzen Sie die Schaltfläche [Durchsuchen], um die über MAC-Adresse erreichbaren Geräte zu ermitteln oder tragen Sie die MAC-Adresse ein. Die MAC-Adresse finden Sie auf einem Aufkleber unterhalb der Frontklappe der CPU.
- Wählen Sie ggf. bei der Netzwerksuche aus der Liste die Baugruppe mit der Ihnen bekannten MAC-Adresse aus.
- Stellen Sie nun die IP-Konfiguration ein, indem Sie IP-Adresse, Subnet-Maske und den Netzübergang eintragen. Sie können aber auch über einen DHCP-Server eine IP-Adresse beziehen. Hierzu ist dem DHCP-Server je nach gewählter Option die MAC-Adresse, der Gerätename oder die hier eingebbare Client-ID zu übermitteln. Die Client -ID ist eine Zeichenfolge aus maximal 63 Zeichen. Hierbei dürfen folgende Zeichen verwendet werden: Bindestich "-", 0-9, a-z, A-Z
- Bestätigen Sie Ihre Eingabe mit der Schaltfläche [... zuweisen].

Direkt nach der Zuweisung ist der CP über die angegebenen IP-Parameter online erreichbar.

Adressierung über • Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt. Minimalprojekt

- Fügen Sie mit Einfügen > Station > SIMATIC 300-Station eine neue System 300 Station ein.
- Aktivieren Sie die Station "SIMATIC 300" und öffnen Sie den Hardware-Konfigurator indem Sie auf "Hardware" klicken.
- Projektieren Sie ein Rack (SIMATIC 300 \ Rack-300 \ Profilschiene).
- Projektieren Sie stellvertretend für Ihre CPU 31xSN/NET die Siemens CPU 318-2DP mit der Best.-Nr. 6ES7 318-2AJ00-0AB0 V. 3.0., zu finden unter SIMATIC 300 \ CPU 300 \ CPU 318-2 \ 318-2AJ00-0AB00. Parametrieren Sie ggf. die CPU 318-2DP.
- Platzieren Sie beginnend mit Steckplatz 4, die System 300 Module in gesteckter Reihenfolge.
- Zur Projektierung des PG/OP-Kanals projektieren Sie direkt unterhalb der reell gesteckten Module als virtuelles Modul einen CP 343-1 (343-1EX11) von Siemens.
- Geben Sie in den CP-Eigenschaften die gewünschte IP-Adresse und Subnet-Maske an.
- Projektieren Sie den integriertem CP 343 als 2. CP ebenfalls als CP 343-1 (343-1EX11) unter Angabe einer weiteren IP-Adresse, Subnet-Maske und Gateway.
- Geben Sie in den CP-Eigenschaften die gewünschte IP-Adresse und Subnet-Maske an und speichern und übersetzen Sie Ihr Projekt. Hier endet das Minimalprojekt. Nach der Übertragung dieses Minimalprojekts in die CPU können Sie über die im Projekt angegebene IP-Adresse und Subnet-Maske auf den CP zugreifen.

# Verbindungen mit NetPro projektieren

Die Vernetzung zwischen den Stationen erfolgt mit der grafischen Benutzeroberfläche NetPro. Starten Sie NetPro, indem Sie in Ihrem Projekt auf ein Netz klicken bzw. im CPU-Verzeichnis auf Verbindungen.



Stationen vernetzen Zur Projektierung von Verbindungen werden vernetzte Stationen vorausgesetzt. Zur Vernetzung von Stationen gehen Sie mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Die Verbindung wird grafisch über eine Linie dargestellt.

Verbindungen projektieren

Klicken Sie zur Projektierung neuer Verbindungen auf die entsprechende CPU und wählen Sie über das Kontextmenü "Neue Verbindung einfügen".



Über das Dialogfenster können Sie die Parameter für eine Verbindung vorgeben. Die Parameter ID und LADDR sind für den Einsatz der AG\_SEND- bzw. AG\_RECV-Bausteine (FC 5 bzw. FC 6) erforderlich.

Aus Wegewahl immer 2. CP verwenden

Bitte beachten Sie, dass Sie für die Kommunikation immer den 2. CP aus der Wegewahl verwenden. Als 1. CP finden Sie stets den Ethernet PG/OP-Kanal, der keine projektierbare Verbindungen unterstützt.

- Verbindungen speichern und übersetzen Speichern und übersetzen Speichern und übersetzen Speichern und übersetzen Sie Ihr Projekt und beenden Sie NetPro. Damit die CP-Projektierdaten in den Systemdaten abgelegt werden, müssen Sie in den der Hardware-Konfiguration des CP unter *Objekteigenschaften* im Bereich *Optionen* die Option "Projektierungsdaten in der CPU speichern" aktivierten (Standardeinstellung).
- SPS-Anwender-<br/>programmZur Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein Anwender-<br/>programm in der CPU erforderlich. Hierbei kommen ausschließlich die<br/>VIPA Hantierungsbausteine AG\_SEND (FC 5) und AG\_RECV (FC 6) zum<br/>Einsatz. Die Bausteine sind Bestandteil der VIPA-Library, die sich als CD<br/>(SW830) im Lieferumfang befindet.<br/>Den entsprechenden CP spezifizieren Sie über die Parameter *ID* und<br/>*LADDR* beim Aufruf der FC 5 bzw. FC 6.

**Projekt-Transfer** Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS" unter "Projekt transferieren".

Auf den Folgeseiten sind die in diesem Schnelleinstieg aufgeführten Schritte näher erläutert.

# Hardware-Konfiguration

| Übersicht     | Zur Hardware-Konfiguration setzen Sie den Hardware-Konfigurator von<br>Siemens ein. Hier geben Sie unter anderem die IP-Adresse des CPs an<br>und projektieren die Hardware-Komponenten Ihrer SPS.                                                       |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | Da im Auslieferungszustand weder der Ethernet-PG/OP-Kanal noch der CP 343 eine IP-Adresse besitzen, können Sie ausschließlich über MPI oder MMC Ihre CPU projektieren.                                                                                   |  |  |  |
|               | Für den Zugriff auf Ihre CPU über den Ethernet-PG/OP-Kanal bzw. den<br>CP 343 ist es erforderlich, dass sich in der CPU eine Hardware-Pro-<br>jektierung befindet, in der IP-Adresse und Subnet-Maske für Ethernet-<br>PG/OP bzw. CP 343 definiert sind. |  |  |  |
| Voraussetzung | Bitte beachten Sie, dass zur Hardware-Konfiguration die folgenden<br>Software-Pakete installiert sein müssen:<br>- Siemens SIMATIC Manager V. 5.1 oder höher und vipa_speedbus.gsd<br>- SIMATIC NET                                                      |  |  |  |
|               | Hinweis!                                                                                                                                                                                                                                                 |  |  |  |

Für die Projektierung werden fundierte Kenntnisse im Umgang mit dem Siemens SIMATIC Manager und dem Hardware-Konfigurator von Siemens vorausgesetzt!

#### Hinweis

Um kompatibel mit dem Siemens SIMATIC Manager zu sein, sind die CPU 31xS von VIPA als

CPU 318-2DP (6ES7 318-2AJ00-0AB0)

zu projektieren!

Den Ethernet-PG/OP-Kanal der CPU 31xSN/NET projektieren Sie virtuell immer als 1. Modul nach den reell gesteckten Modulen am Standard-Bus als CP343-1 (343-1EX11) von Siemens. Der CP 343 einer CPU 31xSN/NET ist immer unterhalb des zuvor projektierten CPs ebenfalls als CP343-1 (343-1EX11) zu projektieren. Schritte derNachfolgend wird die Vorgehensweise der Projektierung im Hardware-<br/>Konfigurator von Siemens an einem abstrakten Beispiel gezeigt.<br/>Die Projektierung gliedert sich in folgende 3 Teile:

- Projektierung der CPU
- Projektierung der reell gesteckten Module am Standard-Bus
- Projektierung Ethernet-PG/OP-Kanal und CP 343

| Hardwareaufbau | Standard-Bus (seriell) |    |    |     |    |    |
|----------------|------------------------|----|----|-----|----|----|
|                |                        |    |    |     |    |    |
|                | O                      |    |    |     |    |    |
|                | CPU 31xSN/NET          | DI | DO | DIO | AI | AO |
|                |                        |    |    |     |    |    |

- Starten Sie den Hardware-Konfigurator von Siemens mit einem neuen Projekt und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.
  - Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 318-2DP (6ES7 318-2AJ00-0AB0 V. 3.0)

Projektierung der Module am Standard-Bus Die am Standard-Bus rechts der CPU befindlichen Module sind nach folgenden Vorgehensweisen zu projektieren:

- Binden Sie, beginnend mit Steckplatz 4, Ihre System 300V Module auf dem Standard-Bus in der gesteckten Reihenfolge ein.
- Parametrieren Sie ggf. die CPU bzw. die Module. Das Parameterfenster wird geöffnet, sobald Sie auf das entsprechende Modul doppelklicken.





Projektierung Ethernet-PG/OP-Kanal und CP 343 Für den internen Ethernet-PG/OP-Kanal, den jede SPEED7-CPU besitzt, ist <u>immer</u> als 1. Modul unterhalb der reell gesteckten Module ein Siemens CP 343-1 (SIMATIC 300 \ CP 300 \ Industrial Ethernet \CP 343-1 \ 6GK7 343-1EX11 0XE0) zu platzieren.

Den integrierten CP 343 der CPU 31xSN/NET projektieren Sie ebenfalls als **CP 343-1 (343-1EX11)** aber immer unterhalb des zuvor platzierten CP 343-1.



Öffnen Sie durch Doppelklick auf den CP 343-1EX11 das Eigenschaften-Fenster und geben Sie für die CPs unter "Eigenschaften" IP-Adresse, Subnet-Maske und Gateway an und wählen Sie das gewünschte Subnetz aus.

| Eigenschaften - CP 343-                                                                           | 1 - (R0/54)                                                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                          |   |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Allgemein Adressen 0                                                                              | Iptionen Diagnose Adressierung                                                                                                                                                                                         | Eigenschaften - Ethernet Schnittstelle CP 343-1 (R0/54)                                                                                                                                                                                                                                                    | × |
| Kurzbezeichnung:                                                                                  | CP 343-1                                                                                                                                                                                                               | Allgemein Parameter                                                                                                                                                                                                                                                                                        |   |
|                                                                                                   | S7 CP für Industrial Ethernet IS0 und TCP/IP mit SEN<br>FETCH-WRITE-Schnittstelle, lange Daten, UDP, TCF<br>S7-Kommunikation, Routing und BG-Tausch ohne PG<br>feste MAC-Adresse, Initialisierung über LAN, IP-Multic- | MAC-Adresse einstellen / ISQ-Protokoll verwenden<br>MAC-Adresse:                                                                                                                                                                                                                                           |   |
| Bestell-Nr./Firmware                                                                              | 6GK7 343-1EX11-0XE0 / V2.0                                                                                                                                                                                             | ☑ IP-Protokoli wird genutet                                                                                                                                                                                                                                                                                |   |
| <u>N</u> ame:<br>Schnittstelle<br>Typ: Ethe<br>Adresse: 172<br>Vernetat: Ja<br><u>K</u> ommentar: | CP 343-1<br>amet<br>16.129.201                                                                                                                                                                                         | IP-Adresse:     172:16:129:201     Netzübergang       Subnetzmaske:     255:255:224.0 <ul> <li>© Keinen Router verwenden</li> <li>Adjesse:</li> <li>172:16:129:201</li> <li>Subnetz:</li> </ul> Subnetz: <ul> <li>incht vernetzt …</li> <li>Ethemef(1)</li> <li>Eigenschaften…</li> <li>Löschen</li> </ul> |   |
|                                                                                                   | ábhre                                                                                                                                                                                                                  | OK Abbrechen Hilfe                                                                                                                                                                                                                                                                                         |   |

Buserweiterung mit IM 360 und IM 361 Zur Buserweiterung können Sie die IM 360 von Siemens einsetzen, an die Sie bis zu 3 Erweiterungs-Racks über die IM 361 anbinden können. Buserweiterungen dürfen immer nur auf Steckplatz 3 platziert werden.

SPEED-Bus-Projektierung und Projekt-Transfer Näheres zur Projektierung der SPEED-Bus-Module und zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS".

# Kommunikationsverbindungen projektieren

ÜbersichtDie Projektierung von Verbindungen, d.h. die "Vernetzung" zwischen den<br/>Stationen erfolgt in NetPro von Siemens. NetPro ist eine grafische<br/>Benutzeroberfläche zur Vernetzung von Stationen.Eine Kommunikationsverbindung ermöglicht die programmgesteuerte<br/>Kommunikation zwischen zwei Teilnehmern am Industrial Ethernet. Die<br/>Kommunikationspartner können hierbei im selben Projekt oder - bei<br/>Multiprojekten - in den zugehörigen Teilprojekten verteilt angeordnet sein.<br/>Kommunikationsverbindungen zu Partnern außerhalb eines Projekts<br/>werden über das Objekt "In unbekanntem Projekt" oder mittels<br/>Stellvertreterobjekten wie "Andere Stationen" oder Siemens "SIMATIC S5<br/>Station" projektiert.

# **Eigenschaften** Folgende Eigenschaften zeichnen eine Kommunikationsverbindung aus:

- Eine Station führt immer einen aktiven Verbindungsaufbau durch.
- Bidirektionaler Datentransfer (Senden und Empfangen auf einer Verbindung)
- Beide Teilnehmer sind gleichberechtigt, d.h. jeder Teilnehmer kann ereignisabhängig den Sende- bzw. Empfangsvorgang anstoßen.
- Mit Ausnahme der UDP-Verbindung wird bei einer Kommunikationsverbindung die Adresse des Kommunikationspartners über die Projektierung festgelegt. Hierbei ist immer von einer Station der Verbindungsaufbau aktiv durchzuführen.



#### Voraussetzung

- Siemens SIMATIC Manager Siemens V. 5.1 oder höher und SIMATIC NET sind installiert.
- Der CP wurde bei der Hardware-Konfiguration projektiert, in die Hardware-Konfiguration eingetragen und mit dem Ethernet-Subnetz vernetzt.
- Der CP besitzt als Busteilnehmer eine IP-Adresse.

#### Hinweis!

Alle Stationen außerhalb des aktuellen Projekts müssen mit Stellvertreterobjekten, wie z.B. Siemens "SIMATIC S5" oder "Andere Station" oder mit dem Objekt "In unbekanntem Projekt" projektiert sein.

Sie können aber auch beim Anlegen einer Verbindung den Partnertyp "unspezifiziert" anwählen und die erforderlichen Remote-Parameter im Verbindungsdialog direkt angeben.

Arbeitsumgebung von NetPro Zur Projektierung von Verbindungen werden fundierte Kenntnisse im Umgang mit NetPro von Siemens vorausgesetzt! Nachfolgend soll lediglich der grundsätzliche Einsatz von NetPro gezeigt werden. Nähre Informationen zu NetPro finden Sie in der zugehörigen Online-Hilfe bzw. Dokumentation.

NetPro starten Sie, indem Sie im Siemens SIMATIC Manager auf ein "Netz" klicken oder innerhalb Ihrer CPU auf "Verbindungen".

Die Arbeitsumgebung von NetPro hat folgenden Aufbau:

1 Grafische Netzansicht

Hier werden alle Stationen und Netzwerke in einer grafischen Ansicht dargestellt. Durch Anwahl der einzelnen Komponenten können Sie auf die jeweiligen Eigenschaften zugreifen und ändern.

2 Netzobjekte

In diesem Bereich werden alle verfügbaren Netzobjekte in einer Verzeichnisstruktur dargestellt. Durch Ziehen eines gewünschten Objekts in die Netzansicht können Sie weitere Netzobjekte einbinden und im Hardware-Konfigurator öffnen.

3 Verbindungstabelle

In der Verbindungstabelle sind alle Verbindungen tabellarisch aufgelistet. Diese Liste wird nur eingeblendet, wenn Sie die CPU einer verbindungsfähigen Baugruppe angewählt haben.

In dieser Tabelle können Sie mit dem gleichnamigen Befehl neue Verbindungen einfügen.



# SPS-Stationen

Für jede SPS-Station und ihre Komponente haben Sie folgende grafische Darstellung. Durch Anwahl der einzelnen Komponenten werden Ihnen im Kontext-Menü verschiedene Funktionen zu Verfügung gestellt:



1 Station

Dies umfasst eine SPS-Station mit Rack, CPU und Kommunikationskomponenten. Über das Kontext-Menü haben Sie die Möglichkeit eine aus den *Netzobjekten* eingefügte Station im Hardware-Konfigurator mit den entsprechenden Komponenten zu projektieren. Nach der Rückkehr in NetPro werden die neu projektierten Komponenten dargestellt.

2 CPU

Durch Klick auf die CPU wird die Verbindungstabelle angezeigt. In der Verbindungstabelle sind alle Verbindungen aufgelistet, die für die CPU projektiert sind.

3 Interne Kommunikationskomponenten

Hier sind die Kommunikationskomponenten aufgeführt, die sich in Ihrer CPU befinden. Da die Net-CPUs als CPU 318-2DP projektiert werden, wird bei den internen Komponenten kein CP angezeigt.

Aus diesem Grund ist der CP, der sich in der 31xSN/Net-CPU befindet, als externer CP hinter den reell gesteckten Modulen zu projektieren. Die CPs werden dann auch in NetPro als externe CPs (4, 5) in der Station eingeblendet.

4 Ethernet-PG/OP-Kanal

In der Hardware-Konfiguration ist der interne Ethernet-PG/OP-Kanal immer als 1. CP zu projektieren. Dieser CP dient ausschließlich der PG/OP-Kommunikation. Produktiv-Verbindungen sind nicht möglich.

5 CP 343

In der Hardware-Konfiguration ist interne *CP* 343 immer als 2. CP nach dem Ethernet-PG/OP-Kanal zu projektieren.

# Stationen vernetzen

NetPro bietet Ihnen die Möglichkeit die kommunizierenden Stationen zu vernetzen. Die Vernetzung können Sie über die Eigenschaften in der Hardware-Konfiguration durchführen oder grafisch unter NetPro. Gehen Sie hierzu mit der Maus auf die farbliche Netzmarkierung des entsprechenden CPs und ziehen Sie diese auf das zuzuordnende Netz. Daraufhin wird Ihr CP über eine Linie mit dem gewünschten Netz verbunden.


#### Verbindungen projektieren

Zur Projektierung von Verbindungen blenden Sie die Verbindungsliste ein, indem Sie die entsprechende CPU anwählen. Rufen Sie über das Kontext-Menü *Neue Verbindung einfügen* auf:



Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Typ der Verbindung einstellen können.

Markieren Sie die Partnerstation, zu der Sie eine Verbindung aufbauen möchten.

Wählen Sie unter "Typ" den Verbindungstyp aus, den Sie verwenden möchten. Folgende Verbindungstypen werden zur Zeit vom CP unterstützt:

ISO-on-TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)

TCP (SEND-RECEIVE, FETCH-WRITE PASSIV)

UDP (SEND-RECEIVE)

AllgemeinSofern aktiviert, öffnet sich ein Eigenschaften-Dialog der entsprechendenIDVerbindung. Dieses Dialogfenster ist das Bindeglied zu Ihrem SPS-LADDRProgramm. Hier können Sie die Lokale ID einstellen und die LADDR<br/>ermitteln.

Beides sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 und FC 6 (AG\_SEND, AG\_RECEIVE) anzugeben sind. Bitte hier immer die VIPA FCs verwenden, die als Bibliothek auf der SW830 mitgeliefert werden.

| ] |  |
|---|--|

#### Hinweis!

Bitte beachten Sie, dass den Verbindungen der SEND/RECEIVE-Schnittstelle eine CP-abhängige ID zugewiesen wird. Daher kann es bei Änderungen im Projekt zu Anpassungen der ID kommen. In diesem Fall ist im Anwenderprogramm die Schnittstellenversorgung von AG\_SEND bzw. AG\_RECV ebenfalls anzupassen.

Wird ein CP durch einen anderen ersetzt, muss dieser mindestens die gleichen Dienste bereitstellen und mindestens den gleichen Versionsstand haben. Nur so ist gewährleistet, dass die über den CP projektierten Verbindungen konsistent erhalten bleiben und genutzt werden können.

Wegewahl Mit der *Wegewahl* können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll. Verwenden Sie für die Kommunikation immer den 2. CP der Wegewahl. Als 1. CP finden Sie immer den Ethernet-PG/OP-Kanal, der keine projektierbaren Verbindungen unterstützt. AdressenIm Register Adressen werden die relevanten lokalen und fernen<br/>Adressinformationen als Vorschlagswerte angezeigt. Je nach<br/>Kommunikationsart können Sie Adressinformationen unspezifiziert lassen.<br/>Die nachfolgende Tabelle zeigt die Kombinationsmöglichkeiten mit den<br/>verschiedenen Betriebsarten:

| Verbindungspartner                                     | Verbindungstyp      | Verbindungs-<br>aufbau | Verbindung                               | Betriebsart                                  |
|--------------------------------------------------------|---------------------|------------------------|------------------------------------------|----------------------------------------------|
| spezifiziert in NetPro<br>(im aktuellen Projekt)       | TCP /<br>ISO-on-TCP | aktiv/passiv           | spezifiziert                             | SEND/RECEIVE                                 |
|                                                        | UDP                 | -                      |                                          |                                              |
| unspezifiziert in NetPro                               |                     | aktiv                  | spezifiziert                             | SEND/RECEIVE                                 |
| (im aktuellen Projekt)                                 | TCP /               |                        | teilspezifiziert (Port)                  | SEND/RECEIVE                                 |
|                                                        | ISO-on-TCP          | passiv                 | unspezifiziert                           | FETCH PASSIV<br>WRITE PASSIV                 |
|                                                        | UDP                 | -                      | spezifiziert                             | SEND/RECEIVE                                 |
| unspezifiziert in NetPro<br>(in "unbekannten Projekt") |                     | aktiv                  | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE                                 |
|                                                        | ISO-on-TCP          | passiv                 | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE<br>FETCH PASSIV<br>WRITE PASSIV |
|                                                        | UDP                 | -                      | unspezifiziert<br>(Verbindungsname)      | SEND/RECEIVE                                 |
| Alle Broadcast-Teilnehmer                              | UDP                 | -                      | spezifiziert (Port,<br>Broadcast-Adr.)   | SEND                                         |
| Alle Multicast-Teilnehmer                              | UDP                 | -                      | spezifiziert (Port,<br>Multicast-Gruppe) | SEND/RECEIVE                                 |

Adressparameter Eine Verbindung wird durch den *lokalen* und *fernen* Verbindungsendpunkt spezifiziert. Mit Ausnahme von Broadcast- und Multicast-Verbindungen müssen bei der Projektierung von Verbindungen Ports/TSAPs kreuzweise übereinstimmen. Bei Broadcast- bzw. Multicast-Verbindungen müssen Sender und Empfänger den gleichen Port verwenden. Abhängig vom Protokoll definieren folgende Parameter einen Verbindungsendpunkt:

| IP-Adresse Sta<br>ferner TSAP<br>lokaler TSAP | tion A<br>$\rightarrow$<br>$\leftarrow$ | ISO-on-TCP-<br>Verbindung | $\begin{array}{rl} \text{IP-Adresse Station B} \\ \rightarrow & \text{lokaler TSAP} \\ \leftarrow & \text{ferner TSAP} \end{array}$ |
|-----------------------------------------------|-----------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| IP-Adresse Sta<br>ferner Port<br>lokaler Port | tion A<br>$\rightarrow$<br>$\leftarrow$ | TCP-<br>Verbindung        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                |
| IP-Adresse Sta<br>ferner Port<br>lokaler Port | tion A<br>→<br>←                        | UDP-<br>Verbindung        | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                |

- TSAP ISO-on-TCP unterstützt TSAP-Längen (Transport Service Accesss Point) von 1...16Byte. Sie können den TSAP im ASCII- oder im hexadezimalen Format eingeben. Die Längenberechnung erfolgt automatisch.
- Port Ports bzw. Port-Adressen definieren den Zugangspunkt zum Anwenderprogramm innerhalb der Station/CPU. Diese müssen eindeutig sein. Eine Port-Adresse sollte im Bereich 2000...65535 liegen. Ferne und lokale Ports dürfen bei nur 1 Verbindung identisch sein.

Nachdem Sie auf diese Weise alle Verbindungen projektiert haben, können Verbindungen Sie Ihr Projekt "Speichern und übersetzen" und NetPro beenden. speichern und übersetzen Damit die CP-Projektierdaten in den Systemdaten abgelegt werden, müssen Sie in den der Hardware-Konfiguration des CPs unter Objekteigenschaften im Bereich Optionen die Option "Projektierungsdaten in der CPU speichern" aktivierten (Standardeinstellung). Der Begriff "Verbindung" wird auch bei UDP verwendet, obwohl im Betrieb Broadcast-/ Stationen kein expliziter Verbindungsaufbau zwischen den der **Multicast-**Kommunikationspartnern erfolgt. Verbindungen Bei der Projektierung werden aber wie z.B. bei TCP die Kommunikationspartner einander zugeordnet und somit auch logisch verbunden. Bei der Auswahl des Verbindungspartners haben Sie ausschließlich bei UDP noch folgende Optionen: Alle Broadcast-Teilnehmer Alle Muticast-Teilnehmer

**Broadcast-Teilnehmer** Indem Sie als Verbindungspartner *Alle Broadcast-Teilnehmer* anwählen, bestimmen Sie, dass UDP-Telegramme an alle erreichbaren Broadcast-Teilnehmer zu senden sind. Bitte beachten Sie, dass der CP ausschließlich Broadcast-Telegramme senden kann. Empfang von Nutzdaten über Broadcast ist nicht möglich. Standardmäßig werden Broadcasts, die ausschließlich der Ethernet-Kommunikation dienen, wie z.B. ARP-Requests (Suche MAC <> IP-Adresse), empfangen und entsprechend bearbeitet.

Zur Identifikation der Broadcast-Teilnehmer im Netz ist bei der Projektierung einer Broadcast-Verbindung eine gültige Broadcast-Adresse als Partner-IP vorzugeben. Zusätzlich zur Broadcast-Adresse müssen Sie für Sender und Empfänger einen gemeinsamen Port angeben.

Multicast-<br/>TeilnehmerDurch Anwahl von Alle Multicast-Teilnehmer bestimmen Sie, dass UDP-<br/>Telegramme an Teilnehmern einer Multicast-Gruppe zu senden bzw. von<br/>diesen zu empfangen sind. Im Gegensatz zu Broadcast ist hier der<br/>Empfang möglich.Zur Identifikation der Multicast-Teilnehmer im Netz ist bei der Projektierung<br/>einer Multicast-Verbindung eine gültige Multicast-Gruppen-Adresse als<br/>Partner-IP vorzugeben. Zusätzlich zu dieser Adresse müssen Sie für<br/>Sender und Empfänger einen gemeinsamen Port angeben.

Die maximale Anzahl der Multicast-Kreise, die vom Ethernet CP 343 -SPEED-Bus unterstützt werden, ist identisch mit der maximalen Anzahl an Verbindungen.

## SEND/RECEIVE im SPS-Anwenderprogramm

ÜbersichtFür die Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein SPS-<br/>Anwenderprogramm in der CPU erforderlich. Hierbei kommen ausschließ-<br/>lich die VIPA Hantierungsbausteine AG\_SEND (FC5) und AG\_RECV (FC6)<br/>zum Einsatz. Beispielsweise durch Einbindung dieser Bausteine in den<br/>Zyklus-Baustein OB 1 können Sie zyklisch Daten senden und empfangen.<br/>Die beiden FCs sind Bestandteil der VIPA-Library, die sich als CD (SW830)<br/>im Lieferumfang der CPU befindet.



#### **Hinweis!**

Bitte beachten Sie, dass Sie in Ihrem Anwenderprogramm für die Kommunikation mit VIPA-CPs ausschließlich die SEND/RECV-FCs von VIPA einsetzen dürfen. Bei Wechsel zu VIPA-CPs in einem schon bestehenden Projekt können die bestehenden AG\_SEND/AG\_LSEND bzw. AG\_RECV/AG\_LRECV durch AG\_SEND bzw. AG\_RECV von VIPA ohne Anpassung ersetzt werden. Da sich der CP automatisch an die Länge der zu übertragenden Daten anpasst ist die L-Variante von SEND bzw. RECV bei VIPA nicht erforderlich.

Kommunikations-<br/>bausteineFür die Kommunikation zwischen CPU und CP stehen Ihnen folgende FCs<br/>zur Verfügung:

AG\_SEND (FC 5)

Dieser Baustein übergibt die Nutzdaten aus dem über *SEND* angegebenen Datenbereich an den über *ID* und *LADDR* spezifizierten CP. Als Datenbereich können Sie einen PAA-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übertragen, so wird "Auftrag fertig ohne Fehler" zurückgemeldet.

AG\_RECV (FC 6)

Der Baustein übernimmt vom CP die Nutzdaten und legt sie in dem über *RECV* definieren Datenbereich ab. Als Datenbereich können Sie einen PAE-, Merker- oder Datenbaustein-Bereich angeben. Wurde der Datenbereich fehlerfrei übernommen, so wird "Auftrag fertig ohne Fehler" zurück-gemeldet.

 Statusanzeigen
 Der CP bearbeitet Sende- und Empfangsaufträge unabhängig vom CPU-Zyklus und benötigt hierzu eine Übertragungszeit. Die Schnittstelle mit den FC-Bausteinen zum Anwenderprogramm wird hierbei über Quittungen synchronisiert.
 Für die Statusauswertung liefern die Kommunikationsbausteine Parameter zurück, die Sie in Ihrem Anwenderprogramm direkt auswerten können.
 Diese Statusanzeigen werden bei jedem Baustein-Aufruf aktualisiert.

Einsatz unter hoher Kommunikationslast Verwenden Sie keine zyklischen Aufrufe der Kommunikationsbausteine im OB 1. Dies führt zu einer ständigen Kommunikation zwischen CPU und CP. Programmieren Sie stattdessen Ihre Kommunikationsbausteine in einem Zeit-OB, deren Zykluszeit größer ist als die des OB 1 bzw. ereignisgesteuert. Aufruf FC schneller als CP-Übertragungszeit

AG\_SEND, AG RECV im

Anwenderprogramm Wird ein Baustein im Anwenderprogramm erneut aufgerufen, bevor die Daten vollständig gesendet oder empfangen wurden, wird an der Schnittstelle der FC-Bausteine wie folgt verfahren:

AG\_SEND

Es wird kein Auftrag entgegen genommen, bis die Datenübertragung über die Verbindung vom Partner quittiert wurde. Solange erhalten Sie die Meldung "Auftrag läuft", bis der CP den nächsten Auftrag für die gleiche Verbindung übernehmen kann.

AG\_RECV

Der Auftrag wird mit der Meldung "Es liegen noch keine Daten vor" quittiert, solange der CP die Empfangsdaten noch nicht vollständig empfangen hat.

Eine mögliche Ablaufsequenz für die FC-Bausteine zusammen mit den Organisations- und Programmbausteinen im CPU-Zyklus ist nachfolgend dargestellt:



Die FC-Bausteine mit zugehöriger Kommunikationsverbindung sind farblich zusammengefasst. Hier können Sie auch erkennen, dass Ihr Anwenderprogramm aus beliebig vielen Bausteinen bestehen kann. Somit können Sie ereignis- bzw. programmgesteuert an beliebiger Stelle im CPU-Zyklus mit AG\_SEND Daten senden bzw. mit AG\_RECV Daten empfangen.

Sie können die Bausteine für **eine** Kommunikationsverbindung auch mehrmals in einem Zyklus aufrufen.

| AG_SEND (FC 5) | Mit AG_SEND werden die zu sendenden Daten an den CP übertragen. |
|----------------|-----------------------------------------------------------------|
|----------------|-----------------------------------------------------------------|

Parameter

| Parameter | Deklaration | Datentyp | Beschreibung                                           |
|-----------|-------------|----------|--------------------------------------------------------|
| ACT       | Input       | BOOL     | Aktivierung des Senders                                |
|           |             |          | 0: Aktualisiert die DONE, ERROR und STATUS             |
|           |             |          | 1: Der unter SEND mit der Länge LEN abgelegte          |
|           |             |          | Datenbereich wird gesendet                             |
| ID        | Input       | INT      | Verbindungsnummer 1 16 (identisch mit ID aus NetPro)   |
| LADDR     | Input       | WORD     | Logische Basisadresse des CPs                          |
|           |             |          | (identisch mit LADDR aus NetPro)                       |
| SEND      | Input       | ANY      | Datenbereich                                           |
| LEN       | Input       | INT      | Anzahl der Bytes, die aus dem Datenbereich zu          |
|           |             |          | übertragen sind                                        |
| DONE      | Output      | BOOL     | Zustandsparameter für den Auftrag                      |
|           |             |          | 0: Auftrag läuft                                       |
|           |             |          | 1: Auftrag fertig ohne Fehler                          |
| ERROR     | Output      | BOOL     | Fehleranzeige                                          |
|           |             |          | 0: Auftrag läuft (bei DONE = 0)                        |
|           |             |          | 0: Auftrag fertig ohne Fehler (bei DONE = 1)           |
|           |             |          | 1: Auftrag fertig mit Fehler                           |
| STATUS    | Output      | WORD     | Statusanzeige, die in Verbindung mit DONE und ERROR    |
|           |             |          | zurückgeliefert wird. Näheres hierzu finden Sie in der |
|           |             |          | nachfolgenden Tabelle.                                 |

| AG_RECV (FC 6) | Mit AG_RECV werden die Daten, die der CP empfangen hat, in die CPU |
|----------------|--------------------------------------------------------------------|
|                | übertragen.                                                        |

Parameter

| Parameter | Deklaration | Datentyp | Beschreibung                                           |
|-----------|-------------|----------|--------------------------------------------------------|
| ID        | Input       | INT      | Verbindungsnummer 1 16 (identisch mit ID aus NetPro)   |
| LADDR     | Input       | WORD     | Logische Basisadresse des CPs                          |
| l         |             |          | (identisch mit LADDR aus NetPro)                       |
| RECV      | Input       | ANY      | Datenbereich für die empfangenen Daten                 |
| NDR       | Output      | BOOL     | Zustandsparameter für den Auftrag                      |
|           | -           |          | 0: Auftrag läuft                                       |
| <u> </u>  |             |          | 1: Auftrag fertig Daten wurden ohne Fehler übernommen  |
| ERROR     | Output      | BOOL     | Fehleranzeige                                          |
|           |             |          | 0: Auftrag läuft (bei NDR = 0)                         |
|           |             |          | 0: Auftrag fertig ohne Fehler (NDR = 1)                |
| l         |             |          | 1: Auftrag fertig mit Fehler                           |
| STATUS    | Output      | WORD     | Statusanzeige, die in Verbindung mit NDR und ERROR     |
|           |             |          | zurückgeliefert wird. Näheres hierzu finden Sie in der |
|           |             |          | nachfolgenden Tabelle.                                 |
| LEN       | Output      | INT      | Anzahl der Bytes, die empfangen wurden                 |

# DONE, ERROR,<br/>STATUSIn der nachfolgenden Tabelle sind alle Meldungen aufgeführt, die der CP<br/>nach einem SEND-Auftrag bzw. RECV-Auftrag zurückliefern kann.<br/>Ein "-" bedeutet, dass diese Meldung für den entsprechenden SEND- bzw.<br/>RECV-Auftrag nicht existiert.

| DONE<br>(SEND) | NDR<br>(RECV) | ERROR | STATUS | Bedeutung                                              |
|----------------|---------------|-------|--------|--------------------------------------------------------|
| 1              | -             | 0     | 0000h  | Auftrag fertig ohne Fehler.                            |
| -              | 1             | 0     | 0000h  | Neue Daten wurden ohne Fehler übernommen.              |
| 0              | -             | 0     | 0000h  | Kein Auftrag in Bearbeitung.                           |
| -              | 0             | 0     | 8180h  | Es liegen noch keine Daten vor.                        |
| 0              | 0             | 0     | 8181h  | Auftrag läuft.                                         |
| 0              | 0             | 1     | 8183h  | Für diesen Auftrag gibt es keine CP-Projektierung.     |
| 0              | -             | 1     | 8184h  | Es ist ein Systemfehler aufgetreten.                   |
| -              | 0             | 1     | 8184h  | Es ist ein Systemfehler aufgetreten                    |
|                |               |       |        | (Quelldatenbereich fehlerhaft).                        |
| 0              | -             | 1     | 8185h  | Parameter LEN größer als Quell–Bereich SEND            |
|                | 0             | 1     | 8185h  | Ziel-Puffer (RECV) ist zu klein.                       |
| 0              | 0             | 1     | 8186h  | Parameter ID ungültig (nicht im Bereich 1 16)          |
| 0              | -             | 1     | 8302h  | Keine Empfangsressourcen bei Ziel–Station,             |
|                |               |       |        | Empfänger–Station kann empfangene Daten nicht          |
|                |               |       |        | schnell genug verarbeiten bzw. hat keine               |
|                |               |       |        | Empfangsressourcen bereitgestellt.                     |
| 0              | -             | 1     | 8304h  | Die Verbindung ist nicht aufgebaut. Der Sendeauftrag   |
|                |               |       |        | sollte erst nach einer Wartezeit >100 ms erneut        |
|                |               |       |        | abgesetzt werden.                                      |
| -              | 0             | 1     | 8304h  | Die Verbindung ist nicht aufgebaut. Der                |
|                |               |       |        | Empfangsauftrag sollte erst nach einer Wartezeit >     |
|                |               |       |        | 100ms erneut abgesetzt werden.                         |
| 0              | -             | 1     | 8311h  | Zielstation ist unter der angegebenen Ethernet–        |
|                |               |       |        | Adresse nicht erreichbar.                              |
| 0              | -             | 1     | 8312h  | Ethernet–Fehler im CP                                  |
| 0              |               | 1     | 8F22h  | Quell–Bereich ungültig, wenn beispielsweise Bereich im |
|                |               |       |        | DB nicht vorhanden Parameter LEN < 0.                  |
| -              | 0             | 1     | 8F23h  | Quell-Bereich ungültig, wenn beispielsweise Bereich im |
|                |               |       |        | DB nicht vorhanden Parameter LEN < 0.                  |
| 0              | -             | 1     | 8F24h  | Bereichsfehler beim Lesen eines Parameters.            |
| -              | 0             | 1     | 8F25h  | Bereichsfehler beim Schreiben eines Parameters.        |
| 0              | -             | 1     | 8F28h  | Ausrichtungsfehler beim Lesen eines Parameters.        |
| -              | 0             | 1     | 8F29h  | Ausrichtungsfehler beim Schreiben eines Parameters.    |
| -              | 0             | 1     | 8F30h  | Parameter liegt im schreibgeschützten 1. akt. DB.      |
| -              | 0             | 1     | 8F31h  | Parameter liegt im schreibgeschützten 2. akt. DB.      |
| 0              | 0             | 1     | 8F32h  | Parameter enthält zu große DB–Nummer.                  |
| 0              | 0             | 1     | 8F33h  | DB–Nummer Fehler                                       |
| 0              | 0             | 1     | 8F3Ah  | Bereich nicht geladen (DB)                             |

Fortsetzung ...

| DONE   | NDR        | ERROR    | STATUS   | Bedeutung                                                |  |
|--------|------------|----------|----------|----------------------------------------------------------|--|
| (SEND) | (RECV)     |          |          |                                                          |  |
| 0      | - !        | 1        | 8F42h    | Quittungsverzug beim Lesen eines Parameters aus          |  |
|        | <u> </u> ! | <u> </u> | <u> </u> | dem Peripheriebereich.                                   |  |
| -      | 0          | 1        | 8F43h    | Quittungsverzug beim Schreiben eines Parameters in       |  |
|        | <br>       | <u> </u> |          | den Peripheriebereich.                                   |  |
| 0      | -          | 1        | 8F44h    | Adresse des zu lesenden Parameters in der                |  |
|        |            |          |          | Zugriffsspur gesperrt.                                   |  |
| -      | 0          | 1        | 8F45h    | Adresse des zu schreibenden Parameters in der            |  |
|        |            |          |          | Zugriffsspur gesperrt.                                   |  |
| 0      | 0          | 1        | 8F7Fh    | Interner Fehler z.B. unzulässige ANY–Referenz z.B.       |  |
|        |            |          |          | Parameter LEN = 0.                                       |  |
| 0      | 0          | 1        | 8090h    | Baugruppe mit dieser Baugruppen–Anfangsadresse           |  |
|        |            |          |          | nicht vorhanden oder CPU in STOP.                        |  |
| 0      | 0          | 1        | 8091h    | Baugruppen–Anfangsadresse nicht auf Doppel–Wort–         |  |
|        |            |          |          | Raster.                                                  |  |
| 0      | 0          | 1        | 8092h    | In ANY–Referenz ist eine Typangabe ungleich BYTE         |  |
|        |            |          |          | angegeben.                                               |  |
| -      | 0          | 1        | 80A0h    | Negative Quittung beim Lesen von Baugruppe.              |  |
| 0      | 0          | 1        | 80A4h    | reserviert                                               |  |
| 0      | 0          | 1        | 80B0h    | Baugruppe kennt den Datensatz nicht.                     |  |
| 0      | 0          | 1        | 80B1h    | Die Längenangabe (im Parameter LEN) ist falsch.          |  |
| 0      | 0          | 1        | 80B2h    | reserviert                                               |  |
| 0      | 0          | 1        | 80C0h    | Datensatz kann nicht gelesen werden.                     |  |
| 0      | 0          | 1        | 80C1h    | Der angegebene Datensatz ist gerade in Bearbeitung.      |  |
| 0      | 0          | 1        | 80C2h    | Es liegt ein Auftragsstau vor.                           |  |
| 0      | 0          | 1        | 80C3h    | Die Betriebsmittel (Speicher) der CPU sind temporär      |  |
|        |            |          |          | belegt.                                                  |  |
| 0      | 0          | 1        | 80C4h    | Kommunikationsfehler (tritt temporär auf; daher ist eine |  |
|        |            |          |          | Wiederholung im Anwenderprogramm sinnvoll.)              |  |
| 0      | 0          | 1        | 80D2h    | Baugruppen–Anfangsadresse ist falsch.                    |  |

#### ... Fortsetzung DONE, ERROR, STATUS

Status-Parameter Bei einem Neuanlauf des CP werden die Ausgabe-Parameter wie folgt zurückgesetzt:

- DONE = 0
- NDR = 0
- ERROR = 8180h (bei AG\_RECV) ERROR = 8181h (bei AG\_SEND)

## **Projekt-Transfer** Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS" unter "Projekt transferieren".

## NCM-Diagnose - Hilfe zur Fehlersuche

#### Checkliste zur Fehlersuche

Diese Seite soll Ihnen bei der Fehlersuche dienen. Die nachfolgende Checkliste soll Ihnen helfen, einige typische Problemstellungen und deren mögliche Ursachen zu erkennen:

| Frage                                         | Abhilfe bei "nein"                                                                                                                                                              |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU im Run?                                   | DC 24V-Spannungsversorgung überprüfen.                                                                                                                                          |
|                                               | RUN/STOP-Schalter in Stellung RUN bringen.                                                                                                                                      |
|                                               | SPS-Programm überprüfen und neu übertragen.                                                                                                                                     |
| AG_SEND, AG_RECV<br>im Anwender-<br>programm? | Für den Datentransfer zwischen CP und CPU<br>sind diese 2 Bausteine im Anwenderprogramm<br>erforderlich. Auch bei einer passiven<br>Verbindung sind beide Bausteine aufzurufen. |
| Kann CP verbinden?                            | Ethernetleitung überprüfen (bei Punkt-zu-Punkt-<br>Verbindung ist ein gekreuztes Ethernetkabel zu<br>verwenden).                                                                |
|                                               | IP-Adresse überprüfen.                                                                                                                                                          |
| Können Daten                                  | Port-Nr. für Lesen und Schreiben überprüfen.                                                                                                                                    |
| transferiert werden?                          | Die Quell- und Zielbereiche überprüfen.                                                                                                                                         |
|                                               | Prüfen, ob der 2. CP in der Wegewahl<br>angewählt ist.                                                                                                                          |
|                                               | Den mit dem ANY-Pointer angegebenen<br>Empfangs- bzw. Sendepuffer vergrößern.                                                                                                   |
| Wird der komplette<br>Datenblock bei ISO-on-  | Überprüfen Sie den LEN-Parameter bei AG_SEND.                                                                                                                                   |
| TCP gesendet?                                 | Den mit dem ANY-Pointer angegebenen<br>Empfangs- bzw. Sendepuffer auf die<br>erforderliche Größe einstellen.                                                                    |

#### Siemens NCM S7-Diagnose

Der CP unterstützt das Siemens NCM-Diagnosetool. Das NCM-Diagnosetool ist Bestandteil des Siemens SIMATIC Managers. Dieses Tool liefert dynamisch Informationen zum Betriebszustand der Kommunikationsfunktionen von online geschalteten CPs.

Folgende Diagnose-Funktionen stehen Ihnen zur Verfügung:

- Betriebszustand an Ethernet ermitteln
- Im CP den Diagnosepuffer auslesen
- Verbindungen diagnostizieren

Auf den Folgeseiten finden Sie eine Kurzbeschreibung der NCM-Diagnose. Näheres zum Funktionsumfang und zum Einsatz des Siemens NCM-Diagnose-Tools finden Sie in der entsprechenden Online-Hilfe bzw. Dokumentation von Siemens. **NCM-Diagnose** Für den Aufruf des Diagnose-Tools haben Sie folgende 2 Möglichkeiten: **starten** 

- Über Windows-START-Menü > SIMATIC ... NCM S7 > Diagnose
- Innerhalb der Projektierung bzw. Hardware-Konfiguration über das Register "Diagnose" im "Eigenschaften"-Dialog mit [Ausführen] die Diagnose aufrufen.

Aufbau Die Arbeitsumgebung des Diagnose-Tools hat folgenden Aufbau:

Im *Navigationsbereich* auf der linken Seite finden Sie die hierarchisch geordneten Diagnoseobjekte. Je nach CP-Typ und projektierter Verbindungen haben Sie eine angepasste Objektstruktur im Navigationsbereich. Im *Inhaltsbereich* auf der rechten Seite finden Sie immer das Ergebnis der

| von Ihnen an                                                                                                             | gewählten Nav                                                                                                                                                                                                                               | rigationsf                                                                                     | unktion              | im Nav | vigationsl | bereich. |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------|--------|------------|----------|
| INCM 57-Diagnose - CP243 0/4 172                                                                                         | .16.129.200 ONLINE                                                                                                                                                                                                                          |                                                                                                | _                    |        |            |          |
| Diagnose Betriebszustand Diagnosepuff                                                                                    | er <u>A</u> nsicht Extras <u>H</u> ilfe                                                                                                                                                                                                     |                                                                                                |                      |        |            |          |
| <b>≗∎</b> 9 ∰ 60 ∑ ∰ 10                                                                                                  |                                                                                                                                                                                                                                             |                                                                                                |                      |        |            |          |
| - 36 Geographic<br>See Industatie Eternet<br>- 50 Urtzeit<br>- 50 Deriveszutand<br>- 10 Degnoseputer<br>21 € Vebnolungen | Orline-Ptad<br>Schröttstelle Ind Ethernet TCP/IP<br>S7-Subort2-D des<br>Zehetzes: Baugupgenringen: 0<br>- Altgemeine Raugupgenrinformation<br>Baugupgen Typ: CP243<br>Baugupgen Verson: V1.0.1<br>HVM daugbetend: 11<br>Bestelhummer: CP243 | Adesse des<br>Netzübergangs:<br>Adesse des Neiz-<br>anrohkusse der Zielstation:<br>Steckplatz: | <br>17216123200<br>4 |        |            |          |
| Navigationsbereich                                                                                                       | Informati                                                                                                                                                                                                                                   | onsbereich                                                                                     |                      |        |            |          |
| Drücken Sie F1, um Hilfe zu erhalten.                                                                                    |                                                                                                                                                                                                                                             |                                                                                                | //                   |        |            |          |

#### Keine Diagnose ohne Verbindung

Für eine Diagnose ist immer eine Online-Verbindung zu dem zu diagnostizierenden CP erforderlich. Klicken Sie hierzu in der Symbolleiste auf

Es öffnet sich folgendes Dialogfenster:

| 🐺 NCM 57-Diagnose: Online-Pfad                 | ×                                      |
|------------------------------------------------|----------------------------------------|
| Welche Baugruppe wollen Sie erreich            | en?                                    |
| Netzübergang                                   |                                        |
| Anschluss des <u>N</u> etzübergangs:           |                                        |
| (keiner)                                       |                                        |
| Teilnehmeradresse (Netzübergang):              |                                        |
| S7-Subnetz-ID des Zielnetzes:                  | ·                                      |
| Zielstation                                    |                                        |
| Anschluss der Zielstation:                     |                                        |
| Ind. Ethernet TCP/IP                           | <b></b>                                |
| Ieilnehmeradresse:                             | 172 . 16 . 129 . 200                   |
| <u>B</u> augruppenträger / <u>S</u> teckplatz: | 0 • / 5 •                              |
|                                                | <u>P</u> G/PC-Schnittstelle einstellen |
| <u>O</u> K                                     | Abbrechen <u>H</u> ilfe                |

Stellen Sie unter *Zielstation* folgende Parameter ein:

Anschluss...: Ind. Ethernet TCP/IP

Teilnehmer-Adr.: Tragen Sie hier die IP-Adresse des CPs ein

#### Baugruppenträger/Steckplatz:

Geben Sie hier den *Baugruppenträger* und *Steckplatz* des *CP* 343 an, den Sie an 2. Stelle projektiert haben.

Stellen Sie Ihre PG/PC-Schnittstelle auf TCP/IP...RFC1006 ein. Mit [OK] starten Sie die Online-Diagnose.

Diagnosepuffer<br/>auslesenDer CP besitzt einen Diagnosepuffer. Dieser hat die Architektur eines<br/>Ringspeichers. Hier können bis zu 100 Diagnosemeldungen festgehalten<br/>werden. In der NCM-Diagnose können Sie über das Diagnoseobjekt<br/>Diagnosepuffer die CP-Diagnosemeldungen anzeigen und auswerten.<br/>Über einen Doppelklick auf eine Diagnosemeldung hält die NCM-Diagnose<br/>weitere Informationen bereit.

Vorgehensweise bei der Diagnose Navigationsbereich anklicken. Weitere Funktionen stehen Ihnen über das Menü und über die Symbolleiste zur Verfügung.



#### Hinweis!

Überprüfen Sie immer anhand der Checkliste am Kapitelanfang die Voraussetzungen für eine funktionsfähige Kommunikation.

Für den gezielten Diagnoseeinsatz ist folgende Vorgehensweise zweckmäßig:

- Diagnose aufrufen.
- Mit Dialog für Online-Verbindung öffnen, Verbindungsparameter eintragen und mit [OK] Online-Verbindung herstellen.
- Den CP identifizieren und über Baugruppenzustand den aktuellen Zustand des CPs ermitteln.
- Verbindungen überprüfen auf Besonderheiten wie:
  - Verbindungszustand
  - Empfangszustand
  - Sendezustand
- Über *Diagnosepuffer* den Diagnosepuffer des CP einsehen und entsprechend auswerten.
- Soweit erforderlich, Projektierung bzw. Programmierung ändern und Diagnose erneut starten.

## Kopplung mit Fremdsystemen

- Übersicht Die bei TCP- bzw. ISO-on\_TCP unterstütze Betriebsart FETCH/WRITE können Sie prinzipiell für Zugriffe von Fremdgeräten auf den SPS-Systemspeicher verwenden. Damit Sie diesen Zugriff z.B. auch für PC-Anwendungen implementieren können, müssen Sie den Telegramm-Aufbau für die Aufträge kennen. Die spezifischen Header für Anforderungs- und Quittungstelegramme sind standardmäßig 16Byte lang und werden auf den Folgeseiten beschrieben.
- **ORG-Format** Das Organisationsformat ist die Kurzbeschreibung einer Datenquelle bzw. eines Datenziels in SPS-Umgebung. Die verwendbaren ORG-Formate sind in der nachfolgenden Tabelle aufgelistet.

Die ERW-Kennung ist bei der Adressierung von Datenbausteinen relevant. In diesem Fall wird hier die Datenbaustein-Nummer eingetragen. Die Anfangsadresse und Anzahl adressieren den Speicherbereich und sind im HIGH-/LOW- Format abgelegt (Motorola - Adressformat).

| Beschreibung   | Тур      | Bereich |
|----------------|----------|---------|
| ORG-Kennung    | BYTE     | 1x      |
| ERW-Kennung    | BYTE     | 1255    |
| Anfangsadresse | HILOWORD | 0y      |
| Länge          | HILOWORD | 1z      |

In der nachfolgenden Tabelle sind die verwendbaren ORG-Formate aufgelistet. Die "Länge" darf nicht mit -1 (FFFFh) angegeben werden.

ORG-Kennung 01h-04h

| CPU-Bereich                 | DB                                                                                                       | MB                                                                      | EB                                                                      | AB                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| ORG-Kennung                 | 01h                                                                                                      | 02h                                                                     | 03h                                                                     | 04h                                                                     |
| Beschreibung                | Quell-/Zieldaten aus/in<br>Datenbaustein im<br>Hauptspeicher.                                            | Quell-/Zieldaten aus/in<br>Merkerbereich.                               | Quell-/Zieldaten aus/in<br>Prozessabbild der Ein-<br>gänge (PAE).       | Quell-/Zieldaten aus/in<br>Prozessabbild der<br>Ausgänge (PAA).         |
| ERW-Kennung<br>(DBNR)       | DB, aus dem die Quell-<br>daten entnommen<br>werden bzw. in den die<br>Zieldaten transferiert<br>werden. | irrelevant                                                              | irrelevant                                                              | irrelevant                                                              |
| Anfangsadresse<br>Bedeutung | DBB-Nr., ab der die<br>Daten entnommen bzw.<br>eingeschrieben werden.                                    | MB-Nr., ab der die<br>Daten entnommen<br>bzw. eingeschrieben<br>werden. | EB-Nr., ab der die<br>Daten entnommen<br>bzw. eingeschrieben<br>werden. | AB-Nr., ab der die<br>Daten entnommen<br>bzw. eingeschrieben<br>werden. |
| Länge<br>Bedeutung          | Länge des Quell-/Ziel-<br>datenblocks in <u>Worten</u> .                                                 | Länge des Quell-/Ziel-<br>datenblocks in Bytes.                         | Länge des Quell-/Ziel-<br>datenblocks in Bytes.                         | Länge des Quell-/Ziel-<br>datenblocks in Bytes.                         |



#### Hinweis!

Informationen zu den erlaubten Bereichen finden Sie im Teil "Hardwarebeschreibung der CPU".

#### ORG-Kennung 05h-07h

| CPU-Bereich                 | PB                                                                                                                               | ZB                                                                         | ТВ                                                                         |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ORG-Kennung                 | 05h                                                                                                                              | 06h                                                                        | 07h                                                                        |
| Beschreibung                | Quell-/Zieldaten aus/in Peri-<br>pheriebaugruppen. Bei<br>Quelldaten Eingabe-<br>baugruppen, bei Zieldaten<br>Ausgabebaugruppen. | Quell-/Zieldaten aus/in<br>Zählerzellen.                                   | Quell-/Zieldaten aus/in<br>Zeitenzellen.                                   |
| ERW-Kennung<br>(DBNR)       | irrelevant                                                                                                                       | irrelevant                                                                 | irrelevant                                                                 |
| Anfangsadresse<br>Bedeutung | PB-Nr., ab der die Daten<br>entnommen bzw.<br>eingeschrieben werden.                                                             | ZB-Nr., ab der die Daten<br>entnommen bzw.<br>eingeschrieben werden.       | TB-Nr., ab der die Daten<br>entnommen bzw.<br>eingeschrieben werden.       |
| Länge<br>Bedeutung          | Länge des Quell-/Zieldaten-<br>blocks in Bytes.                                                                                  | Länge des Quell-/Zieldaten-<br>blocks in Worten<br>(Zählerzelle = 1 Wort). | Länge des Quell-/Zieldaten-<br>blocks in Worten<br>(Zählerzelle = 1 Wort). |

Übertragen von Bausteinen mit Nummern >255

#### ORG-Kennung 81h-FFh

Zur Übertragung von Datenbausteinen im Nummernbereich 256 ... 32768 können Sie die ORG-Kennung 81h-FFh verwenden.

Da die Angabe einer DB-Nr. >255 ein Wort als Länge erfordert, setzt sich DBNR<sub>neu</sub> aus dem Inhalt von ORG-Kennung und DBNR zusammen.

DBNR<sub>neu</sub> wird als Wort auf folgende Weise generiert:



Ist das höchste Bit der ORG-Kennung gesetzt, so ergibt sich das Low-Byte von DBNR<sub>neu</sub> aus der DBNR und das High-Byte von DBNR<sub>neu</sub> aus der ORG-Kennung, wobei das höchste Bit der ORG-Kennung eliminiert wird. Folgende Formel soll dies nochmals verdeutlichen:

DBNR<sub>neu</sub>=256 x (ORGKennung AND 7Fh) + DBNR

Aufbau SPS-Header Bei FETCH und WRITE generiert der CP SPS-Header für Anforderungsund Quittungstelegramme. Diese Header sind 16Byte lang und haben folgende Struktur:

WRITE

| Anforderungstele                    | gramm      |        |
|-------------------------------------|------------|--------|
| Systemkennung                       | ="S5"      | (Wort) |
| Länge Header                        | =10h       | (Byte) |
| Kenn. OP-Code                       | =01h       | (Byte) |
| Länge OP-Code                       | =03h       | (Byte) |
| OP-Code                             | =03h       | (Byte) |
| ORG-Block                           | =03h       | (Byte) |
| Länge ORG-Block                     | =08h       | (Byte) |
| ORG-Kennung*                        |            | (Byte) |
| ERW-Kennung                         |            | (Byte) |
| Anfangsadresse                      |            | (Wort) |
| Länge                               |            | (Wort) |
| Leerblock                           | =FFh       | (Byte) |
| Länge Leerblock                     | =02h       | (Byte) |
| Daten bis zu 64kBy<br>Fehler-Nr.=0) | te (nur we | enn    |

#### Quittungstelegramm CP

| Systemkennung           | ="S5"        | (Wort) |  |  |
|-------------------------|--------------|--------|--|--|
| Länge Header            | =10h         | (Byte) |  |  |
| Kenn. OP-Code           | =01h         | (Byte) |  |  |
| Länge OP-Code           | =03h         | (Byte) |  |  |
| OP-Code                 | <b>=04</b> h | (Byte) |  |  |
| Quittungsblock          | =0Fh         | (Byte) |  |  |
| Länge Q-Block           | =03h         | (Byte) |  |  |
| Fehler-Nr.              |              | (Byte) |  |  |
| Leerblock               | =FFh         | (Byte) |  |  |
| Länge Leerblock         | =07h         | (Byte) |  |  |
| 5 leere Bytes angehängt |              |        |  |  |

FETCH

#### Anforderungstelegramm

| Remote Station  |       |        |
|-----------------|-------|--------|
| Systemkennung   | ="S5" | (Wort) |
| Länge Header    | =10h  | (Byte) |
| Kenn. OP-Code   | =01h  | (Byte) |
| Länge OP-Code   | =03h  | (Byte) |
| OP-Code         | =05h  | (Byte) |
| ORG-Block       | =03h  | (Byte) |
| Länge ORG-Block | =08h  | (Byte) |
| ORG-Kennung*    |       | (Byte) |
| ERW-Kennung     |       | (Byte) |
| Anfangsadresse  |       | (Wort) |
| Länge           |       | (Wort) |
| Leerblock       | =FFh  | (Byte) |
| Länge Leerblock | =02h  | (Byte) |

#### Quittungstelegramm CP

| Systemkennung                                   | ="S5" | (Wort) |  |  |
|-------------------------------------------------|-------|--------|--|--|
| Länge Header                                    | =10h  | (Byte) |  |  |
| Kenn. OP-Code                                   | =01h  | (Byte) |  |  |
| Länge OP-Code                                   | =03h  | (Byte) |  |  |
| OP-Code                                         | =06h  | (Byte) |  |  |
| Quittungsblock                                  | =0Fh  | (Byte) |  |  |
| Länge Q-Block                                   | =03h  | (Byte) |  |  |
| Fehler-Nr.                                      |       | (Byte) |  |  |
| Leerblock                                       | =FFh  | (Byte) |  |  |
| Länge Leerblock                                 | =07h  | (Byte) |  |  |
| 5 leere Bytes angehängt                         |       |        |  |  |
| Daten bis zu 64kByte (nur wenn<br>Fehler-Nr.=0) |       |        |  |  |

\*) Nähere Angaben zum Datenbereich finden Sie unter "ORG-Format" weiter oben.



#### Hinweis!

Bitte beachten Sie, dass im Gegensatz zu Siemens-S5-Systemen hier bei der Daten-Baustein-Adressierung die Anfangsadresse als Byte-Nummer interpretiert wird.

Meldungen von Fehler-Nr.

| Folgende M | eldunaen | können über | Fehler-Nr. zurüc | kaeliefert werden: |
|------------|----------|-------------|------------------|--------------------|
| <b>U</b>   | J -      |             |                  |                    |

| Fehler-Nr | Meldung                                                           |
|-----------|-------------------------------------------------------------------|
| 00h       | Kein Fehler aufgetreten                                           |
| 01h       | Der angegebene Bereich kann nicht gelesen bzw. beschrieben werden |

## Beispiel zur Kommunikation CPU 31xSN/NET - CPU 31xSN/NET

- **Übersicht** Dieses Kapitel soll in den Umgang mit dem Bussystem TCP/IP für das System 300S einführen. Ziel dieses Kapitels ist es, eine Kommunikation zwischen zwei VIPA CPUs 31xSN/NET aufzubauen, die auf einfache Weise die Kontrolle der Kommunikationsvorgänge erlaubt.
- Voraussetzungen Kenntnisse über die VIPA-CP-Hantierungsbausteine AG\_SEND und AG\_RECV sind erforderlich. Die CP-Hantierungsbausteine ermöglichen die Nutzung der Kommunikationsfunktionen durch Programme in den Automatisierungsgeräten.

Für die Durchführung des Beispiels sollten Sie mindestens die folgenden technischen Einrichtungen besitzen:

#### Hardware

- 2 CPUs 31xSN/NET von VIPA
- 1 PC oder PG mit Twisted Pair Ethernet-Anschluss

#### Übertragungsstrecke

- 3 Buskabel
- 1 Switch/Hub

#### Adressen

- 4 IP Adressen und Subnet-Maske für je 2 CPs

#### Software-Pakete

- Siemens SIMATIC Manager V. 5.1 oder höher
- Siemens SIMATIC NET

Zur Realisierung des Beispiels ist die Programmierung der zwei CPUs sowie die Parametrierung der Kommunikationsprozessoren unter NetPro von Siemens erforderlich.



#### Hinweis!

Das Beispiel finden Sie auf ftp.vipa.de/support/demofiles als ZIP-Datei. Das SPS-Programm können Sie direkt in beide CPUs übertragen.



## Aufgaben für die<br/>StationenDem Beispiel wird eine Kommunikationsaufgabe zugrunde gelegt, die im<br/>Folgenden näher erläutert wird:<br/>In beiden CPUs läuft das gleiche SPS-Programm, lediglich die

Projektierung der CP-Teile ist auf die jeweilige Station anzupassen.

Beide Stationen senden und empfangen im Sekundentakt 16 Datenworte.

- Im Datenbaustein DB 11 werden die Datenbytes DBB 0 bis DBB 32 im Takt von 1s übertragen. Das Datenbyte DBB 0 im DB 11 dient hierbei als Telegrammzähler. Es wird nur dann inkrementiert, wenn der vorhergegangene Sendeauftrag korrekt (fertig ohne Fehler) abgearbeitet wurde. Über die restlichen Datenbytes (DBB 2 bis DBB 32) könnten Nutzdaten übertragen werden.
- Die empfangende Station legt die Daten in DB 12 ab (DBB 0 bis DBB 31).
- Über NetPro ist eine aktive SEND/RECEIVE-Verbindung mit der ID 1 f
  ür den 2. CP zu projektieren. Diese Verbindung erscheint bei der 2. Station als passive SEND/RECEIVE-Verbindung.
- Die Quell- und Zielparameter sind direkt zu parametrieren.

Die Aufgabenstellung und die erforderlichen Voreinstellungen sind somit umrissen. Weitere Einzelheiten zur Projektierung finden Sie auf den Folgeseiten

| Schritte der<br>Projektierung                  | <ul> <li>Die Projektierung gliedert sich in folgende Teile:</li> <li>Projektierung der CPU</li> <li>Projektierung der reell gesteckten Module am Standard-Bus</li> <li>Projektierung PG/OP-Kanal und <i>CP 343</i></li> <li>Projektierung unter NetPro</li> <li>SPS-Anwenderprogramm</li> <li>Projekt transferieren</li> </ul>                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Projektierung der<br>CPU von Station 1         | <ul> <li>Starten Sie den Siemens SIMATIC Manager mit einem neuen Projekt.</li> <li>Fügen Sie eine "SIMATIC 300 Station" ein und geben Sie dieser den Namen "Station 1".</li> <li>Starten Sie den Hardware-Konfigurator und fügen Sie aus dem Hardware-Katalog eine Profilschiene ein.</li> <li>Platzieren Sie auf Steckplatz 2 folgende Siemens CPU: CPU 318-2DP (6ES7 318-2AJ00-0AB0 V. 3.0)</li> </ul>                                                                                                                                                                                                                                |
| Projektierung der<br>Module am<br>Standard-Bus | <ul> <li>Die am Standard-Bus rechts der CPU befindlichen Module sind nach folgenden Vorgehensweisen zu projektieren:</li> <li>Binden Sie beginnend mit Steckplatz 4 Ihre System 300V Module auf dem Standard-Bus in der gesteckten Reihenfolge ein.</li> <li>Parametrieren Sie ggf. die CPU bzw. die Module. Das Parameterfenster wird geöffnet, sobald Sie auf das entsprechende Modul doppelklicken.</li> <li>Zur Buserweiterung können Sie die IM 360 von Siemens einsetzen, an die Sie bis zu 3 Erweiterungs-Racks über die IM 361 anbinden können. Buserweiterungen dürfen immer nur auf Steckplatz 3 platziert werden.</li> </ul> |
| Projektierung der<br>Module am<br>Standard-Bus | Standard bus (seriell)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

11

### Projektierung der integrierten CPs

Für den internen Ethernet-PG/OP-Kanal, den jede SPEED7-CPU besitzt, ist als 1. Modul unterhalb der reell gesteckten Module ein Siemens CP 343-1 (343-1EX11) zu platzieren.

Den integrierten *CP 343* der CPU 31xSN/NET projektieren Sie ebenfalls als CP 343-1 aber immer unterhalb des zuvor platzierten CP 343-1. Geben Sie für die CPs unter "Eigenschaften" gültige IP-Adresse, Subnet-Maske und ggf. Gateway an und verbinden Sie diese über "Ethernet". Speichern und übersetzen Sie Ihr Projekt.



## Projektierung der<br/>CPU von Station 2Erzeugen Sie gemäß der oben gezeigten Vorgehensweise eine Hardware-<br/>Konfiguration für die Ziel-CPU und geben Sie dieser den Namen<br/>"Station 2".Verwenden Sie hierbei für die CPs die für Station 2 zugeteilten IP-

Verwenden Sie hierbei für die CPs die für Station 2 zugeteilten IP-Adressen, Subnet-Masken und Gateways.

Speichern und übersetzen Sie Ihr Projekt.

#### Projektierung unter NetPro

Starten Sie NetPro indem Sie unter *Station 1* die CPU anwählen und auf das Objekt "Verbindungen" klicken.

In NetPro werden "Station 1" und "Station 2" aufgelistet verbunden mit Ethernet dargestellt.



Zur Projektierung der Verbindung blenden Sie die Verbindungsliste ein. Wählen Sie hierzu die CPU von Station 1 an und rufen Sie über das Kontext-Menü *Neue Verbindung einfügen* auf:



Es öffnet sich ein Dialogfenster in dem Sie den Verbindungspartner auswählen und den Typ der Verbindung einstellen können. Projektieren Sie folgende Verbindung:

#### Neue Verbindung

Verbindung: TCP-Verbindung Verbindungspartner: Station 2 > CPU 318-2

Eigenschaften TCP-Verbindung

1

ID:

*ID* und *LADDR* sind Parameter, die in Ihrem SPS-Programm bei Verwendung der FC 5 (AG\_SEND) und FC 6 (AG\_RECEIVE) anzugeben sind.

Wegewahl: Mit der Wegewahl können Sie den entsprechenden CP anwählen, über den die Verbindung laufen soll.

Als 1. CP finden Sie in der Liste immer den integrierten Ethernet-PG/OP-Kanal der aber ausschließlich PG/OP-Kommunikation unterstützt.

Zur Kommunikation über den internen *CP 343* ist immer der 2. CP aus der Wegewahl zu verwenden. Sind beispielsweise keine lokalen Module gesteckt, wählen Sie "CP 343-1 - (R0/S5)".

Aktiver Verbindungsaufbau: aktiviert

Speichern und übersetzen Sie Ihre Verbindung.

Für die Verarbeitung der Verbindungsaufträge auf SPS-Seite ist ein SPS-SPS-Anwender-Anwenderprogramm in der jeweiligen CPU erforderlich. Hierbei kommen programm ausschließlich die Hantierungsbausteine AG SEND (FC 5) und AG RECV (FC 6) zum Einsatz. Durch Einbindung dieser Bausteine in den Zyklus-Baustein OB 1 mit den Parametern ID und LADDR können Sie zyklisch Daten senden und empfangen.

> Die beiden FCs sind Bestandteil der VIPA-Library, die sich als CD im Lieferumfang der CPU befindet.

OB 1 Zyklus

Über den Zyklus-OB OB 1 wird das Senden und Empfangen der Daten gesteuert. Der OB 1, den Sie in beide CPUs transferieren können, hat folgenden Aufbau:

|        | UN         | т 1                     | //         | Timer 1 getriggertes Senden          |
|--------|------------|-------------------------|------------|--------------------------------------|
|        | L          | S5T#1S                  | //         | alle 1 Sec ein Sendeanstoß           |
|        | SV         | T 1                     |            |                                      |
|        | S          | M 10.0                  | //         | Anstoß-Merker                        |
|        | CALL       | "AG_SEND"               |            |                                      |
|        | ACT        | :=M10.0                 | //         | Anstoß-Merker                        |
|        | ID         | :=1                     | //         | Verbindungsnummer                    |
|        | LADDR      | :=W#16#110              | //         | Baugruppenadresse                    |
|        | SEND       | :=P#DB11.DBX0.0 BYTE 10 | 0          | // SendePuffer Bereich DB11          |
|        | LEN        | :=32                    | //         | 32 Byte (16 Worte) aus DB11 senden   |
|        | DONE       | :=M10.1                 |            |                                      |
|        | ERROR      | :=#Senderror            | //         | Temporärer Fehler-Merker             |
|        | STATUS     | S:=MW12                 | //         | Auftrags- bzw. Verbindungsstatus     |
|        | U          | M 10.1                  | //         | Senden fertig?                       |
|        | SPBN       | nDon                    |            |                                      |
|        | U          | M 10.1                  | //         | Senden fertig                        |
|        | R          | M 10.0                  | //         | Anstoß rücksetzen                    |
|        | U          | #Senderror              | //         | Bei Sendeerror                       |
|        | SPB        | nDon                    | 11         | SendeZähler nicht erhöhen            |
|        | L          | DB11.DBW 0              | 11         | Sendezähler in den Nutzdaten (DBW0)  |
|        | L          | 1                       | 11         | um eins inkrementieren und           |
|        | +I         |                         | 11         | wieder im Sendepuffer ablegen        |
|        | Т          | DB11.DBW 0              |            |                                      |
| nDon:  | NOP        | 0                       | //         | Senden noch nicht fertig             |
| 112011 | 1101       |                         | / /        | benden noon niene rereig             |
|        | // Zył     | lischer Aufruf des Rece | ive        | Bausteins                            |
|        | CATT       |                         |            |                                      |
|        | CALL       | AG_RECV<br>• - 1        | , ,        | Vorbindunggnummer                    |
|        | ת<br>תחת ג | ·                       | //         | Paugruppopadroggo                    |
|        |            | ·=W#10#110              | //         | //Empferencesse                      |
|        | RECV       | ·=P#DBIZ.DBXI00.0 BYIE  | 32         |                                      |
|        | NDR        | ·=#Newdala              | <i>'</i> , | NewDalaReceived?                     |
|        | LKKUR      | $\cdot = 140 \cdot 1$   | //         | RECEITOI                             |
|        | SIATUS     |                         | //         | Aultrags- Dzw. verbindungsstatus     |
|        | LEN        | ·=#kecien               | 11         | tatsachlich emplangene Lange         |
|        | NOP        | U ,                     | 11         | Recien kann bei isounice < 32 sein   |
|        | U          | #Newdata                | 11         | wenn neue Daten emptangen            |
|        | ZV         | Z 1                     | 11         | Emptangszähler Zählerl inkrementiere |

// Empfangszähler Zähler1 inkrementieren // Zähler 1 bei Überlauf zurücksetzen

Projekt transferieren Informationen zum Projekt-Transfer finden Sie im Teil "Einsatz CPU 31xS" unter "Projekt transferieren".

1

1

T.

L ==I R

7. 999

Ζ

Beobachtung der Übertragung im Siemens SIMATIC Manager Als Ausgangspunkt werden parametrierte CPs und urgelöschte CPUs, deren RUN/STOP-Schalter in der Grundstellung STOP steht, vorausgesetzt.

Übertragen Sie das zuvor beschriebene Kommunikationsprojekt in beide CPUs und bringen Sie diese in RUN.

Starten Sie den Siemens SIMATIC Manager und führen Sie zur Beobachtung des Sendeauftrags die folgenden Schritte aus:

- **Zielsystem** > Variable beobachten/steuern
- Tragen Sie unter "Operand" die entsprechende Datenbaustein-Nr. und das Datenwort ein (DB11.DBB 0-31).
- Stellen Sie eine Verbindung her und klicken Sie auf "beobachten"

| MN                         |                                  |            |                                    |                                       |               |       |
|----------------------------|----------------------------------|------------|------------------------------------|---------------------------------------|---------------|-------|
| Variable b                 | eobachten un                     | d steuern  |                                    |                                       |               |       |
| 👪 <u>T</u> abelle <u>I</u> | <u>B</u> earbeiten <u>E</u> infi | ügen Ziels | ystem <u>V</u> ariable <u>A</u> n: | sicht E <u>x</u> tras <u>F</u> enster | <u>H</u> ilfe | _ 8 2 |
|                            | <b>5</b> X P                     | <b>()</b>  | <i>∥</i> ab 💁 🖀 🖘                  | N (1) (1)                             |               |       |
| Operand                    |                                  | Symbol     | Statusformat                       | Statuswert                            | Steuerwert    |       |
| MW 10                      |                                  |            | HEX                                |                                       |               |       |
|                            |                                  |            |                                    |                                       |               |       |
| DB11.DBW                   | 0                                |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 2                                |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 4                                |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 6                                |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 8                                |            | HEX                                |                                       |               | 1     |
| DB11.DBW                   | 10                               |            | HEX                                |                                       |               | 1     |
| DB11.DBW                   | 12                               |            | HEX                                |                                       |               | 1     |
| DB11.DBW                   | 14                               |            | HEX                                |                                       |               | 1     |
| DB11.DBW                   | 16                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 18                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 20                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 22                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 24                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 26                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 28                               |            | HEX                                |                                       |               |       |
| DB11.DBW                   | 30                               |            | HEX                                |                                       |               |       |
|                            |                                  |            |                                    |                                       |               |       |

Nutzdaten eingeben

Ab DBB 2 können Nutzdaten eingetragen werden. Gehen Sie hierzu mit dem Cursor auf *Steuerwert* und tragen Sie einen zu übertragenden Wert ein, wie z.B. W#16#1111.

Mit übertragen Sie den Steuerwert bei jedem Zyklusdurchlauf bzw. mit einmalig.

## Anhang

## A Index

| 7-4      |
|----------|
|          |
| 1-8      |
|          |
| 4-6      |
| 4-7      |
|          |
|          |
| 4-4      |
|          |
| 7-3      |
| 2-1, 3-9 |
| 2-12     |
|          |

## В

| Batteriepufferung      | 4-4      |
|------------------------|----------|
| Betriebsart            | 4-30     |
| Schalter               | 3-12     |
| Bitübertragungsschicht | 8-4      |
| Broadcast8-            | 16, 8-31 |

## С

| CPU 314ST                |
|--------------------------|
| Adressbelegung5-4        |
| Analog-Teil3-17, 5-5     |
| Anschlussbelegung 5-5    |
| Auflösung5-7             |
| deaktivieren5-7          |
| Diagnosealarm 5-10       |
| Diagnosefunktionen 5-13  |
| Drahtbrucherkennung 5-10 |
| Ersatzwert5-10           |
| Funktions-Nr5-11         |
| Messzyklus5-10           |
| Parameter5-9             |
| STOP-Verhalten5-10       |
| Umrechnung5-8            |
| Zahlendarstellung5-7     |
| Zugriff5-6               |
| Anschlussbelegung5-3     |
| Digital-Teil3-18, 5-16   |
| Anschlussbelegung 5-16   |
| deaktivieren5-25         |

| Diagnosealarm                                                                                                                              | . 5-23                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Zähler                                                                                                                                     | . 5-18                                                                       |
| abbrechend zählen<br>Diagnosealarm<br>Eingangsfilter<br>einmalig zählen<br>endlos zählen<br>Endwert<br>Flankenauswahl<br>Hauptzählrichtung | 5-26<br>5-24<br>5-24<br>5-28<br>5-27<br>5-25<br>5-25<br>5-24<br>5-26<br>5-26 |
| Impuls                                                                                                                                     | 5-25                                                                         |
| Ladewert                                                                                                                                   | 5-25                                                                         |
| Latch-Funktion                                                                                                                             | 5-35<br>5-22                                                                 |
| Parameter                                                                                                                                  | 5-21                                                                         |
| periodisch zählen                                                                                                                          | 5-30                                                                         |
| Prozessalarm                                                                                                                               | 5-39                                                                         |
| Schnelleinstieg                                                                                                                            | 5-18<br>5-22                                                                 |
| unterbrechend zählen                                                                                                                       | 5-33<br>5-26                                                                 |
| Vergleicher                                                                                                                                | 5-35                                                                         |
| Vergleichswert                                                                                                                             | 5-25                                                                         |
| Wert einmalig setzen                                                                                                                       | 5-25                                                                         |
|                                                                                                                                            | . 5-17                                                                       |
| Ein-/Ausgabe-Bereich                                                                                                                       | . 3-16                                                                       |
| EINSatz                                                                                                                                    | 5-1                                                                          |
|                                                                                                                                            | 5-2                                                                          |
| Beisniel                                                                                                                                   | 8-13                                                                         |
| Finsatz                                                                                                                                    | . 0- <del>-</del> -0 .<br>8-1                                                |
| Fehlermeldungen                                                                                                                            | . 8-35                                                                       |
| Fehlersuche                                                                                                                                | . 8-37                                                                       |
| Funktionsübersicht                                                                                                                         | . 8-18                                                                       |
| Hardware-Konfiguration                                                                                                                     | . 8-23                                                                       |
| PG/OP-Kanal                                                                                                                                | . 8-25                                                                       |
| IP-Adresse                                                                                                                                 | . 8-10                                                                       |
| Klassen                                                                                                                                    | . 8-11                                                                       |
| Kommunikation                                                                                                                              |                                                                              |
| Arten                                                                                                                                      | . 8-15                                                                       |
| Möglichkeiten                                                                                                                              | . 8-15                                                                       |
| Verbindungen                                                                                                                               | . 8-16                                                                       |
| Kopplung                                                                                                                                   | . 8-40                                                                       |
| NCM-Diagnose                                                                                                                               | . 8-37                                                                       |
| ORG-Format                                                                                                                                 | . 8-40                                                                       |
| Projektierung                                                                                                                              | . 8-19                                                                       |
| NetPro                                                                                                                                     | . 8-27                                                                       |
| Protokolle                                                                                                                                 | 8-7                                                                          |
| RFC1006                                                                                                                                    | 8-9                                                                          |
| Schnelleinstieg                                                                                                                            | . 8-19                                                                       |

| SPS-Anwenderprogramm | . 8-32 |
|----------------------|--------|
| Fehlermeldungen      | . 8-35 |
| SPS-Header           | . 8-42 |
| Subnet-Mask          | . 8-10 |
|                      |        |

## D

| Darstellungsschicht | 8-5        |
|---------------------|------------|
| Diagnose            |            |
| CPU 314ST           | 5-10, 5-23 |
| Zähler              | 5-39       |
| CPU 31xSN/NET       |            |
| Puffer              | 4-44       |

## Ε

| Einsatz              | 4-1       |
|----------------------|-----------|
| CPU 314ST            | 5-1       |
| CPU 31xS             | 4-1       |
| Profibus             | 6-1       |
| PtP                  | 7-1       |
| CPU 31xSN/NET        |           |
| EMV                  | 2-12      |
| Grundregeln          | 2-13      |
| Ereignis ID          | 4-44      |
| ERW-Kennung          |           |
| Ethernet-PG/OP-Kanal | 4-8, 4-29 |

## F

| Firmware            |      |
|---------------------|------|
| Info über Web-Seite | 4-36 |
| übertragen          | 4-37 |
| Update              | 4-35 |

## G

| Green Cable   |      |
|---------------|------|
| Einsatz       | 4-27 |
| Hinweise      | 1-4  |
| Grundlagen    | 1-1  |
| GSD einbinden | 4-14 |

## Н

| Haltepunkte          |     |
|----------------------|-----|
| Hardwarebeschreibung | 3-1 |
| Host-ID              |     |
| reserviert           |     |
| Hub                  | 8-6 |
|                      |     |

## Ι

## Κ

| Know-how-Schutz           |
|---------------------------|
| Ebenen 8-2                |
| PG/OP4-8, 4-29            |
| RS485                     |
| Profibus                  |
| PtP 3-15                  |
| Übersicht 3-14            |
| Kompatibilität 1-8        |
| Komponenten 3-12          |
| L                         |
| LEDs                      |
| Leistungsmerkmale 3-3-3-4 |
|                           |
| Μ                         |
| MCC 4-39                  |
| MMC 4-28                  |
| Projekttransfer4-28       |
| Diagnose 4-28             |
| MMC-Cmd                   |
| Autobefehle 4-42          |
| Modbus7-6                 |
| Montage2-1, 2-4, 4-2      |
| Ausrichtung 2-2           |
| CPU 31xS 2-4, 4-2         |
| Maße 2-3                  |
| SPEED-Bus2-5              |
| MPI 4-25                  |
| Hinweise 1-3              |
| Projekttransfer 4-25      |
| Multicast 8-16, 8-31      |
| Ν                         |

| NCM-Diagnose    | 8-37 |
|-----------------|------|
| Net-ID          | 8-10 |
| NetPro          | 8-27 |
| Adressen        | 8-30 |
| ID              | 8-29 |
| LADDR           | 8-29 |
| Schnelleinstieg | 8-21 |
| Station         | 8-28 |
| vernetzen       | 8-28 |
| Verbindungen    | 8-29 |
| Wegewahl        | 8-29 |
| Netzwerk        | 8-6  |
| Komponenten     | 8-13 |
| Planung         | 8-12 |
| Varianten       | 8-14 |
| Netzwerkschicht | 8-4  |

## 0

## Ρ

| Parametrierung             |      |
|----------------------------|------|
| CPU 31xS                   | 4-19 |
| Module                     | 4-24 |
| VIPA-spezifisch            | 4-20 |
| Peripheriemodule           |      |
| Adressierung               | 4-5  |
| PG/OP-Kanal                | 4-29 |
| nka-Datei                  | 4-35 |
| Port                       | 8-30 |
| Profibus DP master         | 0-00 |
| Poudroto                   | 67   |
| Dauurale                   | 0-7  |
|                            |      |
| Abisolierlangen            |      |
| Anlautverhalten            | 6-10 |
|                            | 6-7  |
| Einsatz als DP-Slave       |      |
|                            | 6-10 |
|                            | 6-9  |
| Schnittstelle              | 3-15 |
| Stecker                    |      |
| Synchronisation            | 4-21 |
| Übersicht                  | 6-2  |
|                            | 6-7  |
|                            | 4-13 |
| Buserweiterung             | 4-5  |
| Profibus DP-Master         | 6-1  |
| Schnelleinstieg            | 4-13 |
| Schritte                   | 4-15 |
| Transfer                   | 4-25 |
| Projekttransfer            | 4-25 |
| Protokolle                 | 8-7  |
| Prozeduren                 | 7-4  |
| Prozessabbild              | 4-5  |
| PtP-Kommunikation          | 7-1  |
| 3964R                      | 7-4  |
| ASCII                      | 7-3  |
| Broadcast                  | 7-5  |
| Einsatz                    | 7-7  |
| Fehlermeldungen7-12, 7-14, | 7-17 |
| Kommunikation              | 7-13 |
| Modbus                     | 7-6  |
| Parametrierung             | 7-10 |
| Prinzip Datenübertragung   | 7-9  |
| Protokolle                 | 7-3  |
| RS485-Anschluss            | 7-8  |
| RS485-Umschaltung          | 7-7  |
| Schnelleinstieg            | 7-2  |
| SFCs                       | 7-13 |

|  | r | ١ | d | e | X |  |
|--|---|---|---|---|---|--|
|  |   |   |   |   |   |  |

| STX/ETX | 7-3  |
|---------|------|
| USS     | 7-5  |
|         |      |
| R       |      |
| RFC1006 | 8-9  |
| RS485   | 3-15 |
|         |      |

## S

| Schirmung von Leitungen 2-14  |
|-------------------------------|
| Schnittstellen 3-13           |
| Ethernet-Anschluss 3-13, 3-15 |
| MP <sup>2</sup> I             |
| RS485 3-14                    |
| Profibus3-14, 6-1             |
| PtP 3-15, 7-1                 |
| Sicherheitshinweise 1-2       |
| Sicherungsschicht 8-4         |
| Sitzungsschicht8-5            |
| Spannungsversorgung 1-9, 3-12 |
| SPEED-Bus 1-7                 |
| Adressierung 4-7              |
| Firmwareupdate 4-35           |
| Hinweis 1-13                  |
| Montage2-5, 4-2               |
| Projektierung 4-13            |
| Speichererweiterung 4-39      |
| Speichermanagement 3-13       |
| SPS-Header 8-42               |
| Störeinwirkungen2-12          |
| STX/ETX                       |
| Subnet-Maske 8-10             |
| Switch                        |
| Systemübersicht 3-2           |

## Т

| TCP/IP           | 8-7  |
|------------------|------|
| Technische Daten | 3-19 |
| Testfunktionen   | 4-48 |
| Transportschicht | 8-4  |
| TSAP             | 8-30 |
| Twisted Pair     | 8-6  |

## Ü

| Übersicht<br>System 3001- | 5 |
|---------------------------|---|
| U                         |   |
| UDP 8-                    | 9 |
| Umgebungsbedingungen 1-   | 8 |
| Urlöschen 4-3             | 3 |
| Werkseinstellung4-3       | 4 |
| USS                       | 5 |

### V

| Aufbau         |      |
|----------------|------|
| Betriebsarten  |      |
| Kombinationen  |      |
| Partner        |      |
| projektieren   | 8-26 |
| spezifiziert   |      |
| Typen          |      |
| unspezifiziert |      |
| Verdrahtung    | 2-8  |
|                |      |

Frontstecker ..... 2-10

## W

| Watchdog         |                 |
|------------------|-----------------|
| Web-Seite        | 4-8, 4-11, 4-29 |
| Wegewahl         | 8-29            |
| Werkseinstellung |                 |
| wld-Dateien      |                 |
| 7                |                 |

#### Ζ

| Zielsystemfunktionen  | 4-49 |
|-----------------------|------|
| Zykluszeitüberwachung | 4-32 |